Tải bản đầy đủ - 0 (trang)
II. PHƯƠNG PHÁP GIẢI BÀI TÂP

II. PHƯƠNG PHÁP GIẢI BÀI TÂP

Tải bản đầy đủ - 0trang

THPT Nguyễn Trãi



Đề tài nghiên cứu khoa



học sư phạm ứng duïng



Dạng 1: Xác định thời điểm vật qua một vị trí có li độ bất kỳ cho trước.

�



Bài 4: Một vật dao động điều hòa có phương trình v = 2  cos �0,5 t  �cm/s. Vào thời

6









điểm nào vật qua vị trí x = 2cm theo chiều dương của trục toa độ?

Hướng dẫn giải

v

A = max  4cm





B1: Vẽ vòng tròn lượng giác, kèm 3 trục giá trị



B2 : Xác định vị trí đầu ứng với pha đầu    tại điểm V

6



B3: Xác định góc quay    t 





, ứng với vị trí x = 2cm

3



2

3



B4: Xác định được VI � t  s

�

 cm 



2�

a) Vật qua x = 5 cm lần hai theo chiều dương, t1 = ?

b) Vật qua x = 5 cm lần 2001, t2 = ?

Hướng dẫn giải

Vật qua x = 5 cm lần một theo chiều dương:

�OM      7

1  M

0

1

6

6

Vật qua x = 5 cm lần hai theo chiều dương:

17

 17 1 17

 2  1  2 

� t2  2 

.

  s

6



6 2 12

b) Vật qua x = 5 cm lần 2001 sau lần 1 là 2000 lần,

ứng với sau thời gian 1000 chu kỳ (vì cứ 1 chu kỳ có 2

lần):



2

7

t  t1  1000T  1  1000.

� t   1000 �1000, 6  s 





12







Bài 5: Vật dđđh x  10 cos �2 t 



Bài 6: Một vật dao động điều hồ với phương trình x = 4cos(4t +

vật qua vị trí x = 2cm theo chiều dương.

A) 9/8 s

B) 11/8 s



C) 5/8 s





) cm. Thời điểm thứ 3

6



D) 1,5 s



Hướng dẫn giải

- Vật qua x = 2 theo chiều dương là qua M2.

- Qua M2 lần thứ 3 ứng với vật quay được 2 vòng (qua 2

lần) và lần cuối cùng đi từ M0 đến M2.

-A



3

- Góc qt  = 2.2 +

2



M1

M0

x

O



A



M2



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Trang 16



THPT Nguyễn Trãi



Đề tài nghiên cứu khoa



học sư phạm ứng dụng

�t 



 11

 s



8



Bài 7: Một vật dao động điều hồ với phương trình x = 4cos(4t +

2009 vật qua vị trí x = 2cm.

A)



12049

s

24



B)



12061

s

24



C)



12025

s

24





) cm. Thời điểm thứ

6



D) Đáp án khác



Hướng dẫn giải

- Vật qua x =2 là qua M1 và M2.

- Vật quay 1 vòng (1 chu kỳ) qua x = 2cm là 2 lần.

- Qua lần thứ 2009 thì phải quay 1004 vòng rồi đi từ M 0

đến

M1. -A

-



Góc



M1

M0

x

O



A



quét:

M2





  1004.2 

6



1 12049

�t 

 502  

s



24

24

Bài 8: Một vật dao động điều hồ với phương trình x = 8cos(2t2010 vật qua vị trí v = -8 cm/s.

A) 1004,5 s

B) 1004 s



C) 1005 s





) cm. Thời điểm thứ

6



D) 1005,5 s



Hướng dẫn giải



M1



v

4 3cm

- Ta có x  A2  ( )2  �





M0



- Vì v < 0 nên vật qua M1 và M2

-A

- Qua lần thứ 2010 thì phải quay 1004 vòng rồi đi từ M 0

đến M2.

- Góc quét  = 1004.2 +   t = 1004,5 s



x

O



A



M2



Bài 9: Một vật dao động điều hồ với phương trình x = 8cos(2tvật qua vị trí có động năng bằng thế năng

A) 1/8 s

B) 1/16 s



C) 1/24s





) cm. Thời điểm thứ nhất

3



D) 1/32 s



Hướng dẫn giải

- Wđ = Wt

� Wt 



1

A

W � x  �  �4 2cm

2

2



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Trang 17



THPT Nguyễn Trãi



Đề tài nghiên cứu khoa



học sư phạm ứng dụng

� có 4 vị trí M1, M2, M3, M4 trên đường tròn.



