Tải bản đầy đủ - 0 (trang)
[toanmath.com] - Đề thi KSCL Toán THPTQG 2019 lần 3 trường chuyên Lam Sơn – Thanh Hóa

[toanmath.com] - Đề thi KSCL Toán THPTQG 2019 lần 3 trường chuyên Lam Sơn – Thanh Hóa

Tải bản đầy đủ - 0trang

Câu 8: Cho hàm số y  f  x  có bảng biến thiên như



hình vẽ bên. Hàm số y  f  x  đồng biến trên

khoảng nào dưới đây?.

A.  1;3 .

C.  2;0  .



B.  0;  .

D.  ; 2  .



Câu 9: Tập xác định của hàm số y   x 2  4 x  3  là





B.  ;1  3;   .



A. \ {1;3} .



C. 1;3 .



D.  ;1   3;   .



Câu 10: Hàm số f  x   23 x1 có đạo hàm

A. f '  x   3.23 x 1 .



B. f '  x   3.23 x 1.ln 2 .



C. f '  x    3x  1 23 x 2 .



D. f '  x    3x  1 23 x 2.ln 2 .



Câu 11: Số cách sắp xếp 5 học sinh thành một hàng dọc là

A. 1.

B. 4!.

C. 5.

D. 5!.

Câu 12: Cho f  x  , g  x  là các hàm số có đạo hàm liên tục trên , số k   và C là một hằng số tùy



ý. Xét 4 mệnh đề sau:

 I  :  f  x  dx '  f  x 











 III  :   f  x   g  x   dx   f  x  dx   g  x  dx



 II  :  kf  x  dx  k  f  x  dx



 IV  :  x2 dx 



x3

C

3



Số mệnh đề đúng là

A. 1.



B. 2 .

C. 4 .

x3

Câu 13: Đồ thị hàm số y  2

có bao nhiêu đường tiệm cận?.

x 4

A. 2 .

B. 1 .

C. 3 .



D. 3 .



D. 0 .



Câu 14: Cho khối tứ diện ABCD. Gọi M , N lần lượt là trung điểm

của AB và CD (tham khảo hình vẽ bên). Đặt V là thể tích của khối

tứ diện ABCD, V1 là thể tích của khối tứ diện MNBC. Khẳng định



A



M



nào sau đây đúng ?.

B



V 1

A. 1  .

V 4

V 1

C. 1  .

V 3



V 1

B. 1  .

V 2

V 2

D. 1  .

V 3



D

N

C



5



3dx

 a ln 5  b ln 2  a, b   . Mệnh đề nào sau đây đúng?.

 3x

1

A. 2a  b  0 .

B. a  b  0.

C. a  2b  0 .

D. a  b  0 .

1

Câu 16: Cho hàm số y  x 3  2 x 2   m  2  x  m . Tìm tập hợp S tất cả các giá trị thực của tham số m

3

để hàm số đồng biến trên .

A. S   ;2 .

B. S   ;2  .

C. S   2;   .

D. S   2;   .

Câu 15: Cho biết



x



2



Câu 17: Cho a  log 3 , b  ln 3 . Mệnh đề nào sau đây đúng?.

a e

1 1

1

A.  .

B. 10 a  e b .

C.   e .

b 10

a b 10



D. 10b  e a .



Trang 2/6 - Mã đề thi 132



Câu 18: Trong không gian Oxyz , cho điểm A 1; 3;2  . Gọi M , N , P lần lượt là hình chiếu vng góc



của A trên trục Ox, Oy , Oz . Phương trình mặt phẳng  MNP  là

A. x 



y z

 1.

3 2



B. x 



y z

 1.

3 2



C. x 



y z

 0.

3 2



D. 6 x  2 y  3 z  6  0 .



Câu 19: Cho hàm số y  f  x  có đạo hàm trên  và f '  x   0 với x   biết f  3  1 . Chọn mệnh đúng.

