Tải bản đầy đủ - 0 (trang)
IV. TiÕn tr×nh bµi häc vµ c¸c ho¹t ®éng:

IV. TiÕn tr×nh bµi häc vµ c¸c ho¹t ®éng:

Tải bản đầy đủ - 0trang

Giáo án ĐẠI SỚ& GIẢI TÍCH 11

1

limun=lim( )n=0 (theo

2

tÝnh chÊt limqn=0 nếu

q 1)

Hoạt động



2: BT2/SGK/121



Hoat ụng ca GV

* BT2/SGK/121?

- Giới thiệu bài toán.



Hoat ụng ca HS



- Nêu định nghĩa 2 cđa

giíi h¹n d·y sè?

1

- Lim 3 =?

n

- Gäi 1 hs lên bảng trình

bày bài giải.



Hoạt động



- Nghe và theo dõi bài

toán trong SGK.

- Trả lời.

- Nhận xét.

- Hs trình bày bài giải.

- Nhận xét.

- Ghi nhận kiến thức.



Ghi bng – Trình chiếu

2. BT2/SGK/121:

1

Ta thÊy: lim 3 =0 víi n

n

1

MỈt khác: un 1 3

n

1

1

nên: un 1 3 3

n

n

Do đó: Lim(un-1)=0

theo định nghĩa 2 của

giới hạn d·y sè suy ra:

limun=1



3: BT3/SGK/121



Hoạt đợng của GV

* BT3/SGK/121?

- Giíi thiệu bài toán.

- Nêu định lý về giới hạn

hữu hạn?

1

- lim =?

n

- Định nghĩa giới hạn vô

cực?

- Gọi 2 hs lên làm ý a, b.



Hoạt động



ảnh hởng đến con ngời.



Hoat ụng ca HS

- Nghe và theo dõi bài

toán trong SGK.

- Trả lời.

- Nhận xét.

- Hs trình bày bài giải.

- Nhận xÐt.

- Ghi nhËn kiÕn thøc.

1

6

6n  1

n

a. lim

=lim

2

3n  2

3

n

=2

3n 2  n  5

b. lim

=lim

2n 2  1

1 5

3  2

n n

1

2 2

n

3

=

2



Ghi bảng – Trình chiếu

3. BT3/SGK/121:

3n  5.4n

c. lim n

4 2n

Chia cả tử và mẫu cho 4n

ta đợc:

3

( )n 5

n

n

3 5.4

lim n

=lim 4

=

1 n

4  2n

1 ( )

2

5

d. Gièng ý a.



4: BT4/SGK/121



GV: Nguyễn Thị Tờ



126

Tổ: Tốn – THPT Lê Q

Đơn



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11

Hoạt đợng của GV

* BT4/SGK/121?

- Giíi thiƯu bài toán.



Hoat ụng ca HS



- Nêu công tính tổng

của 1 cấp số nhân vô

hạn?

- Công thức tính diện

tích hình vuông?

- Cạnh của hình xuông

thứ nhất có độ dài cạnh

1



vậy nó có diện tích

2

là bao nhiêu?



Hoạt động



5: BT5/SGK/122



Hoat ụng ca GV

* BT5/SGK/122?

- Nêu công thức tính

tổng của 1 cấp số nhân

lùi vô hạn?

- Theo bài ra thì tổng S

có phải là tổng của một

cấp số nhân lùi vô hạn

không? Nếu đúng thì

u1=? và q=?

- Gọi hs lên làm.

- chỉnh sửa nếu cần.

Hoạt động



-



Hoat ụng ca HS

Theo dõi bài trong SGK.

Trả lời.

Nhận xÐt.

ChØnh sưa hoµn thiƯn.

Ghi nhËn kiÕn thøc.



Ghi bảng – Trình chiếu

1. BT5/SGK/122:

1

1

(  1) n

S = -1+  2  ...  n  1

10 10

10

1

 u1=-1, q=10

VËy ta cã:

1

u1

10

1= S=

=

1

1 q

11

10



6: BT6/SGK/122



Hoat ụng ca GV

* BT6/SGK/122?

- Nêu công thức tính

tổng của 1 cấp số nhân

lùi vô hạn?

- Số thập phân vô hạn

tuần hoàn là số nh thế

nào?

- Chu kì tuần hoàn của



GV: Nguyn Th T



- Nghe và theo dõi bài

toán trong SGK.

- Trả lời.

- Nhận xét.

- Hs trình bày bài giải.

- Nhận xét.

- Ghi nhận kiến thức.



Ghi bng Trỡnh chiu

4. BT4/SGK/121:

a. Gọi un là diện tích

hình vuông xám thø n.

