Tải bản đầy đủ - 0 (trang)
VII. Biotechnology in Sorghum Improvement

VII. Biotechnology in Sorghum Improvement

Tải bản đầy đủ - 0trang

94



W. L. ROONEY



of sorghum have been published (Subudhi and Nyugen, 2000; McIntyre et al.,

2001). Of these 11, two are highly saturated and have formed the basis for

future genomic analysis (Menz et al., 2002; Bowers et al., 2003). These two

maps have been used to create BAC libraries, isolate genes, correlate genetic

and physical maps and provide robust molecular markers for QTL mapping

efforts (Subudhi and Nyugen, 2000; McIntyre et al., 2001; Islam-Faridi et al.,

2002). From this work, numerous studies to identify QTL for agronomically

important traits have been conducted and QTLs have been identified for a

wide array of important traits (Table VIII). This work has been important in

understanding the genetic inheritance of specific traits and the best breeding

approaches. In some cases, they have led to the cloning of the gene

responsible for a specific phenotype, and in others, the linkages are used for

potential MAS.

Adoption of other molecular technology is important and is being tested.

Markers detected for simply inherited traits such as maturity, height, and fertility

restoration have been identified and tested for the applicability to MAS schemes.

These tests have had varying degrees of success. QTLs have been identified for

drought stress (pre- and post-flowering), grain mold, grain yield, and grain quality.



Table VIII

Summary of Qualitative and Quantitative Trait Loci Identified in Sorghum

Trait

Drought tolerance (pre- and post-anthesis)



Anthracnose

Rust

Head smut

Downy mildew

Maturity

Height

Yield and components



Grain quality and mold resistance

Leaf blight resistance

Fertility restoration

Pre-harvest sprouting resistance

Greenbug

Midge

Tillering

Seed size and dispersal



Reference

Tuinstra et al. (1996, 1997), Crasta et al. (1999),

Subudhi et al. (2000), Tao et al. (2000),

Xu et al. (2000), and Coulibaly (2002)

Boora et al. (1998) and Mehta (2002)

Tao et al. (1998)

Oh et al. (1994)

Gowda et al. (1995) and Oh et al. (1996)

Lin et al. (1995) and Childs et al. (1997)

Lin et al. (1995) and Pereira and Lee (1995)

Pereira et al. (1995), Tuinstra et al. (1997),

Rami et al. (1998), Sanchez-Gomez (2002),

and Moran (2003)

Rami et al. (1998), Klein et al. (2001a),

and Franks (2003)

Boora et al. (1999)

Klein et al. (2001b)

Lijavetzky et al. (2000)

Katsar et al. (2002)

Tao et al. (2003)

Paterson et al. (1995)

Paterson et al. (1995)



SORGHUM IMPROVEMENT



95



Coulibaly (2002) was unsuccessful in using QTL markers to introgress postflowering drought stress from the donor to several elite inbreds. Franks (2003) had

limited success in using QTL for grain mold as markers to enhance grain mold

resistance: they were effective in progenies with the exact same pedigree in which

the QTLs were mapped, but they were not effective in any other population.

The potential remains for the use of markers for simply inherited traits for

introgression or pyramiding of traits, but there have been no reports published to

document their use in sorghum.

Sorghum transformation has been reported and repeated by several research

groups, both public and private and it is now possible to create transgenic

sorghum (Jeoung et al., 2002). Although the technology to produce transgenic

sorghums is now available, several factors have limited its potential use. Because

S. bicolor hybridizes at low frequencies with johnsongrass (S. halepense)

(Arriola and Ellstrand, 1996), any gene that is incorporated into cultivated

sorghum will likely be transferred to wild, weedy species. This potential for gene

transfer limits transformation for any trait that would give a weedy species a

selective advantage. This would certainly include herbicide resistance traits,

and possibly insect resistance traits as well. At this point, most of the transgenes

currently available for incorporation are related to herbicide and insect

resistance. As additional transgenes for traits that are selectively neutral in

natural populations become available, then sorghum would be potential candidate

for transformation. These include grain quality, disease resistance and possibly

some forms of insect resistance (Gray et al., 2001; Izquierdo et al., 2001;

Zhao et al., 2003).