A. f  4   0 .



B. f  2019   f  2020  .



C. f 1  3 .



D. f  5  1  f 1  f  2  .



Câu 20: Với C là một hằng số tùy ý, họ nguyên hàm của hàm số f  x   2cos x  x là



x2

C .

B. 2 sin x  x 2  C .

C. 2sin x  1  C .

2

Câu 21: Cho khối lăng trụ ABC. A ' B ' C ' có đáy ABC là tam

giác vng tại A , AB  a , BC  2a , A ' B vng góc với mặt

phẳng  ABC  và góc giữa A ' C và mặt phẳng  ABC  bằng

A. 2sin x 



D. 2sin x 

A'



C'



B'



30 0 (tham khảo hình vẽ bên). Tính thể tích khối lăng trụ

ABC. A ' B ' C ' .



a3

A. .

3



C



A

3



B. 3a .



x2

C .

2



a



2a

B



a3

.

6

Câu 22: Cho hàm số y  ax 4  bx 2  c  a  0  có đồ thị như hình

vẽ bên. Mệnh đề nào sau đây đúng ?.

A. a  0, b  0, c  0 .

B. a  0, b  0, c  0 .

C. a  0, b  0, c  0 .

D. a  0, b  0, c  0 .

C. a 3 .



D.



2x 1

. Trong các mệnh đề sau, mệnh đề nào sai?

x 1

1

A. Đồ thị hàm số cắt trục hồnh tại điểm có hồnh độ x  .

2

B. Đồ thị hàm số có tiệm cận ngang là: y  2 .

C. Hàm số gián đoạn tại x  1 .

D. Hàm số đồng biến trên tập xác định của nó.

Câu 24: Trong khơng gian Oxyz , cho điểm hai điểm A  2; 1; 4  , B  3; 2; 1 và mặt phẳng



Câu 23: Cho hàm số y 



 P  : x  y  2 z  4  0 . Mặt phẳng  Q 

phương trình là

A. 11x  7 y  2 z  21  0 .

C. 11x  7 y  2 z  21  0 .



đi qua hai điểm A, B và vng góc với mặt phẳng  P  có

B. 11x  7 y  2 z  7  0 .

D. 11x  7 y  2 z  7  0 .



Câu 25: Tính thể tích V của khối cầu ngoại tiếp hình lập phương có cạnh a .

 a3 3

 a3 3

4 a 3 3

.

.

A. V 

B. V  4 a 3 3 .

C. V 

D. V 

.

2

8

3

Câu 26: Hàm số nào sau đây có bảng biến thiên như

hình vẽ bên?.

x3

2x 1

A. y 

B. y 

.

.

x2

x2

2x  3

2x  5

C. y 

D. y 

.

.

x2

x2

Trang 3/6 - Mã đề thi 132



Câu 27: Gọi A, B lần lượt là 2 điểm biểu biễn số phức z1 , z2 trong mặt



phẳng phức ở hình vẽ bên. Tính z1  z2 .



17

.

2

C. 17 .

A.



Câu 28: Cho hàm số



B.



5.



D.



29 .



f  x   ln  x  4 x  8  . Số nghiệm

2



nguyên



dương của bất phương trình f '  x   0 là số nào sau đây?.

A. 4 .

B. 2 .

C. 1.

Câu 29: Hàm số nào sau đây đồng biến trên tập xác định của nó?.

x



 2 3

B. y  

 .

e







x



3

A. y    .

 



C. y 







D. 3 .







x



D. y  log 1  x  4  .



2020  2019 .



2



Câu 30: Cho cấp số nhân  un  có u1  3 , công bội q  2 , biết un  192 . Tìm n ?.

A. n  7 .



B. n  5 .



C. n  6 .



D. n  8 .



Câu 31: Trong khơng gian Oxyz , tìm phương trình mặt cầu  S  có tâm I 1; 4; 2  và diện tích 64 .