Theo bµi ra ta cã:

1 1 1

1

u1= . = , u2= 2 , u3=

2 2 4

4

1

43

1

vµ un= n

4

b. Ta thấy (un) là cấp số

nhân lùi vô hạn nên

Sn=u1+u2+u3++un

1

u1

1

=

= 4 =

1

1 q

3

1

4

1

limSn=

3



-



Hoat ụng ca HS

Theo dõi bài trong SGK.

Trả lêi.

NhËn xÐt.

ChØnh sưa hoµn thiƯn.

Ghi nhËn kiÕn thøc.



127

Tổ: Tốn – THPT Lê Q

Đơn



Ghi bảng – Trình chiếu

2. BT6/SGK/122:

Ta thÊy:

a = 1.020202…

=1+0.02+0.0002+0.0000

02+…

VËy:

2

2

2

 4  6 ... =1+

a = 1+

100 10 10



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11

sè trong bµi là 02 có

nghĩa là gì?



2

100

1

1

100

= 1+



Hoạt động

7: BT7/SGK/122

Hoat ụng ca GV

Hoạt đợng của HS

* BT7/SGK/122?

- Theo dâi bµi trong SGK.

- Công thức tính giới hạn

- Trả lời.

vô cực?

- Nhận xét.

- Nêu cách tính giới hạn

- Ghi nhận kiến thức.

0

các dạng: ; ;

0



Hoạt động



2 101

=

99 99



Ghi bng – Trình chiếu

3. BT7/SGK/122:

a. lim(n3+2n2-n+1)=  

b. lim(-n2+5n-2)=- 

c. lim( n 2  n  n )

= lim



( n 2  n  n)( n 2  n  n)



n2  n  n

 n

1

= lim 2

=2

n  n n



8: BT8/SGK/122



Hoạt đợng của GV

* BT8/SGK/122?

- C«ng thøc tÝnh mét sè

giíi hạn đặc biệt?

- Nêu cách tính giới hạn

0

các dạng: ; ; � �

0 �



-



Hoạt đợng của HS

Theo dâi bµi trong SGK.

Tr¶ lêi.

NhËn xÐt.

Ghi nhËn kiÕn thøc.



Ghi bảng – Trình chiếu

4. BT8/SGK/122:

Ta cã: limun=3, limvn=+



3un  1

a. lim

=2

un  1

vn  2

b. lim 2

=0

vn  1



V. cđng cè:

- C¸ch tÝnh tổng của cấp số nhân lùi vô hạn?

- Các giới hạn đặc biệt?

VI. dặn dò:

- Xem lại các bài tập đẫ giải.

- Xem trớc bài: Giới hạn hàm số.

Boồ sung-Ruựt kinh nghiệm:

.............................................................................................................................

.............................................................................................................................

.............................................................................................................................

-----------------------------------&&&------------------------------------



GV: Nguyễn Thị Tờ



128

Tổ: Tốn – THPT Lê Q

Đơn



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11



§2. GIỚI HẠN CỦA HÀM SỐ



Tiết 53 - 57



I. MỤC TIÊU:

1. Kiến thức:

o Biết khái niệm giới hạn của hàm số và đònh nghóa của nó .

o Biết vận dụng đònh nghóa vào việc giải một số bài toán đơn

giản về giới hạn hàm số.

o Biết các đònh lý về giới hạn của hàm số và biết vận dụng

chúng vào việc tính các giới hạn dạng đơn giản .

2. Kó năng: Giúp học sinh

o Rèn luyện kó năng giải một số bài tập áp dụng đơn giản tại

lớp , và các bài tập trong sách giáo khoa.

3. Tư duy - Thái độ :

o Cẩn thận, chính xác.

o Phát triển tư duy logic.

II. CHUẨN BỊ PHƯƠNG TIỆN DẠY HỌC:

o Giáo viên chuẩn bò các phiếu học tập

o Học sinh đọc qua nội dung bài mới ở nhà .

III. GI Ý VỀ PHƯƠNG PHÁP DẠY HỌC:

o Phương pháp gợi mở vấn đáp.

o Phương Pháp nªu vấn đề và giải quyết vấn đề.

IV.TIEN TRèNH BAỉI HOẽC:

1. Ổn đònh lớp :

2.KiĨm tra bµi cò.

3. Dạy bài mới :



TIẾT 53

Hoạt động

điểm.



1 : Giới hạn hữu hạn của hàm số tại một



Hoạt động của GV

-HĐ 1: sgk.



Hoạt động của HS



Ghi bảng – Trình chiếu



-Đọc sgk, suy nghó, trả

1. Đònh nghóa:

lời.