VIII. CONCLUSION

In the past century, sorghum has been transformed into a major grain crop

grown throughout the tropical and sub-tropical regions of the world. Sorghum

researchers in different parts of the world have developed improved genotypes

with specific characteristics to its end use. The types of end uses of sorghum vary

widely, from forage to food, feed and industrial uses of the grain. The types of

cultivars of sorghum also vary widely, from traditional landraces to pure-line

cultivars and commercial hybrids. These developments have helped to maintain

the role of sorghum in agricultural production. Sorghum will remain particularly

important in regions of the world where drought stress is common. Given that

water is becoming more and more limiting for agricultural production, sorghum

will continue to play a major role in agricultural production systems throughout

the world.

To meet future needs, sorghum researchers are faced with significant

challenges. The number of public and private agencies conducting sorghum



96



W. L. ROONEY



improvement research has dropped in the past 15 years and resources for the

remaining programs are limited. Reductions in the number of research

programs reduce the ability of sorghum community to make steady and

consistent improvement in the performance and quality of the crop.

In contrast to the reduction in sorghum research program, research in sorghum

genomics has increased and developed to the point that is providing useful

information on the inheritance of traits, the locations of genes controlling these

traits, and in some cases, cloning of the gene responsible for a trait. In addition,

characterization of genetic diversity will allow more efficient exploitation of the

genetic diversity available in sorghum. Finally, sorghum transformation can be

used to enhance quality and agronomic traits of value to the people who produce

and utilize sorghum. Given these factors, the challenge to sorghum researchers is

to utilize the existing resources to integrate new technology with traditional

approaches as efficiently as possible to achieve steady improvements. There is

little doubt that this effort is being and will continue to be accomplished.



REFERENCES

Abdalla, A. B. (1982). “Base temperature for germination and its relation to tropical and temperate

adaptation in sorghum (Sorghum bicolor (L.) Moench)”. Ph.D. Dissertation. Texas A&M

University, College Station, TX.

Agrama, H. A., Wilde, G. E., Reese, J. C., Campbell, L. R., and Tuinstra, M. R. (2002). Genetic

mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor.

Appl. Genet. 104, 1373–1378.

Agrawal, B. L., Abraham, C. V., and House, L. R. (1988). Inheritance of resistance to midge,

Contarinia sorghicola Coq. in sorghum, Sorghum bicolor L. Moench. Insect Sci. Appl. 9, 43 –45.

Ali, M. E. K., and Warren, H. L. (1987). Physiological races of Colletotrichum graminicola on

sorghum. Plant Dis. 71, 402–404.

Andrews, D. J., Bramel-Cox, P. J., and Wilde, G. E. (1993). New sources of resistance to greenbug,

biotype I, in sorghum. Crop Sci. 33, 198 –199.

Arriola, P. E., and Ellstrand, N. C. (1996). Crop-to-weed gene flow in the genus Sorghum: spontaneous

interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum,

S. bicolor. Am. J. Bot. 83, 1153–1160.

Aydin, S. (2003). “The relationship between grain yield and waxy endosperm in Sorghum bicolor

(Linn) Moench”. Ph.D. Dissertation. Texas A&M University, College Station, Texas.

Bacon, R. K., Cantrell, R. P., and Axtell, J. D. (1986). Selection for seedling cold tolerance in grain

sorghum. Crop Sci. 26, 900 –903.

Bandyopadhyay, R., and Mughogho, L. K. (1988). Evaluation of field screening techniques for

resistance to sorghum grain molds. Plant Dis. 72, 500 –503.

Barten, T. J., Vanderlip, R. L., Tuinstra, M. R., and Kofoid, K. D. (1999). “Increasing sorghum yield

by lengthening grain fill duration”. Proceedings of the 21st Biennial Grain Sorghum Research and

Utilization Conference, p. 16.

Basnayake, J., Cooper, M., Ludlow, M. M., Henzell, R. G., and Snell, P. J. (1995). Inheritance of

osmotic adjustment to water stress in three grain sorghum crosses. Theor. Appl. Genet. 90,

675–682.



SORGHUM IMPROVEMENT



97



Bastos, C., and Gourley, L. M. (1982). Rapid screening of sorghum seedlings for tolerance to

low pH and aluminum. In “Sorghum in the Eighties: Proceedings of the International

Symposium on Sorghum”, Patancheru, A.P., India (L. R. House, L. K. Mughogho, and

J. M. Peacock, Eds.), Vol. 2, pp. 72. ICRISAT, 2 –7 November 1981, Patancheru (A.P.),

India.