A.  x  1   y  4    z  2   4 .



B.  x  1   y  4    z  2   16 .



C.  x  1   y  4    z  2   4 .



D.  x  1   y  4    z  2   16 .



2



2



2



2



2



2



2



2



2



2



2



2



x 1 y z  2





2

1

1

 P  : x  y  2 z  1  0 . Góc giữa đường thẳng d và mặt phẳng  P  bằng



Câu 32: Trong



không gian Oxyz , cho đường thẳng d :



A. 60 0 .

Câu 33: Cho hàm số



B. 30 0 .



C. 45 0 .



và mặt phẳng



D. 90 0 .



f  x   3x  3 x . Gọi m1 ; m2 là các giá trị thực của tham số m để



f  3log 2 m   f  log 2 2 m  2   0 . Tính T  m1.m2

1

A. T  .

8



B. T 



1

.

4



C. T 



1

.

2



Câu 34: Cho hàm số f  x  có đạo hàm liên tục trên  2;3 và



D. T  2 .



3



  x  2  f '  x  dx  a , f  3  b . Tính tích

2



3



phân



 f  x  dx theo a và b .

2



A.  a  b .

B. b  a .

C. a  b .

Câu 35: Cho hình chóp S . ABCD có đáy ABCD là hình thang

vng tại A và B; AB  BC  1 , AD  2 . Các mặt chéo  SAC 

và  SBD  cùng vuông góc với mặt đáy  ABCD  . Biết góc giữa

hai mặt phẳng  SAB  và  ABCD  bằng 60 (tham khảo hình vẽ

0



bên). Khoảng cách từ điểm D đến mặt phẳng  SAB  là



S



2



A



D



1



2 3

.

3



B.



3.



C. 2 3 .



D.



3

.

3



A.



D. a  b .



B



1



C



Trang 4/6 - Mã đề thi 132



Câu 36: Cho hàm số y  f  x  có bảng biến thiên như

hình vẽ bên. Phương trình f 1  2 x   2  5 có tất cả

bao nhiêu nghiệm thực phân biệt ?.

A. 5 .

B. 4 .

C. 3 .

D. 6 .

Câu 37: Cho hàm số y  f  x  . Hàm số y  f '  x  là hàm số bậc ba có



đồ thị như hình vẽ bên. Hàm số y  f  3  e x  đồng biến trên khoảng

nào dưới đây ?.

A.  ;1 .



B.  2;  .



C.  ln 2;ln 4  .



D.  ln 2; 4  .



Câu 38: Cho số phức z  a  bi  a, b   thỏa mãn z   2  3i  z  1  9i . Tính T  ab  1 .

A. T  2 .

B. T  0 .

C. T  1 .

D. T  1 .

Câu 39: Một hộp chứa 5 bi trắng, 6 bi đỏ và 7 bi xanh, tất cả các bi có kích thước và khối lượng như

nhau. Chọn ngẫu nhiên 6 bi từ hộp đó. Tính xác suất để 6 bi lấy được có đủ ba màu đồng thời hiệu của số

bi đỏ và trắng, hiệu của số bi xanh và đỏ, hiệu của số bi trắng và xanh theo thứ tự lập thành cấp số cộng.

5

75

40

35

A.

.

B.

.

C.

.

D.

.

442

442

221

221

A

Câu 40: Cho hình lục giác đều ABCDEF có cạnh bằng 2 (tham khảo hình

vẽ). Quay lục giác xung quanh đường chéo AD ta được một khối tròn

B

xoay. Thể tích khối tròn xoay đó là

F

A. V  8 .

B. V  7 .

2

8 3

7 3

.

.

C. V 

D. V 

C

3

3

E

Câu 41: Cho hàm số y   x 3  2  m  1 x 2  3  m 2  1 x  2 có đồ thị



 Cm  . Gọi



M là điểm thuộc đồ thị có hồnh độ xM  1 . Có bao nhiêu giá



trị thực của tham số m sao cho tiếp tuyến của  C m  tại điểm



y  3x  4 .

