Tải bản đầy đủ - 0 (trang)
CHƯƠNG 1. TỔNG QUAN VỀ GRAPHÍT CÁCBON NITƠ VÀ LÝ THUYẾT PHIẾM HÀM MẬT ĐỘ

CHƯƠNG 1. TỔNG QUAN VỀ GRAPHÍT CÁCBON NITƠ VÀ LÝ THUYẾT PHIẾM HÀM MẬT ĐỘ

Tải bản đầy đủ - 0trang

TÀI LIỆU THAM KHẢO

Tiếng Việt

1. [Ngọc_2018] Nguyễn Thị Ngọc, 2018, Cấu trúc và Tính chất Điện tử

của vật liệu Cácbon Nitơ dạng graphít g-C4N3, Đồ án tốt nghiệp, Đại

học Bách Khoa Hà Nội, Hà Nội.

2. [Liêm_2014] Bùi Thanh Liêm, 2014, Nghiên cứu vật liệu nền TiO2

bằng phương pháp bán thực nghiệm, Luận văn thạc sĩ Vật lý, Viện Hàn

lâm KH&CN Việt Nam, Hà Nội.

Tiếng Anh

3. [Felser_2007] Felser C., Fecher G. H., Balke B., 2007, Spintronics: A

Challenge for Materials Science and Solid-State Chemistry,

Angewandte Chemie International Edition, 46, 668.

4. [Katsnelson_2008] Katsnelson M. I., Irkhin V. Yu., Chioncel L.,

Lichtenstein A. I., de Groot R. A., 2008, Half-metallic ferromagnets:

From band structure to many-body effects, Reviews of Modern Physics,

80, 315.

5. [Hirohata_2014] Atsufumi Hirohata, Koki Takanashi, 2014, Future

perspectives for spintronic devices, Journal of Physics D: Applied

Physics, 47, 193001.

6. [Dietl_2014] Tomasz Dietl, Hideo Ohno, 2014, Dilute ferromagnetic

semiconductors: Physics and spintronic structures, Reviews of Modern

Physics, 86, 187.

51



7. [Sato_2010] K. Sato et al., 2014, First-principles theory of dilute

magnetic semiconductors, Reviews of Modern Physics, 82, 1633.

8. [Dietl_2010] Tomasz Dietl, 2010, A ten-year perspective on dilute

magnetic semiconductors and oxides, Nature Materials, 9, 965.

9. [Lee_2010] Je Seung Lee, Xiqing Wang, Huimin Luo, Sheng Dai,

2010, Fluidic Carbon Precursors for Formation of Functional Carbon

under Ambient Pressure Based on Ionic Liquids, Advanced Materials,

22, 1004.

10.[Phong_2019] Pham Nam Phong, Nguyen Thi Ngoc, Pham Thanh

Lam, Manh-Thuong Nguyen, Huy-Viet Nguyen, 2019, Spin Gapless

and Magnetic Semiconducting graphitic Carbon Nitride with

Adsorption, submitted for publication in RSC Advances.

11.[Li_2013] Xiaowei Li, Shunhong Zhang, Qian Wang, 2013, Stability

and physical properties of a tri-ring based porous g-C4N3 sheet,

Physical Chemistry Chemical Physics, 15, 7142.

12.[Du_2012] Du A., Sanvito S., Smith S. C., 2012, First-Principles

Prediction of Metal-Free Magnetism and Intrinsic Half-Metallicity in

Graphitic Carbon Nitride, Physical Review Letters, 108, 197207.

13.[Kroke_2002] E. Kroke et al., 2002, Tri-s-triazine derivatives. Part I.

From trichloro-tri-s-triazine to graphitic C3N4 structures, New Journal

of Chemistry, 26, 508.

14.[Baltz_2018] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y.

Tserkovnyak, 2018, Antiferromagnetic spintronics, Reviews of Modern

Physics, 90, 015005.

15.[Jungwirth_2016] T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich,

2016, Antiferromagnetic spintronics, Nature Nanotechnology, 11, 231.



52



16.[Hu_2012] Hu X., 2012, Half-Metallic Antiferromagnet as a

Prospective Material for Spintronics, Advanced Materials, 24, 294.

17.[Sahoo_2016] Sahoo R. et al., 2016, Compensated Ferrimagnetic

Tetragonal Heusler Thin Films for Antiferromagnetic Spintronics,

Advanced Materials, 28, 8499.