- Thời điểm đầu tiên vật qua vị trí W đ = Wt ứng với vật đi

M0 đến M4

- Góc quét  



từ



  

 1

  �t 

 s

3 4 12

 24



Bài 10: Một vật dao động điều hồ với phương trình x = 8cos(2t) cm. Thời điểm thứ nhất

vật đi qua vị trí cân bằng là:

A)



1

s

4



B)



1

s

2



C)



1

s

6



D)



1

s

3



Hướng dẫn giải

- Vật đi qua VTCB, ứng với vật chuyển động tròn đều

qua M1 và M2.

- Vì  = 0, vật xuất phát từ M0 nên thời điểm thứ nhất vật

-A

qua VTCB ứng với vật qua M1.

- Khi đó bán kính qt 1 góc  = /2

�t 



M1

M0

x

O



 1

 s

 4



A



M2



* Bài tập tự giải



�



10 t  �cm. Xác định ly độ và

Bài 1. Một vật dao động điều hòa có phương trình x = 4cos �

3









vận tốc của vật tại thời điểm t = 0,5s

ĐS: x= -2cm; v = 20  3 cm/s







t 

Bài 2. Một vật dao động điều hòa có phương trình x = 5 2 cos �



�

�cm. Thời điểm nào

4�



vật qua vị trí x = -5cm theo chiều dương

ĐS: t =1+2k(s) với k = 0, 1, 2, 3….

Bài 3: Vật dao động điều hòa theo phương trình x= 5cos(10



cm. Thời gian vật đi



quãng đường s =12,5cm kể từ t = 0 là

A.



s



B *.



s



C.



s



D.



s



Bài 4: Một vật dao động điều hòa với phương trình x= 6cos(2



cm . Tính độ dài



quãng đường mà vật đi được trong khoảng thời gian t1= 1,5s đến t2=.

A. 50+5



cm



B.53cm



C. 46cm



D.* 66cm



Nhoùm nghiên cứu: Giáo viên tổ Vật Lí



Trang 18



THPT Nguyễn Trãi

học sư phạm ứng dụng

Dạng 2: Xác định thời gian vật đi từ vị trí x1 đến x



Đề tài nghiên cứu khoa



2



PHƯƠNG PHÁP

Từ phương trình đã cho vẽ vòng tròn lượng giác kèm 3 trục

- B1: Xác định vị trí x1, căn cứ vào dấu của v lấy diểm thứ I trên vòng tròn

- B2: Xác định vị trí x1, căn cứ vào dấu của v lấy điểm thứ II trên vòng tròn

- B3: Xác định góc quay tương ứng



- B4: Từ công thức   .t � t 



* Bài tập mẫu



Bài 1: Một vật dao động điều hòa có phương trình x = Acos  t    cm. Tính thời gian ngắn

nhất để vật vật đi từ:

a/Vị trí cân bằng điến vị trí x =



A

2



b/ Vị trí cân bằng điến vị trí x =



c/ Vị trí cân bằng điến vị trí x =



A 3

2



d/ Vị trí cân bằng điến vị trí x = A



A 2

2



Hướng dẫn giải

Thực hiện theo trình tự các bước chung



T



a/ Góc quay:   t  26 

12

6

T



b/ Theo trình tự các bước ta có vòng tròn lượng giác, kèm 3 trục

- Từ vị trí cân bằng đến x =



A 3

2



- Trên vòng tròn từ M đến N







T



 4 

- Góc quay   � t 

2





6

4

T

c/ Tượng tự ta có vòng tròn lượng giác và 3 truc

A 3

- Từ vị trí cân bằng đến x =

2

- Tương ứng hai vị trí M, N trên vòng tròn



- Góc quay tương ứng  

3





T

 3 

- Thời gian t 

2 6



T



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Trang 19



THPT Nguyễn Trãi

học sư phạm ứng dụng



Đề tài nghiên cứu khoa



d/ Tượng tự ta có vòng tròn lượng giác và 3 truc

- Từ vị trí cân bằng đến x =A

- Tương ứng hai vị trí M, N trên vòng tròn



- Góc quay tương ứng  

2





T

 2 

- Thời gian: t 

2 4



T



Bài 2:

