Tải bản đầy đủ - 0 (trang)
Về khả năng dung nạp của các mảnh xương sau quá trình khử protein bằng ba phương pháp trên thỏ thực nghiệm.

Về khả năng dung nạp của các mảnh xương sau quá trình khử protein bằng ba phương pháp trên thỏ thực nghiệm.

Tải bản đầy đủ - 0trang


viêm và tân mạch. Trong mô liên kết sợi thấy có sự xuất hiện của cả

tế bào sợi và nguyên bào sợi.

- Tại vị trí tiếp xúc với các mảnh xương khử protein bằng NaClO thấy

có sự xuất hiện của một lớp mô liên kết sợi dày, gần như không thấy

sự xuất hiện của tế bào viêm và tân mạch. Trong mơ liên kết sợi

thấy có sự xuất hiện của cả tế bào sợi và nguyên bào sợi.



Nên có những nghiên cứu sâu hơn để tìm ra thời gian và nồng độ hóa

chất tối ưu cho quy trình khử protein bằng H 2O2 và NaClO để có thể ứng dụng

rộng rãi.

















Khan S.N (2005). The biology of bone grafting. J Am Acad Orthop Surg,

13(1), 77-86.

Baldini N, De Sanctis M, Ferrari M (2011). Deproteinized bovine bone in

periodontal and implant surgery. Dent M ater, 27(1), 61-70.

Becker W (1996). Clinical and histologic observations of sites implanted

with intraoral autologous bone grafts or allografts. 15 human case reports. J

Periodontol, 67(10), 25-33.

Ekaterina K (2009). Histomorphometric study on healing of critical sized

defect in rat calvaria using three different bovine grafts. Tissue Engineering

and Regenerative Medicine, 9(5), 276-281.

Stavropoulos A (2008). Deproteinized Bovine Bone Xenograft.

Musculoskeletal Tissue Regeneration: Biological Materials and Methods,

W.S. Pietrzak, Humana Press, Totowa, 119-151.

Lei P (2015). A New Method for Xenogeneic Bone Graft Deproteinization:

Comparative Study of Radius Defects in a Rabbit Model. PLoS One, 2015.

10(12) [online] Available at

Stanko P (2013). Mesenchymal stem cells - a promising perspective in the

orofacial cleft surgery. Bratisl Lek Listy, 114(2), 2-50.

Dimitriou R (2011). Bone regeneration: current concepts and future

directions. BMC Med, 9, 66-68.

Baer W, Schaller P, Carl H.D (2002). Spongy hydroxyapatite in hand

surgery-a five year follow-up. J Hand Surg Br, 27(1), 3-101.

Bauermeister A, Maatz R (1957). A method of bone maceration; results in

animal experiments. J Bone Joint Surg Am, 39(1), 66-153.

Trịnh Bình (2002). Mơ liên kết chính thức - Mơ sụn - Mô xương. Mô học, tái

bản lần thứ 2, nhà xuất bản y học, Hà Nội, 142-189.

Michael H.R (2011). bone. Histology, a text and altlas, sixth edition, Wolters

kluwer, Philadelphia, 218-223.

Hall A.C.G, John E (2005). Bone and Its Relation to Extracellular Calcium

and Phosphate. Textbook of medical physiology, W.B. Saunders,

Philadelphia, 980 - 984.

Clarke B (2008). Normal bone anatomy and physiology. Clin J Am Soc

Nephrol, 3(3), 9-131.

DeLustro F (1990). Immune responses to allogeneic and xenogeneic

implants of collagen and collagen derivatives. Clin Orthop Relat Res, 19(2),






















Wagner-Ecker M (2013). The collagen component of biological bone graft

substitutes promotes ectopic bone formation by human mesenchymal stem

cells. Acta Biomater, 9(7), 298-307.

Poinern G.E (2009). Synthesis and characterisation of nanohydroxyapatite

using an ultrasound assisted method. Ultrason Sonochem, 16(4), 74-469.

Bigi A (1997). Chemical and structural characterization of the mineral phase

from cortical and trabecular bone. J Inorg Biochem, 68(1), 45-51.

LeGeros R.Z (1993). Biodegradation and bioresorption of calcium phosphate

ceramics. Clin Mater, 14(1), 65-88.

Bohner M (2000). Calcium orthophosphates in medicine: from ceramics to

calcium phosphate cements. Injury, 31(4), 37-47.

Wagoner J, Herschler B.A (2011). A review of the mechanical behavior of

CaP and CaP/polymer composites for applications in bone replacement and

repair. Acta Biomater, 7(1), 16-30.

Rho J.Y, Kuhn-Spearing L, Zioupos P (1998). Mechanical properties and the

hierarchical structure of bone. Med Eng Phys, 20(2), 92-102.

Halliwell B (1989). Free Radicals in Biology and Medicine, 2nd. 1989,

Clarendon Press, Oxfor.

Cabiscol E, Tamarit J, Ros J (2000). Oxidative stress in bacteria and protein

damage by reactive oxygen species. Int Microbiol, 3(1), 3-8.

Sies H (1993). Damage to plasmid DNA by singlet oxygen and its protection.

Mutat Res, 299(3), 91-183.

Hallen L.G (1966). Heterologous transplantation with Kiel bone. An

experimental and clinical study. Acta Orthop Scand, 37(1), 1-19.

Wilppula E, Bakalim G (1972). Kiel bone in the surgical treatment of tibial

condylar fractures. Acta Orthop Scand, 43(1), 7-62.

Termine J.D (1973). Hydrazine-deproteinated bone mineral. Physical and

chemical properties. Calcif Tissue Res, 12(1), 73-90.