18.[Payne_1992] M. C. Payne et al., 1992, Iterative minimization

techniques for ab initio total-energy calculations: molecular dynamics

and conjugate gradients, Reviews of Modern Physics, 64, 1045.

19.[Barth_2004] U. von Barth, 2004, Basic Density-Functional Theory—

an Overview, Physica Scripta, T109, 9.

20.[Sholl_2009] D. S. Sholl, J. A. Steckel, 2009, Density Functional

Theory: A Practical Introduction, John Wiley & Sons, Inc., New

Jersey.

21.[Linh_2015] Nguyễn Nhật Linh, 2015, First-principles van der Waals

density functional descriptions of structural properties of Polymeric

materials, BSc thesis, USTH, Hanoi.

22.[Giannozzi_2017] P. Giannozzi et al., 2017, Advanced capabilities for

materials modelling with Quantum ESPRESSO, Journal of Physics:

Condensed Matter, 29, 465901; http://www.quantum-espresso.org/.

23.[Tan_2017] Chaoliang Tan et al., 2017, Recent Advances in Ultrathin

Two-Dimensional Nanomaterials, Chemical Reviews, 117, 6225.

24.[Tang_2009] W. Tang, E. Sanville, G. Henkelman, 2009, A grid-based

Bader analysis algorithm without lattice bias, Journal of Physics:

Condensed Matter, 21, 084204; http://theory.cm.utexas.edu/bader/.



53



25.[Akai_2006] H. Akai, M. Ogura, 2006, Half-Metallic Diluted

Antiferromagnetic Semiconductors, Physical Review Letters, 97,

026401.

26.[Ong_2016] Wee-Jun Ong, Lling-Lling Tan, Yun Hau Ng, Siek-Ting

Yong, Siang-Piao Chai, 2016, Graphitic Carbon Nitride (g-C3N4)-Based

Photocatalysts for Artificial Photosynthesis and Environmental

Remediation: Are We a Step Closer To Achieving Sustainability?,

Chemical Reviews, 116, 7159.

27.[Wang_2008] Wang, X. L., 2008, Proposal for a New Class of

Materials: Spin Gapless Semiconductors, Physical Review Letters, 100,

156404.

28.[Ouardi_2013] Siham Ouardi et al., 2013, Realization of Spin Gapless

Semiconductors: The Heusler Compound Mn2CoAl, Physical Review

Letters, 110, 100401.

29.[Li_2012] Xingxing Li, Xiaojun Wu, Zhenyu Li, Jinlong Yang, J. G.

Hou, 2012, Bipolar magnetic semiconductors: a new class of

spintronics materials, Nanoscale, 4, 5680.



54



PHỤ LỤC

(i) Tập tin đầu vào QE cho tính tốn hồi phục cấu trúc ‘vc-relax’ với gst

&control

calculation='vc-relax', tstress = .true., etot_conv_thr= 1.D-5,

forc_conv_thr= 1.D-4

! restart_mode='restart',

pseudo_dir = '/home/iop.nhviet/pnphong/pseudo/',

prefix='gC4N3',

outdir='/tmp/iop.nhviet/pnphong/H-ZAgCN/asgams_data/ph.pbes/gCN/pw.ou

t_1g'

nstep=50000, tprnfor=.true.

wf_collect=.true., disk_io = 'low'

/

&system

ibrav=0

celldm(1)=9.14627, celldm(2)=1, celldm(3)=4, celldm(4)=0.5,

nat=7, ntyp=2

ecutwfc=80

occupations='smearing',

smearing='gaussian'

degauss=0.005

nspin=2, input_dft='pbesol'

starting_magnetization(1)=0.01

starting_magnetization(2)=0.99

/

&electrons

mixing_mode='local-TF', mixing_beta = 0.6, conv_thr=1.D-7

/

&ions

ion_dynamics = 'damp'

/

&cell

cell_dynamics = 'damp-w',

press_conv_thr = 3.0

/

55



ATOMIC_SPECIES

C 12.010 C_ONCV_PBE-1.0_ATMWFC.UPF

N 14.007 N_ONCV_PBE-1.0_ATMWFC.UPF

CELL_PARAMETERS (alat= 9.14627000)