Vật dđđh A = 4 cm, T = 0,1 s

a)Từ x1 = 2 cm đến x2 = 4 cm, t1 = ? (ngắn nhất)

b) Từ x1 = - 2 cm đến x2 = 2 cm, t2 = ? (ngắn nhất)

c)Từ vtcb đến x = 2 cm, t3 = ? (ngắn nhất)

Hướng dẫn giải

�OM   � t  1   . T  T  1  s 

a/ 1  M

1

2

1

3

 3 2 6 60



�OM  � t   2  1  s 

b)  2  M

3

1

2

3

 60





�OM  � t  3  1  s 

c)  3  M

4

1

3

6

 120

*Bài tập tự giải

Bài 1: Một vật dao động điều hòa có phương trình x = Acos  t    cm. Tính thời gian ngắn

nhất để vật vật đi từ:

A

T

A 3

đến vị trí x =

ĐS:

2

4

2

A

A

T

b/ Vị trí x1=

đến vị trí x2 = 

ĐS:

2

2

6

11T

A 2

A 3

c/ Vị trí x1 = đến vị trí x2 =

theo chiều âm ĐS:

24

2

2

5T

A 2

d/ Vị trí x1 = -A đến vị trí x2 =

theo chiều âm

ĐS:

8

2



a/Vị trí x1 = -



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Trang 20



THPT Nguyễn Trãi

học sư phạm ứng dụng



Đề tài nghiên cứu khoa



Dạng 3: Tìm quãng đường vật đi được trong một khoảng thời gian(BT ngược: tìm thời gian khi

biết quãng đường đi )



PHƯƠNG PHÁP

B1: Tìm



t2 - t1 = nT + +t0



B2 : s1= là quãng đường đi trong nT +

S1= n.4A + 2A

B3: Tìm s2 là quãng đường đi trong t0

Xác định vị trí , chiều v trên VTLG lúc t1 +



; M1



Xác định vị trí , chiều v trên VTLG lúc t2 ; M2

Căn cứ vị trí , chiều chuyển động tìm s2

B4: Tìm s = s1+s2

*Bài tốn ngược: tìm thời gian

Phân tích: s = n .4A + 2A +

Từ



xác định góc quay



tương ứng, Tìm



=



.T



Thời gian chuyển động : t = nT + + t



* Bài tập mẫu



Bài 1 Có hai vật dao động điều hòa trên hai đoạn thẳng song song và gần nhau với cùng

biên độ A, tần số 3Hz và 6Hz. Lúc đầu hai vật xuất phát từ vị trí có li độ . Khoảng thời gian

ngắn nhất để hai vật có cùng li độ là

A. s



B.



s



C.



s



D.



s



Hướng dẫn giải

600



cos



Muốn hai vật gặp nhau tổng góc quay hai vật bằng 2

Vậy



+



=



� t (6 + 12 ) =



t(



+



)=



t=



s



Chọn D



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Trang 21



THPT Nguyễn Trãi



Đề tài nghiên cứu khoa



học sư phạm ứng dụng



Bài 2: Hai chất điểm dao động điều hòa trên hai trục tọa độ Ox và Oy vng góc với

nhau( O là vị trí cân bằng của hai chất điểm ). Biết phương trình dao động của hai chất

điểm là x= 2cos(5



) và y = 4cos(5



)cm. Khi chất điểm thứ nhất có li độ x = -



cm và đang đi theo chiều âm thì khoảng cách giữa hai chất điểm là

A.3



cm



B.



cm



C.2



cm



D.



cm



Hướng dẫn giải

Lúc t = 0: x= 0 , vx < 0 chất điểm qua vị trí cân

bằng theo chiều âm

Lúc t = 0 : y = 2

2



cm, vy > 0 , chất điểm đi từ



cm ra biên



Chất điểm x từ x= 0 đến x=-



cm mất thời



gian là

Trong chất điểm y đi từ y =2

dương rồi về lại đúng y =2



cm ra biên

cm



Khoảng cách giữa hai chất điểm là: d =



=



cm .Chọn D



� �

t  �

 cm  . Từ t = 0 đến t = 2,25 s, s = ?