Bhat, M. G., Gowda, B. T. S., Anahosur, K. H., and Goud, J. V. (1982). Inheritance of plant

pigmentation and downy mildew resistance in sorghum. SABRAO J. 14, 53–59.

Bitzer, M. J. (1994). “Production of Sweet Sorghum for Syrup in Kentucky”. University of Kentucky,

Publication AGR-122.

Blum, A. (1968). Estimates of general and specific combining ability for forage yield in F1 hybrids of

forage sorghum. Crop Sci. 8, 393 –394.

Blum, A. (1979). Genetic improvement of drought resistance in crop plants: a case for sorghum. In

“Stress Physiology in Crop Plants” (H. Mussell and R. Staples, Eds.), pp. 429–445. Wiley,

New York.

Boora, K. S., Frederiksen, R. A., and Magill, C. W. (1998). DNA-based markers for a recessive gene

conferring anthracnose resistance in sorghum. Crop Sci. 38, 1708–1709.

Boora, K. S., Frederiksen, R. A., and Magill, C. W. (1999). A molecular marker that segregates with

sorghum leaf blight resistance in one cross is maternally inherited in another. Mol. Gen. Genet.

261, 317–322.

Borgonovi, R. A., Schaffert, R. E., and Pitta, G. V. (1987). Breeding aluminum tolerant sorghums. In

“Sorghum for Acid Soils” (L. M. Gourley and J. G. Salinas, Eds.), pp. 271– 292. INTSORMIL/

ICRISAT/CIAT, Cali, Columbia.

Borrell, A. K., Hammer, G. L., and Henzell, R. G. (2000a). Does maintaining sorghum green leaf

area improve yield in sorghum under drought? II. Dry matter production. Crop Sci. 40,

1037–1048.

Borrell, A. K., Tao, Y. Z., and McIntyre, C. L. (2000b). Physiological basis, QTL and MAS of the

stay-green drought resistance trait in grain sorghum. In “Molecular Approaches for the Genetic

Improvement of Cereals for Stable Production in Water-Limited Environments”. A strategic

planning workshop held at CIMMYT, El Batan, Mexico, 21–25 June 1999 (J. M. Ribaut and D.

Poland, Eds.), pp. 142– 146. CIMMYT, Mexico.

Bout, S., and Vermerris, W. (2003). A candidate-gene approach to clone the sorghum

Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Gen. Genomics 269,

205 –214.

Bowers, J. E., Abbey, C., Anderson, S., Chang, C., Draye, X., Hoppe, A. H., Jessup, R., Lemke, C.,

Lennington, J., Li, Z., Lin, Y., Liu, S., Luo, L., Marler, B. S., Ming, R., Mitchell, S. E., Qiang, D.,

Reischmann, K., Schulze, S. R., Skinner, D. N., Wang, Y., Kresovich, S., Schertz, K. F., and

Paterson, A. H. (2003). A high-density genetic recombination map of sequence-tagged sites for

Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains

and grasses. Genetics 165, 367–386.

Boye-Goni, S. R., and Marcarian, V. (1985). Diallel analysis of aluminum tolerance in selected lines

of grain sorghum. Crop Sci. 25, 749 –752.

Bramel-Cox, P. J., Stein, J. S., Rodgers, D. M., and Claflin, L. E. (1988). Inheritance of resistance to

Macrophomina phaseolina (Tassi) Goid and Fusarium moniliforme Sheldon in sorghum. Crop

Sci. 28, 37 –40.

Broadhead, D. M., Coleman, O. H., and Freeman, K. C. (1970). Dale, a new variety of sweet sorghum

for sirup production. Miss. State Exp. Station Inform. Sheet 1099.

Broadhead, D. M., Freeman, K. C., Coleman, O. H., and Zummo, N. (1974). Theis, a new variety of

sweet sorghum for sirup production. Miss. State Exp. Station Inform. Sheet 1236.

Butler, L. G., Ejeta, G., Babikar, A. G., and Hess, D. E. (1997). “Striga–host relationships and their

role in defining resistance”. Proceedings of the International Conference on Genetic



98



W. L. ROONEY



Improvement of Sorghum and Pearl Millet (22– 27 September 1996, Lubbock, Texas), pp. 490 –

503. INTSORMIL, Lincoln, NE.

Cao, R. H., Wang, X. L., Ren, J. H., and Nan, C. H. (1988). The resistance of sorghum to head smut

and its inheritance. In “Crop Genetic Resources of East Asia” (S. Suzuki, Ed.), pp. 121– 124.