 Đònh nghóa1: sgk.

-Nhận xét, ghi nhận

lim f ( x )  L hay

x�x0



f ( x) � L khi x � x0





-VD1:sgk.

-Xem sgk trả lời.

- Nhận xét, ghi nhận



Nhận xét:



lim x  x0 ; lim c  c với c

x�x



x � x0



0



là hằng số.



Hoạt động



2: Định lý về giới hạn hữu hạn.



Hoạt động của GV



GV: Nguyễn Thị Tờ



Hoạt động của HS



129

Tổ: Tốn – THPT Lê Q

Đơn



Ghi bảng – Trình chiếu



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11

HĐ1: Giới thiệu định lý (tương

tự hoá)

-Nhắc lại định lý về giới hạn - Trả lời.

hữu hạn của dãy số.

-Giới hạn hữu hạn của hàm số

cũng có các tính chất tương tự

như giới hạn hữu hạn của dãy

số.

HĐ2: Khắc sâu định lý.



2.. Đònh lí veà giới



hạn hữu hạn.





Đònh lí 1:



a) Giả sử

lim f  x   L, lim g  x   M khi

x � x0

x � x0

đó

 lim �

�f  x   g  x  �

� L  M ;

x � x0



�f  x   g  x  �

 xlim

� L  M ;

� x0 �

�f  x  .g  x  �

 xlim

� L.M ;

� x0 �



 xlim

�x



0



f  x

L



( M �0) ;

g  x M



b) Nếu f  x  �0 và



lim f  x   L , thì L �0 và



x � x0



lim



x � x0



-HS vận dụng định lý 1 để giải.



f  x  L



( Dấu của f(x) được xét

trên khoảng đang tìm

giới hạn , với x �x0 )

VD2: Cho hàm số

-HS làm theo hướng dẫn của

x2  1

f

(

x

)



GV.

2 x



f ( x) .

Tìm lim

x�3

-Lưu ý HS chưa áp dụng ngay

( x  1) 0 .

được định lý 1 vì lim

x 1

Với x 1:

x 2  x  2 ( x  1)( x  2)



x 1

x 1

x  2



x2  x  2

x 1

x 1

( x  1)( x  2)

lim

x 1

x 1

lim( x  2) 3



lim



VD3: Tính

x2  x  2

lim

x 1

x 1



x 1



4. Củng cố:

Qua bài học các em cần:

- Nắm vững định nghĩa giới hạn hàm số.

- Biết vận dụng định lý về giới hạn hữu hạn của hàm số để giải toán.

Một số câu hỏi trắc nghiệm khách quan khắc sâu nội dung bài học.

BTVN : Bài tập 1,2 sgk trang 132.



GV: Nguyễn Thị Tờ



130

Tổ: Toán – THPT Lê Q

Đơn



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11



TIẾT 54

I. GIỚI HẠN HỮU HẠN CỦA HÀM SỚ TẠI MỘT ĐIỂM

3. Giới hạn một bên.

Hoạt động của GV



Hoạt động của HS



-HĐ 1: sgk.



-Xem sgk

-Nghe, suy nghó

-Ghi nhận kiến thức



Ghi bảng – Trình chiếu

3.Giới hạn một bên.

 Đònh nghóa 2: sgk.



lim f ( x)  L



x � x 0



lim f ( x)  L



x � x 0







.



Đònh lí 2:



lim f ( x) = L



x� x0



khi và chỉ



khi



lim f ( x)  lim f ( x)  L



x � x 0



-



x�x 0



VD: cho



& 3 x  4 khi x 2

f ( x) & 2

& x  5 khi x  2



(1)

( 2)



-Trình bày bài giải

-Nhận xét

-Chỉnh sửa hoàn

thiện

-Ghi nhận kiến thức



& 3 x  4 khi x 2

f ( x) & 2

& x  5 khi x  2

tìm lim f ( x )



(1)

(2)



x 2



ta có:



2

lim f ( x)  lim ( x  5)



x�2



x�2



2



 2  5  1

lim f ( x)  lim ( 3 x  4 )

x 2



x 2



3.2  4 10

f ( x) không tồn tại vì

Vậy lim

x 2



lim f ( x)  lim f ( x)





x 2



x 2



-Trình bày bài giải

-Nhận xét

-Chỉnh sửa hoàn

thiện

-Ghi nhận kiến thức



-HĐ 2: sgk.



Hoạt động



3 : Giới hạn hữu hạn của hàm số tại vô



cực.

Hoạt động của GV



Hoạt động của HS



-HĐ 3: sgk.