A. 0 .



D



M song song với đường thẳng



D. 1 .

x2 y 4 z 5

Câu 42: Trong không gian Oxyz , cho đường thẳng d :

và mặt phẳng





1

2

2

 P  : 2 x  z  5  0 . Đường thẳng nằm trong mặt phẳng  P  , cắt và vng góc với đường thẳng d có

phương trình là

x 1 y  2 z  3

x 1 y  2 z  3

A.

B.





.





.

2

3

4

2

5

4

x 1 y  2 z  3

x 1 y  2 z  3

C.

D.





.





.

2

3

4

2

5

4

Câu 43: Dân số hiện nay của tỉnh X là 1,8 triệu người. Biết rằng trong 10 năm tiếp theo, tỷ lệ tăng dân số

bình qn hàng năm của tỉnh X ln giữ mức 1, 4%. Dân số của tỉnh X sau 5 năm (tính từ hiện nay)

gần nhất với số liệu nào sau đây?.

A. 1,9 triệu người.

B. 2, 2 triệu người.

C. 2,1 triệu người.

D. 2, 4 triệu người.

B. 3.



C. 2 .



Câu 44: Cho hàm số y  f  x  có đạo hàm cấp hai liên tục trên . Biết f '  2   8 , f ' 1  4 và đồ

thị của của hàm số f ''  x  như hình vẽ dưới đây. Hàm số y  2 f  x  3  16 x  1 đạt giá trị lớn nhất tại



x0 thuộc khoảng nào sau đây?.



Trang 5/6 - Mã đề thi 132



A.  0; 4  .



B.  4;   .



C.  ;1 .



D.  2;1 .



Câu 45: Cho hàm số y  f  x  có đạo hàm liên tục trên  . Hàm số



y  f '  x  có đồ thị như hình vẽ bên. Tìm tập hợp S tất cả các giá trị

thực của tham số m để hàm số g  x   2 f 2  x   3 f  x   m có đúng

7 điểm cực trị, biết f  a   1, f  b   0 , lim f  x    ,

x 



lim f  x    .



x 



A. S   5;0  .



1



C. S   8;  .

6





B. S   8;0  .



9



D. S   5;  .

8





Câu 46: Cho 3 số phức z , z1 , z2 thỏa mãn z  1  2i  z  3  4i , z1  5  2i  2 , z2  1  6i  2 . Tính



giá trị nhỏ nhất của biểu thức T  z  z1  z  z2  4 .

A.



2 3770

.

13



10361

.

13



B.



C.



3770

.

13



D.



10361

.

26



Câu 47: Trong không gian Oxyz , cho hai điểm A 1;1;3 , B  5; 2; 1 và hai điểm M , N thay đổi trên



sao cho điểm I 1; 2;0  luôn là trung điểm của

 

P  MA  2 NB  MA.NB đạt giá trị nhỏ nhất. Tính T  2 xM  4 xN  7 yM  yN



mặt phẳng



 Oxy 



2



2



B. T  12 .



A. T  10 .



.

D. T  9 .



C. T  11 .



Câu 48: Cho hình lập phương ABCD. A1B1C1 D1 có cạnh bằng



 ABCD 



một góc



60 0 (tham khảo hình vẽ). Giá trị bé nhất của đoạn MN là



3

.

3

C. 2 3  2 .

A.











B. 2







D.



3 1.



2



 f  x   2019



B1

M







N



C1



A



2 1 .