International Board for Plant Genetic Resources, Rome, Italy.

Cardwell, K. F., Hepperly, P. R., and Frederiksen, R. A. (1989). Pathotypes of Colletotrichum graminicola and seed transmission of sorghum anthracnose. Plant Dis. 73,

255–257.

Casela, C. R., Ferreira, A. S., and Schaffert, R. E. (1992). Physiological races of Colletotrichum

graminicola in Brazil. In “Sorghum and Millets Diseases: A Second World Review” (W. A. J.

de Milliano, R. A. Frederiksen, and G. D. Bengston, Eds.), pp. 209 –212. ICRISAT, Patancheru

(A.P.), India.

Castor, L. L., and Frederiksen, R. A. (1980). Fusarium and Curvularia grain molds in Texas. In

“Sorghum Diseases, A World Review” (R. J. Williams, R. A. Frederiksen, L. K. Mughogho, and

G. D. Bengston, Eds.), pp. 93–102. ICRISAT, Patancheru (A.P.), India.

Celarier, R. P. (1959). Cytotaxonomy of the Andropogonea. III. Sub-tribe sorgheae, genus, Sorghum.

Cytologia 23, 395 –418.

Childs, K. L., Miller, F. R., Cordonnier-Pratt, M. M., Pratt, L. H., Morgan, P. W., and Mullet, J. E.

(1997). The sorghum photoperiod sensitivity gene Ma3 encodes a phytochrome B1. Plant

Physiol. 113, 611–619.

Clark, R. B., and Gourley, L. M. (1987). Evaluation of mineral elements in sorghum grown on acid

tropical soils. In “Sorghum for Acid Soils” (L. M. Gourley and J. G. Salinas, Eds.), pp. 251 –270.

INTSORMIL/ICRISAT/CIAT, Cali, Columbia.

Coleman, O. H., and Broadhead, D. M. (1968). Brandes, a new variety of sweet sorghum for sirup

production. Miss. State Exp. Station Inform. Sheet 1013.

Coulibaly, S. (2002). “Marker-assisted selection for staygreen in Sorghum bicolor L. Moench”. Ph.D.

Dissertation. Texas Tech University, Lubbock, TX.

Craig, J., and Odvody, G. N. (1992). Current status of sorghum downy mildew control. In “Sorghum

and Millets Diseases: A Second World Review” (W. A. J. de Milliano, R. A. Frederiksen, and

G. D. Bengston, Eds.), pp. 213–217. ICRISAT, Patancheru (A.P.), India.

Craig, J., and Schertz, K. F. (1985). Inheritance of resistance in sorghum to three pathotypes of

Peronosclerospora sorghi. Phytopathology 75, 1077– 1078.

Crasta, O. R., Xu, W. W., Rosenow, D. T., Mullet, J. E., and Nguyen, H. T. (1999). Mapping of postflowering drought resistance traits in grain sorghum: association between QTLs influencing

premature senescence and maturity. Mol. Gen. Genet. 262, 579–588.

Dabholkar, A. R., and Baghel, S. S. (1980). Inheritance resistance to grain mould of sorghum. Indian

J. Genet. Plant Breed. 40, 472–476.

Dahlberg, J. A. (2001). Classification and characterization of sorghum. In “Sorghum: Origin, History,

Technology and Production” (C. W. Smith and R. A. Frederiksen, Eds.), pp. 99– 130. Wiley,

New York.

Dahlberg, J. A., Rosenow, D. T., Peterson, G. C., Clark, L. E., Miller, F. R., Sotomayor-Rios, A.,

Hamburger, A. J., Madera-Torres, P., Ouiles-Belen, A., and Woodfin, C. A. (1998). Registration

of 40 converted sorghum germplasms. Crop Sci. 38, 564– 565.

Dahlberg, J. A., Bandyopadhyay, R., Rooney, W. L., Odvody, G. N., and Madera-Torres, P. (2001).

Evaluation of sorghum germplasm used in US breeding programmes for sources of sugary disease

resistance. Plant Pathol. 50, 681 –689.

Dalton, L. G. (1967). A positive regression of yield on maturity in sorghum. Crop Sci. 7, 271.

Dangi, O. P., and Paroda, R. S. (1978a). Combining ability analysis for yield and its components in

forage sorghum. Indian J. Agric. Sci. 48, 287 –290.

Dangi, O. P., and Paroda, R. S. (1978b). Combining ability for quality characters in forage sorghum.