H: Khi biến x dần tới dương

vơ cực, thì f (x) dần tới giá trị

nào ?

H: Khi biến x dần tới âm vơ

GV: Nguyễn Thị Tờ



131

Tổ: Tốn – THPT Lê Q

Đơn



Ghi bảng – Trình chiếu



HĐ3:

Khi x � � thì f ( x) � 0

Khi x � � thì f ( x) � 0



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11

cực, thì f (x) dần tới giá trị nào

?

-Xem sgk, trả lời



-Nhận xét

-Ghi nhận kiến thức



6



4



2



-5



5



-2



-4



Hs nghe giảng và ghi chép



Gv nêu lên định nghĩa







Đònh nghóa 3:sgk.



f ( x)  L hay f ( x) � L

+ xlim

��



khi



x � �

f ( x)  L hay f ( x) L

+ xlim





khi



x







- Tìm TXĐ

- Tìm giới hạn của hàm

số đã cho



Hm s ó cho xỏc nh trên ( ; 1) và trên (1; +  ).

HS suy nghĩ tìm giới hạn



Chú ý: sgk.



3x  2

.

x1

f ( x) và lim f ( x) .

Tìm xlim

 

x  

Hàm số đã cho xác định trên (-  ; 1)

và trên (1; +  ).

Giả sử ( x n ) là một dãy số bất kỳ,

thoả mãn x n < 1 và x n    .

Ta có

3x + 2

lim f (xn) = lim n

=

xn - 1



Ví dụ: Cho hàm số f ( x) 



3+

= lim

1-



2

xn

=3

1

xn



f ( x)  lim

Vậy xlim

 

x  



3x  2

3

x1



Giả sử ( x n ) là một dãy số bất kỳ,

thoả mãn x n > 1 và x n    .

Ta có:

3x + 2

lim f (xn) = lim n

=

xn - 1



GV: Nguyễn Thị Tờ



132

Tổ: Tốn – THPT Lê Q

Đơn



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11

3+

= lim

1-



2

xn

=3

1

xn



f ( x)  lim

Vậy xlim

 

x  



Chia cả tử và mẫu cho x 2

ta đợc biểu thức nào?

Tìm giới hạn củ hàm số

đã cho



3

5 x 3x

x

lim

= xlim

=

x x 2  2

 

2

1 2

x

3

lim 5  lim

x  

x   x

=

=5

2

lim 1  lim 2

x  

x   x

2



5



VD: TÝnh xlim

 



3x  2

3

x 1



5 x 2 3x

x2 2



Cuỷng coỏ: Gv nhắc lại các kiến thức cơ bản của bài học

- Nắm đợc định nghĩa giới hạn một bên, giới hạn hữu hạn của hàm số tại vô

cực

- Tìm đợc giới hạn một bên, giới hạn tại vô cực.

Hửụựng daón ve nhaứ:

- Làm các bài tập SGK

- Làm thêm các bài tập trong SBT



GV: Nguyn Thị Tờ



133

Tổ: Tốn – THPT Lê Q

Đơn



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11



TIẾT 55

III. GIỚI HẠN VƠ CỰC CA HAM Sễ.

Hoạt động



3: Giới hạn vô cực của hàm số.



Hot ng ca GV

- Thông qua định

nghĩa 4 sgk.



Hot ng của HS

- HS l¾ng nghe.

- Ghi nhËn



Ghi bảng – Trình chiu

1. Giới hạn vô cực:

* Định nghĩa 4:sgk

lim f ( x)  � hay f ( x ) � �

x ��

Khi x � �

* NhËn xÐt:

lim f ( x)  �� lim (  f ( x))  �

x ��



- Thông qua một vài giới

hạn đặc biệt sgk.



- Xem sgk, tr¶ lêi

- NhËn xÐt

- Ghi nhËn kiÕn thøc



x ��



2. Mét vài giới hạn đặc

biệt:

x k với k nguyên da/ xlim



x k nếu k là

ơng b/ xlim



số lẻ

x k nếu k là số

c/ xlim



chẵn



- Thông qua một vài

quy tắc về giới hạn vô

cực.