Fattibene P (2006). EPR properties of intact and deproteinated dentin. Radiat

Prot Dosimetry, 120(1),20-126.

Broz J.J (1997). Effects of deproteinization and ashing on site-specific

properties of cortical bone. J Mater Sci Mater Med, 8(6), 395-401.

Chen P.Y (2011). Minerals form a continuum phase in mature cancellous

bone. Calcif Tissue Int, 88(5), 351-361.

Phạm Thị Minh Đức (2007). Sinh lý bộ máy tiêu hóa. Sinh lý học, Nhà xuất

bản y học, Hà Nội, 238-245.

Nguyễn Quang Vinh, Phan Tuấn Nghĩa (2004), Thực tập hóa sinh học, Nhà

xuất bản Đại học quốc gia Hà Nội, Hà Nội.

Klokkevold P.R (2002). Advanced Implant Surgery and Bone Grafting

Techniques. Carranza's Clinical Periodontology, 9th edition, W.B. Saunders,

Philadelphia, 8 - 23.

Albrektsson T, Johansson C (2001). Osteoinduction, osteoconduction and

osseointegration. Eur Spine J, 10(2), 96-101.
















Wozney J.M, Rosen M (1998). Bone morphogenetic protein and bone

morphogenetic protein gene family in bone formation and repair. Clin

Orthop Relat Res, 346, 26-37.

da Silva R.C (2016). Radiographic and histological evaluation of ectopic

application of deproteinized bovine bone matrix. Ann Maxillofac Surg, 6(1),


Yuan H (2001). Bone formation induced by calcium phosphate ceramics in

soft tissue of dogs: a comparative study between porous α-TCP and β-TCP.

Journal of Materials Science: Materials in Medicine, 12(1), 7-13.

Yuan H (2000). Tissue responses of calcium phosphate cement: a study in

dogs. Biomaterials, 21(12),1283-1290.

Hofman S (1999). Effects of Laddec on the formation of calcified bone

matrix in rat calvariae cells culture. Biomaterials, 20(13), 66-72.

Wetzel A.C, Stich H, Caffesse R.G (1995). Bone apposition onto oral

implants in the sinus area filled with different grafting materials. A

histological study in beagle dogs. Clin Oral Implants Res, 6(3), 63-88.

Sculean A (2003). Healing of intrabony defects following treatment with a

bovine-derived xenograft and collagen membrane. A controlled clinical

study. J Clin Periodontol, 30(1), 73-80.

Trường đại học y Hà Nội - Bộ môn miễn dịch - sinh lý bệnh (2015). Miễn

dịch ghép. Giáo trình miễn dịch học (dùng cho học viên sau đại học), Nhà

xuất bản Đại học y Hà Nội, Hà Nội, 279-280.

Cohen R.E (1994). Phenotypic characterization of mononuclear cells

following anorganic bovine bone implantation in rats. J Periodontol, 65(11),


Precheur H.V (2007). Bone graft materials. Dent Clin North Am, 51(3), 4672.

Sogal A, Tofe A.J (1999). Risk assessment of bovine spongiform

encephalopathy transmission through bone graft material derived from

bovine bone used for dental applications. J Periodontol, 70(9), 63-72.

Paknejad M (2015). Histologic Evaluation of Bone Healing Capacity

Following Application of Inorganic Bovine Bone and a New Allograft

Material in Rabbit Calvaria. Journal of Dentistry, 12(1), 31-38.

Ghiacci G, Graiani G (2016). "Over-inlay" block graft and differential

morphometry: a novel block graft model to study bone regeneration and

host-to-graft interfaces in rats. J Periodontal Implant Sci, 46(4), 33-56.

Richardson C.R (1999). Clinical evaluation of Bio-Oss: a bovine-derived

xenograft for the treatment of periodontal osseous defects in humans. J Clin

Periodontol, 26(7), 8-42.

Mellonig J.T (2000). Human histologic evaluation of a bovine-derived bone

xenograft in the treatment of periodontal osseous defects. Int J Periodontics

Restorative Dent, 20(1), 19-29.







Artzi Z, Tal H, Dayan D (2001). Porous bovine bone mineral in healing of

human extraction sockets: 2. Histochemical observations at 9 months. J

Periodontol, 72(2), 9-15.

van Steenberghe D (2000). The clinical use of deproteinized bovine bone

mineral on bone regeneration in conjunction with immediate implant

installation. Clin Oral Implants Res, 11(3), 6-21.

Valentini P, Abensur D.J (2003). Maxillary sinus grafting with anorganic

bovine bone: a clinical report of long-term results. Int J Oral Maxillofac

Implants, 18(4), 60-67.

Hallman M (2001). A clinical histologic study of bovine hydroxyapatite in

combination with autogenous bone and fibrin glue for maxillary sinus floor

augmentation. Results after 6 to 8 months of healing. Clin Oral Implants Res,

12(2), 43-53.

Hallman M, Sennerby L, Lundgren S (2002). A clinical and histologic

evaluation of implant integration in the posterior maxilla after sinus floor

augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80

mixture. Int J Oral Maxillofac Implants, 17(5), 43-65.

Maiorana C (2006). Sinus elevation with alloplasts or xenogenic materials

and implants: an up-to-4-year clinical and radiologic follow-up. Int J Oral

Maxillofac Implants, 21(3), 32-46.

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Về khả năng dung nạp của các mảnh xương sau quá trình khử protein bằng ba phương pháp trên thỏ thực nghiệm.

Tải bản đầy đủ ngay(0 tr)