Z. Pflanzensuchtung 80, 38–43.



SORGHUM IMPROVEMENT



99



Day, J. L., Duncan, R. R., Raymer, P. L., Lovell, G. R., Thompson, D. S., Garrett, H. D., and Zummo,

N. (1995). Top 76-6: a new sweet sorghum variety for sirup production. Georgia Agric. Exp.

Station 634, 1–4.

de Wet, J. M. (1978). Systematics and evolution of sorghum Sect. Sorghum (Graminae). Am. J. Bot.

65, 477–484.

Doggett, H. (1969). Yields of hybrid sorghum. Exp. Agric. 5, 1.

Doggett, H. (1988). “Sorghum”. Wiley, New York.

Duncan, R. R. (1981). Sequential development of acid soil tolerant sorghum genotypes under field

stress conditions. Commun. Soil Sci. Plant Anal. 19, 1295–1305.

Duncan, R. R. (1984). Registration of acid soil tolerant sorghum germplasm (GP140–142). Crop Sci.

24, 1006.

Duncan, R. R., Bockholt, A. J., and Miller, F. R. (1981). Descriptive comparison of senescent and nonsenescent sorghum genotypes. Agron. J. 73, 849–853.

Duncan, R. R., Clark, R. B., and Furlani, P. R. (1983). Laboratory and field evaluations of sorghum for

response to aluminum and acid soil. Agron. J. 75, 1023–1026.

Duncan, R. R., Miller, F. R., Rosenow, D. T., Sotomayor-Rios, A., and Torres-Cardona, S. (1990).

Registration of GTPP7R(H)C5 white seeded, tan plant, and foliar disease resistant sorghum

germplasm population. Crop Sci. 30, 239– 240.

Duncan, R. R., Bramel-Cox, P. J., and Miller, F. R. (1991). Contributions of introduced sorghum

germplasm to hybrid development in the USA. In “Use of Plant Introductions in Cultivar

Development, Part I”. CSSA Spec. Publ. 117 (H. L. Shands and L. E. Wiesner, Eds.), pp. 69–102.

Crop Science Society of America, Madison, WI.

Duncan, R. R., Waskom, R. M., Miller, D. R., Voigt, R. L., Hanning, G. E., Timm, D. A., and

Nabors, M. W. (1991). Registration of GAC102 acid-soil tolerant Hegari regenerant. Crop

Sci. 31.

Ejeta, G., Butler, L. G., Hess, D. E., Obilana, T., and Reddy, B. V. (1997). “Breeding for Striga

resistance in sorghum”. Proceedings of the International Conference on Genetic Improvement of

Sorghum and Pearl Millet (22 – 27 September 1996, Lubbock, Texas), pp. 504 – 516.

INTSORMIL, Lincoln, NE.

Esele, J. P., Frederiksen, R. A., and Miller, F. R. (1993). The association of genes controlling caryopsis

traits with grain mold resistance in sorghum. Phytopathology 83, 490–495.

Evans, W. F., and Stickler, F. C. (1961). Grain sorghum seed germination under moisture and

temperature stresses. Agron. J. 53, 369–372.

Food and Agricultural Organization of the United Nations (2001). FAOSTAT Agriculture Data.

Rome, Italy. http://apps.fao.org.

Francois, L. E., Donovan, T., and Maas, E. V. (1984). Salinity effects on seed yield, growth, and

germination of grain sorghum. Crop Sci. 76, 741–744.

Franks, C. D. (2003). “The efficacy of marker-assisted selection for grain mold resistance in

sorghum”. Ph.D. Dissertation. Texas A&M University, College Station, TX.

Freeman, J. (1970). Development and structure of the sorghum plant and its fruit. In “Sorghum

Production and Utilization” (J. S. Wall and W. M. Ross, Eds.), pp. 28– 72. AVI, Westport, CT.

Freeman, K. C., Broadhead, D. M., Zummo, N., and Westbrook, F. E. (1986). Sweet sorghum culture

and sirup production. USDA Agriculture Handbook Number 611.

Fritz, J. O., Cantrell, R. P., Lechtenberg, V. L., Axtell, J. D., and Hertel, J. M. (1981). Brown midrib

mutants in sudangrass and grain sorghum. Crop Sci. 21, 706–709.

Furlani, P. R., and Clark, R. B. (1981). Screening sorghum for aluminum tolerance in nutrient

solutions. Agron. J. 73, 587 –594.