- Xem sgk, trả lời

- Nhận xét

- Ghi nhận kiến thức



3. Một vài quy tắc về giới

hạn vô cực:

a/ Quy tắc tìm giới h¹n

cđa tÝch f ( x).g ( x) : sgk.

lim f ( x) lim g(x) lim f ( x).g ( x)



x x 0



L>0

L<0



-



GV: Nguyễn Thị Tờ



Xem sgk, tr¶ lêi

NhËn xÐt

Ghi nhËn kiÕn thøc

Xem sgk, tr¶ lêi

NhËn xÐt

Ghi nhËn kiÕn thøc



134

Tổ: Tốn – THPT Lê Quý

Đôn



x� x0



x x 0



+∞

-∞

+∞

- ∞



+∞

-∞

- ∞

+∞



b/ Quy tắc tìm giới hạn

của thơng

f ( x)

:

g ( x)

Du

lim f ( x) lim g ( x ) của

x x 0

x x 0

g(x)

Tuỳ

L

±∞

ý

+

L>0

0

+

L<0

-



Năm học:2013 -2014



lim



x x 0



f ( x)

g ( x)

0



+∞

-∞

-∞

+∞



Giáo án ĐẠI SỚ& GIẢI TÍCH 11

Chú ý: Các quy tắc trên vẫn đúng

cho

* Chó ý:sgk.

- VD7: sgk .







lim x3  2 x



x ��















3



VD: lim x  2 x

x ��







�3 � 2 �



lim

x �

1 �



x���

�� x�



3



V× lim x  �

x ��



� 2�

lim �

1  � 1

x ��

� x�

� lim x3  2 x  �







x ��



- VD8: sgk



lim

x �1







2x  3

x 1



VD: lim

x �1



ta cã



2x  3

x 1



lim  2 x  3  1  0

x �1



lim  x  1 0

x 1



Mặt khác



x 1 x 1 � x  1  0

2x  3

 �

do ®ã lim

x �1 x  1

Cđng cè:

- Kh¸i niƯm giíi hạn của hàm số. Giới hạn một bên.

- Các định lí về giới hạn và các dạng đặc biệt.

- Các quy tắc tính giới hạn.

Dặn dò:

- Học kỹ bài và làm bài 1;2;3;4;5;6 trang 132 và 133.

- Trả lời các câu sau:

1/ Dùng định nghĩa, tìm các giới hạn sau:

x2  5

x 2  2 x  15

a/

b/ lim

lim

x �1 x  5

x ��

x 3



GV: Nguyễn Thị Tờ



135

Tổ: Toán – THPT Lê Q

Đơn



Năm học:2013 -2014



Giáo án ĐẠI SỚ& GIẢI TÍCH 11



Tiêt: 56 -57



lun tËp

I. MỤCTIÊU:

1. Kiến thức:

- Biết vận dụng đònh nghóa vào việc giải một số bài toán đơn

giản về giới hạn hàm số.

- Biết các đònh lý về giới hạn của hàm số và biết vận dụng

chúng vào việc tính các giới hạn dạng đơn giản .

- Hiểu sâu hơn định nghĩa về giới hạn của hàm số, nắm chắc các phép toán về giới hạn của hàm

số, áp dụng vào giải toán. Vận dụng vào thực tế, thấy mối quan hệ với bộ mơn khác.

2. Kó năng: Giúp học sinh

- Rèn luyện kó năng giải một số baứi taọp aựp duùng ủụn giaỷn.

- Bớc đầu tìm đợc một số giới hạn vô định dạng đơn giản.

3. Tử duy - Thái độ :

- Cẩn thận, chính xác.

- Phát triển tư duy logic.

II. CHUẨN BỊ PHƯƠNG TIỆN DẠY HỌC:

- Giáo viên chuẩn bò các phiếu học tập

- Hs lµm các bài tập về nhà.

III. GễẽI Y VE PHệễNG PHAP DẠY HỌC:

- Phương pháp gợi mở vấn đáp.

- Phương Pháp nêu vấn đề và giải quyết vấn đề.

IV.TIEN TRèNH BAỉI HỌC:

1. Ổn đònh lớp :

2. KiĨm tra bµi cò

3. Dạy bài mới :



Tiết 56

Hoạt động

Hoạt động của GV



-HS1: Trình bày đònh

nghóa 1 và đònh lí 1.

-HS2: Trình bày đònh

nghóa 3 và đònh

nghóa 4.

-HS3:Trình bày quy

tắc tìm giới hạn

của tích và thương.

-Kiểm tra các bài

tập đã dặn.

Hoạt động



Hoạt động của HS



Ghi bảng – Trình chiếu



-Tất cả các HS của

lớp.



2 : Bài tập 1.



Hoạt động của GV

GV: Nguyễn Thị Tờ



1 : Kiểm tra bài cũ



Hoạt động của HS



136

Tổ: Tốn – THPT Lê Q

Đơn



Ghi bảng – Trình chiếu



Năm học:2013 -2014



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

IV. TiÕn tr×nh bµi häc vµ c¸c ho¹t ®éng:

Tải bản đầy đủ ngay(0 tr)

×