Câu 49: Cho hàm số f  x  có đạo hàm xác định trên  và thỏa



mãn f '  x   4 x  6 xe x



D1



A1



1. Hai điểm M , N lần lượt thay đổi trên các đoạn AB1 và BC1

sao cho MN luôn tạo với mặt phẳng



MN . Khi biểu thức



D



B



C



 0 và f  0   2019 . Số nghiệm nghiệm nguyên dương của bất phương



trình f  x   7 là

A. 91 .



B. 46 .



C. 45 .



Câu 50: Biết rằng có số thực a  0 sao cho a

5 7

1 3

B. a   ;  .

A. a   ;  .

2 2

2 2



3cos 2 x



D. 44 .



 2cos x , x   . Chọn mệnh đề đúng

7 9

3 5

C. a   ;  .

D. a   ;  .

2 2

2 2

2



-----------------------------------------------



----------- HẾT ----------



Trang 6/6 - Mã đề thi 132



NHĨM TỐN VD – VDC



ĐỀ THI THỬ THPTQG – 2018-2019



SỞ GD&ĐT THANH HÓA

CHUYÊN LAM SƠN L3



Họ và tên: .......................................................................................... SBD: ................................................. .

Câu 1:



Cho khối chóp S . ABC có SA vng góc với đáy ( ABC ) , SA = a 2 . Đáy ABC vuông

tại A , AB = a , AC = 2a (tham khảo hình vẽ bên). Tính thể tích khối chóp S . ABC

S



a



NHĨM TỐN VD – VDC



ĐỀ THI THỬ THPT QG NĂM 2019

MƠN: TỐN

Thời gian làm bài: 90 phút

(không kể thời gian giao đề)

Mã Đề: 132

(Đề gồm 06 trang)



2

2a



A



C



a

B



a3 2

A.

..

3



Câu 2:



a3 2

..

D.

6



−i ( 3i + 4 ) . Tìm phần thực và phần ảo của số phức z .

Cho số phức z =

A. Phần thực 3 và phần ảo 4i .



B. Phần thực 3 và phần ảo 4.



C. Phần thực 3 và phần ảo −4 .



D. Phần thực 3 và phần ảo −4i .



Cho hàm số y = f ( x ) có đồ thị ( C ) như hình vẽ. Tọa độ điểm cực tiểu của ( C ) là



A. ( 0; −2 ) .

Câu 4:



2. .



2a 3 2

..

C.

3



B. ( 0; −4 ) .



C. (1;0 ) .



D. ( −2;0 ) .



Gọi l , h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của một hình nón



( N ) . Diện tích tồn phần của hình nón ( N ) là

π Rl + 2π R 2 . D. =

STP π Rh + π R 2 .

STP 2π Rl + 2π R 2 C. S=

B.=

TP





 



Trong không gian Oxyz , cho hai véc tơ a =

b ( 2; −2;3) . Véc tơ x= a + 2b

( −4;5; −3) và =

π Rl + π R 2 .

A. S=

TP

Câu 5:



có tọa độ là

A. ( −2;3;0 ) .



B. ( 0;1; −1) .



https://www.facebook.com/groups/toanvd.vdc



C. ( 0;1;3) .



D. ( −6;8; −3) .



Trang 1



NHĨM TỐN VD – VDC



Câu 3:



B. a



3



NHĨM TỐN VD – VDC



Câu 6:



ĐỀ THI THỬ THPTQG – 2018-2019



Trong không gian Oxyz , cho mặt phẳng ( P ) : x − 3 z + 2 =.

0 Một vectơ pháp tuyến của



Câu 7:





B. n = (1; −3; −1) .





C. =

n



(1; −3;1) .





D.=

n



(1;0; −3) .



Cho hàm số bậc hai y =f ( x ) =x 4 − 5 x 2 + 4 có đồ thị như hình vẽ bên. Gọi S là diện tích

hình phẳng giới hạn bởi đồ thị hàm số y = f ( x ) và trục hồnh (miền phẳng được tơ

đậm trên hình vẽ). Mệnh đề nào sau đây sai?



A. S =



2



2



B. S = 2 ∫ f ( x ) dx .



∫ f ( x ) dx .



0



−2



1



2



0



1



=

C. S 2 ∫ f ( x ) dx + 2 ∫ f ( x ) dx .

Câu 8:



D. S = 2



2



∫ f ( x ) dx .

0



Cho hàm số y = f ( x ) có bảng biến thiên như hình vẽ bên.