0.998202874 -0.000000000 -0.000000000

0.499101437 0.864469047 -0.000000000

-0.000000000 0.000000000 3.999635950

ATOMIC_POSITIONS (crystal)

C

0.166666667 0.166666667

C

0.338555366 0.338555366

N

0.660240039 0.179519925

N

0.179519925 0.660240039

C

0.822889268 0.338555366

C

0.338555366 0.822889268

N

0.660240039 0.660240039

K_POINTS automatic

12 12 1 0 0 0



0.500000000

0.500000000

0.500000000

0.500000000

0.500000000

0.500000000

0.500000000



(ii) Tính tốn cấu trúc vùng và mật độ trạng thái PDOS

- Cấu trúc vùng:

&control

calculation='bands', tstress = .true., etot_conv_thr= 1.D-5, forc_conv_thr=

1.D-4

! restart_mode='restart',

pseudo_dir = '/home/iop.nhviet/pnphong/pseudo/',

prefix='gC4N3',

outdir='/tmp/iop.nhviet/pnphong/H-ZAgCN/asgams_data/ph.pbes/gCN/pw.ou

t_1g'

nstep=50000, tprnfor=.true.

wf_collect=.true., disk_io = 'low'

/

&system

ibrav=0

celldm(1)=9.14627, celldm(2)=1, celldm(3)=4, celldm(4)=0.5,

nat=7, ntyp=2

56



ecutwfc=80

occupations='smearing',

smearing='gaussian'

degauss=0.005

nspin=2, input_dft='pbesol'

starting_magnetization(1)=0.01

starting_magnetization(2)=0.99

/

&electrons

mixing_mode='local-TF', mixing_beta = 0.6, conv_thr=1.D-7

/

&ions

ion_dynamics = 'damp'

/

&cell

cell_dynamics = 'damp-w',

press_conv_thr = 3.0

/

ATOMIC_SPECIES

C 12.010 C_ONCV_PBE-1.0_ATMWFC.UPF

N 14.007 N_ONCV_PBE-1.0_ATMWFC.UPF

CELL_PARAMETERS (alat= 9.14627000)

0.998065328 -0.000000000 0.000000000

0.499032664 0.864349928 0.000000000

0.000000000 0.000000000 3.999595089

ATOMIC_POSITIONS (crystal)

C

0.166666667 0.166666667

C

0.338346398 0.338346398

N

0.660097552 0.179804899

N

0.179804899 0.660097552

C

0.823307204 0.338346398

C

0.338346398 0.823307204

N

0.660097552 0.660097552

K_POINTS crystal_b

2

0.0 0.0 0.0 19

0.666667 0.333333 0.0 0



57



0.500000000

0.500000000

0.500000000

0.500000000

0.500000000

0.500000000

0.500000000



- Mật độ trạng thái:

&projwfc

prefix='gC4N3'

outdir='/home/iop.nhviet/pnphong/H-ZAgCN/asgams_data/ph.pbes/gCN/pw.

out_1g'

ngauss=0, degauss=0.01

DeltaE=0.001

filpdos='gc4n3'

/

(iii) Tính tốn mật độ spin và Bader charge

- Mật độ spin:

&inputpp

prefix='gC4N3'

outdir='/tmp/iop.nhviet/pnphong/LiB/hse_q6x6/H-NC3N3B-C/pw.out_1g'

filplot= 'SPIN_drho.dat'

! kpoint= 1

! kband= 16

plot_num= 6

/

&plot

nfile= 1

filepp(1)= 'SPIN_drho.dat'

weight(1)= 1.0

iflag= 3

output_format= 5

fileout= 'SPIN_drho.xsf'

/

- Bader charge:

&inputpp

prefix='gC4N3'

outdir='/tmp/iop.nhviet/pnphong/LiB/hse_q6x6/H-NC3N3B-C/pw.out_1g'

filplot= 'BCA.out'

58



! kpoint= 1

! kband= 16

plot_num= 0

/

&plot

nfile= 1

filepp(1)= 'BCA.out'

weight(1)= 1.0

iflag= 3

output_format= 6

fileout= 'BCA.cube'

/



59



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

CHƯƠNG 1. TỔNG QUAN VỀ GRAPHÍT CÁCBON NITƠ VÀ LÝ THUYẾT PHIẾM HÀM MẬT ĐỘ

Tải bản đầy đủ ngay(0 tr)

×