Bài 3: Vật dđđh x  4 cos �

2









Hướng dẫn giải





(phần góc quay 2  ứng với

4

A 2

1 chu kỳ vật đi được 4A, còn lại là

)

2

A 2

s  4A 

 16  2 2  cm 

2

  t  2, 25  2 



Nhoùm nghiên cứu: Giáo viên tổ Vật Lí



Trang 22



THPT Nguyễn Trãi

học sư phạm ứng dụng



Đề tài nghiên cứu khoa



* Bài tập tự giải

Bài 1: Một vật dao động điều hòa với phương trình x = 10cos(



) . Khoảng thời gian



tính từ lúc vật bắt đầu dao động t = 0 đến khi vật đi được quãng đường 50cm là

A*.



s



B.



2,4s



C..



s



D..



s



Bài 2: Một vật dao động điều hòa dọc theo trục Ox có phương trình x= 5sin(

.Xác định quãng đường vật đi được từ thời điểm t = 1s đến thời điểm t =

A. 32,5cm



B.5cm



C*. 22,5cm



) cm

s?



D. 17,5cm



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Trang 23



THPT Nguyễn Trãi

học sư phạm ứng dụng



Đề tài nghiên cứu khoa



Dạng 4: Trường hợp :Tìm smax , smin vật đi được trong khoảng thời gian



(



< )



PHƯƠNG PHÁP

- Vật có vận tốc lớn nhất khi qua vị trí cân bằng, nhỏ nhất khi qua vị trí biên nên trong cùng

một khoảng thời gian quãng đường đi được càng lớn khi vật càng gần vị trí cân bằng và

càng nhỏ khi càng gần về biên

- Quãng đường dài nhất trong khoảng thời gian khi vật đi về vị trí cân bằng , và từ vị trí cân

bằng đi ra( điểm đầu và điểm cuối đối xứng qua trục sin, góc quay



có trục sin là phân



giác )

Quãng đường ngắn nhất trong khoảng thời gian khi vật đi về vị trí biên, và từ vị trí biên đi

về O( điểm đầu và điểm cuối đối xứng qua trục cos; góc quay

Tìm smax= 2A sin



Với



Tìm smin= 2( A - Acos )



Với



Trường hợp: Tìm smax , smin vật đi được trong khoảng thời gian



có trục cos là phân giác



(



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



>



)



Trang 24



THPT Nguyễn Trãi

học sư phạm ứng dụng



Tìm smax = 2(A + A.cos



) Với



Đề tài nghiên cứu khoa



; Tìm smin = 4A - 2Asin



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Với



Trang 25



THPT Nguyễn Trãi

học sư phạm ứng dụng



Đề tài nghiên cứu khoa



* Bài tập mẫu

Bài 1: Vật dđđh : A, T Trong t 

a) smax = ?



  t 



T

4



smin = ?

Hướng dẫn giải



2 T 

. 

T 4 2



a/ Vật đi quãng đường dài nhất ứng tốc độ lớn nhất (lân cận vị trí cân bằng như hình)

smax  A 2



b/ Vật đi quãng đường ngắn nhất ứng tốc độ nhỏ nhất (lân cận vị trí biên như hình)

� A 2�

smin  2 �

�A  2 �

� 2  2 A















Bài 2: Một vật dao động điều hòa cứ mỗi chu kỳ thì có



thời gian vật cách vị trí cân bằng



không quá 10cm. Quãng đường lớn nhất mà vật có thể đi được trong chu kỳ dao động là A.

5cm



B. 10cm



C. 20cm



D.10



cm



Hướng dẫn giải

Trong thời gian T



góc quay là



Do tính đối xứng 4 = 1200

Biên độ A =



, vật có

= 300



10cm

= 600



= 20cm



Nhóm nghiên cứu: Giáo viên tổ Vật Lí



Trang 26



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

II. PHƯƠNG PHÁP GIẢI BÀI TÂP

Tải bản đầy đủ ngay(0 tr)

×