A. ( −1;3) .



B. ( 0; +∞ ) .



Tập xác định của hàm số y =



(x



2



− 4 x + 3) là

π



B. ( −∞;1] ∪ [3; +∞ ) .



A.  \ {1;3} .



D. ( −∞; −2 ) .



C. ( −2;0 ) .



D. ( −∞;1) ∪ ( 3; +∞ ) .



C. (1;3) .



Câu 10: Hàm số f ( x ) = 23 x −1 có đạo hàm

A. f ' ( x ) = 3.23 x −1 .



B. f ' ( x ) = 3.23 x −1.ln 2 .



C. f ' (=

x)



D. f ' (=

x)



( 3x − 1) 23 x −2 .



( 3x − 1) 23 x −2.ln 2 .



Câu 11: Số cách sắp xếp 5 học sinh thành một hàng dọc là

A. 1 .



B. 4! .



C. 5 .



D. 5!.



Câu 12: Cho f ( x ) , g ( x ) là các hàm số có đạo hàm liên tục trên , số k ∈  và C là một hằng

số tùy ý. Xét 4 mệnh đề sau:



( I ) : ( ∫ f ( x ) dx )







= f ( x ) ( II ) : ∫ kf ( x ) dx = k ∫ f ( x ) dx



https://www.facebook.com/groups/toanvd.vdc



Trang 2



NHĨM TỐN VD – VDC



Hàm số y = f ( x ) đồng biến trên khoảng nào dưới đây ?.



Câu 9:



NHĨM TỐN VD – VDC



mặt phẳng ( P ) là



A. =

n (1; −3;0 ) .



NHÓM TOÁN VD – VDC



ĐỀ THI THỬ THPTQG – 2018-2019



x3

+C

3



x

( III ) : ∫  f ( x ) + g ( x ) dx = ∫ f ( x ) dx + ∫ g ( x ) dx ( IV ) : ∫ x 2d=

Số mệnh đề đúng là

B. 2 .



Câu 13: Đồ thị hàm số y =

A. 2 .



C. 4 .



D. 3 .



x+3

có bao nhiêu tiệm cận?.

x2 − 4

B. 1 .

C. 3 .



D. 4 .



Câu 14: Cho khối tứ diện ABCD . Gọi M , N lần lượt là trung điểm của AB và CD (tham khảo

hình vẽ bên). Đặt V là thể tích của khối tứ diện ABCD , V1 là thể tích của khối tứ diện

MNBC . Khẳng định nào sau đây đúng?

A



NHĨM TỐN VD – VDC



A. 1.



M



B



D

N

C



A.



V1 1

= .

V 4



Câu 15: Cho biết



B.



5



1



C.



V1 1

= .

V 3



D.



V1 2

= .

V 3



3dx

=

a ln 5 + b ln 2 ( a, b ∈  ) . Mệnh đề nào sau đây đúng?

+ 3x



2



0.

A. 2a − b =



0.

B. a − b =



0.

C. a + 2b =



0.

D. a + b =



1 3

x + 2 x 2 + ( m + 2 ) x − m . Tìm tập hợp S tất cả các giá trị thực của tham

3

số m để hàm số đồng biến trên .



Câu 16: Cho hàm số y =



A. S =



( −∞; 2] .



B. S =



( −∞; 2 ) .



S

C. =



[ 2; +∞ ) .



S

D. =



( 2; +∞ ) .



Câu 17: Cho a = log 3 , b = ln 3 . Mệnh đề nào sau đây đúng?

A.



a e

= .

b 10



B. 10a = eb .



C.



1 1

1

+ =e .

a b 10



D. 10b = e a .



Câu 18: Trong không gian Oxyz , cho điểm A (1; −3; 2 ) . Gọi M , N , P lần lượt là hình chiếu

vng góc của A trên trục Ox, Oy, Oz . Phương trình mặt phẳng ( MNP ) là

y z

1.

+ =

3 2

6 x − 2 y + 3z + 6 =

0.



A. x −



B. x +



y z

1.

+ =

3 2



C. x −



y z

+ =

0.

3 2



D.



Câu 19: Cho hàm số y = f ( x ) có đạo hàm trên  và f ' ( x ) > 0 , ∀x ∈  biết f ( 3) = 1 . Chọn mệnh

đúng.

A. f ( 4 ) = 0 .

https://www.facebook.com/groups/toanvd.vdc



B. f ( 2019 ) > f ( 2020 ) .

Trang 3



NHĨM TỐN VD – VDC



∫x



V1 1

= .

V 2



NHĨM TỐN VD – VDC



ĐỀ THI THỬ THPTQG – 2018-2019



C. f (1) = 3 .



D. f ( 5 ) + 1 > f (1) + f ( 2 ) .



Câu 20: Với C là một hằng số tùy ý, họ nguyên hàm của hàm số =

f ( x ) 2 cos x − x là



A ' B vuông góc với mặt phẳng ( ABC ) và góc giữa A ' C và mặt phẳng ( ABC ) bằng

300 (tham khảo hình vẽ bên). Tính thể tích khối lăng trụ ABC. A ' B ' C ' .



NHĨM TỐN VD – VDC



x2

x2

B. −2sin x − x 2 + C . C. 2sin x − 1 + C .

D. −2sin x − + C .

+C .

2

2

Câu 21: Cho khối lăng trụ ABC. A ' B ' C ' có đáy ABC là tam giác vuông tại A , AB = a , BC = 2a ,



A. 2sin x −



a3

a3

.

B. 3a 3 .

C. a 3 .

D. .

3

6

4

2

Câu 22: Cho hàm số y = ax + bx + c ( a ≠ 0 ) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây

A.



đúng?



B. a < 0, b > 0, c < 0 .



C. a > 0, b < 0, c < 0 .



D. a > 0, b > 0, c > 0 .



2x −1

. Trong các mệnh đề sau, mệnh đề nào sai?

x +1

1

A. Đồ thị hàm số cắt trục hồnh tại điểm có hồnh độ x = .

2

B. Đồ thị hàm số có tiệm cận ngang là: y = 2 .



Câu 23: Cho hàm số y =



C. Hàm số gián đoạn tại x = −1 .

D. Hàm số đồng biến trên tập xác định của nó.

Câu 24: Trong không gian Oxyz , cho hai điểm A ( 2; − 1; 4 ) , B ( 3; 2; − 1) và mặt phẳng



0 . Mặt phẳng ( Q )

( P ) : x + y + 2z − 4 =

phẳng ( P ) có phương trình là



đi qua hai điểm A, B và vng góc với mặt



A. 11x − 7 y − 2 z + 21 =

0.



B. 11x + 7 y − 2 z − 7 =

0.



C. 11x − 7 y − 2 z − 21 =

0.



D. 11x + 7 y − 2 z + 7 =

0.



https://www.facebook.com/groups/toanvd.vdc



Trang 4



NHĨM TỐN VD – VDC



A. a > 0, b > 0, c < 0 .



NHĨM TỐN VD – VDC



ĐỀ THI THỬ THPTQG – 2018-2019



Câu 25: Tính thể tích khối cầu ngoại tiếp hình lập phương có cạnh bằng a .

A. V =



π a3 3



.



B. V = 4π a 3 3 .



C. V =



D. V =



4π a 3 3

.

3



2x − 3

..

x+2



D. y =



2x − 5

.

x−2



2

8

Câu 26: Hàm số nào sau đây có bảng biến thiên như hình vẽ bên?.



A. y =



x+3

..

x−2



B. y =



2x −1

..

x−2



C. y =



Câu 27: Gọi A, B lần lượt là 2 điểm biểu biễn số phức z1 , z2 trong mặt phẳng phức ở hình vẽ



NHĨM TỐN VD – VDC



.



π a3 3



bên. Tính z1 − z2 .



17

.

2



5.



B.



C. 17 .



D.



29 .



Câu 28: Cho hàm số f ( x=

) ln ( x 2 − 4 x + 8) . Số nghiệm nguyên dương của bất phương trình



f ' ( x ) ≤ 0 là số nào sau đây

A. 4 .



B. 2 .



C. 1 .



D. 3 .



Câu 29: Hàm số nào sau đây đồng biến trên tập xác định của nó?

x



 2+ 3

B. y = 

 .

e







x



3

A. y =   .

π 



=

C. y



(



)



x



=

D. y log 1 ( x + 4 ) .



2020 − 2019 .



2



Câu 30: Cho cấp số nhân ( un ) có u1 = 3 , cơng bội q = −2 , biết un = 192 . Tìm n ?

A. n = 7 .



B. n = 5 .



C. n = 6 .



D. n = 8 .



Câu 31: Trong không gian Oxyz , tìm phương trình mặt cầu ( S ) có tâm I (1; −4; 2 ) và diện tích

64π .



A. ( x − 1) + ( y + 4 ) + ( z − 2 ) =

4.

2



2



2



https://www.facebook.com/groups/toanvd.vdc



B. ( x + 1) + ( y − 4 ) + ( z + 2 ) =

16 .

2



2



2



Trang 5



NHĨM TỐN VD – VDC



A.



NHĨM TỐN VD – VDC



ĐỀ THI THỬ THPTQG – 2018-2019



C. ( x + 1) + ( y − 4 ) + ( z + 2 ) =

4.

2



2



D. ( x − 1) + ( y + 4 ) + ( z − 2 ) =.

16



2



2



Câu 32: Trong không gian Oxyz , cho đường thẳng d :



A. 60o .



B. 30o .



2



x −1 y z − 2

và mặt phẳng

= =

2

1

−1



d và mặt phẳng ( P ) bằng

C. 45o .



D. 90o .



Câu 33: Cho hàm số f ( x=

) 3x − 3− x . Gọi m1; m2 là các giá trị thực của tham số m để

0 . Tính T = m1.m2

f ( 3log 2 m ) + f ( log 22 m + 2 ) =

1

A. T = .

8



B. T =



1

.

4



C. T =



1

.

2



Câu 34: Cho hàm số f ( x ) có đạo hàm liên tục trên [ 2;3] và



D. T = 2 .



3



a , f ( 3) = b . Tính

∫ ( x − 2 ) f ' ( x ) dx =



NHĨM TỐN VD – VDC



( P ) : x + y + 2 z − 1 =0 . Góc giữa đường thẳng



2



2



tích phân



3



∫ f ( x ) dx theo a và b .

2



A. −a − b .



B. b − a .



C. a − b .



D. a + b .



Câu 35: Cho hình chóp S . ABCD có đáy ABCD là hình thang vng tại A và B; AB

= BC

= 1,

AD = 2 . Các mặt chéo ( SAC ) và ( SBD ) cùng vng góc với mặt đáy ( ABCD ) . Biết góc



giữa hai mặt phẳng ( SAB ) và ( ABCD ) bằng 600 (tham khảo hình vẽ bên). Khoảng

cách từ điểm D đến mặt phẳng ( SAB ) là

S



NHĨM TỐN VD – VDC



2



A



D



1

1



B



A.



2 3

.

3



B.



3.



C



C. 2 3 .



D.



3

.

3



Câu 36: Cho hàm số y = f ( x ) có bảng biến thiên như hình vẽ bên.



Phương trình f (1 − 2 x ) + 2 =

5 có tất cả bao nhiêu nghiệm thực phân biệt?.

A. 5 .



B. 4 .



https://www.facebook.com/groups/toanvd.vdc



C. 3 .



D. 6 .

Trang 6



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

[toanmath.com] - Đề thi KSCL Toán THPTQG 2019 lần 3 trường chuyên Lam Sơn – Thanh Hóa

Tải bản đầy đủ ngay(0 tr)

×