Furlani, P. R., Clark, R. B., Ross, W. M., and Maranville, J. W. (1983). Variability and genetic control

of aluminum tolerance in sorghum genotypes. In “Genetic Aspects of Plant Mineral Nutrition”

(M. R. Saric and B. C. Loughman, Eds.), pp. 453 –461. M. Nijhoff/J. W. Junk Publ., The Hague,

Netherlands.



100



W. L. ROONEY



Garber, E. D. (1950). Cytotaxonomic studies in the genus Sorghum. Univ. Calif. Publ. Bot. 23,

283–361.

Gilbert, M. L. (1994). Identification and search for heterotic patterns in sorghum. In “Proceedings

of the 49th Annual Corn and Sorghum Research Conference, Chicago, IL, 9 – 10

December 1994” (D. Wilkinson, Ed.), pp. 117– 126. American Seed Trade Association,

Washington, DC.

Glueck, J. A., and Rooney, L. W. (1976). Physical and chemical characterization of sorghum lines

with resistance to grain deterioration. Cer. Foods World 21, 436–437.

Glueck, J. A., and Rooney, L. W. (1980). Chemistry and structure of grain in relation to mold

resistance. In “Sorghum Diseases, A World Review” (R. J. Williams, R. A. Frederiksen,

L. K. Mughogho, and G. D. Bengston, Eds.), pp. 119– 140. ICRISAT, Patancheru (A.P.),

India.

Gorz, H. J., Toy, J. J., Haskins, F. A., and Ross, W. M. (1984). Comparison of F1s and inbreds as

female parents for sorghum sudangrass seed production. Crop Sci. 24, 1134–1137.

Gourley, L. M. (1983). “Breeding sorghum for tolerance to aluminum-toxic tropical soils”.

Proceedings of the Plant Breeding Methods and Approaches in Sorghum Workshop for Latin

America. CIMMYT, El Batan, Mexico, pp. 299–313.

Gourley, L. M. (1987). Finding and utilizing exotic Al-tolerant sorghum germplasm. In “Sorghum for

Acid Soils” (L. M. Gourley and J. G. Salinas, Eds.), pp. 293–310. INTSORMIL/ICRISAT/CIAT,

Cali, Columbia.

Gowda, P. S., Xu, G. W., Frederiksen, R. A., and Magill, C. W. (1995). DNA markers for downy

mildew resistance genes in sorghum. Genome 38, 823 –826.

Gray, E., Lacefield, G. D., and Lowe, G. D. (1971). Head mold on grain sorghum. Plant Dis. Rep. 55,

337–339.

Gray, S., Izquierdo, L., and Godwin, I. D. (2001). GM sorghum: a new generation of designer crops. In

“Proceedings of the 4th Australia Sorghum Conference, Koorablyn, 5–8 February 2001” (A. K.

Borrell and R. G. Henzell, Eds.), CD-ROM Format, ISBN 0-7242-2163-8.

Gurmu, M., and Naylor, R. E. (1991). Effects of low water availability on germination of two sorghum

cultivars. Seed Sci. Technol. 19, 373–383.

Hahn, D. H., and Rooney, L. W. (1986). Effect of genotype on tannins and phenols of sorghum. Cer.

Chem. 63, 4–8.

Hallauer, A. R., and Miranda, J. B. (1981). “Quantitative Genetics in Maize Breeding”. Iowa State

University Press, Ames, IA.

Harlan, J. R., and de Wet, J. M. (1972). A simplified classification of cultivated sorghum. Crop Sci. 12,

172–176.

Harris, H. B., Johnson, B. J., Dobson, J. W., and Luttrell, E. S. (1964). Evaluation of anthracnose on

grain sorghum. Crop Sci. 4, 460–462.

Harrison, R. L., and Miller, F. R. (1993). Registration of “Della” sweet sorghum. Crop Sci. 33,

1416.

Harvey, P. H. (1977). “Sorghum germplasm base in the U.S”. Proceedings of the 32nd Annual Corn

and Sorghum Research Conference, December 6–8, Chicago, IL. American Seed Trade

Association, Washington, DC, pp. 186– 198.

Harvey, T. L., and Hackerott, H. L. (1969). Recognition of a greenbug biotype injurious to sorghum.

J. Econ. Entomol. 62, 776–779.

Harvey, T. L., Kofoid, K. D., Martin, T. J., and Sloderback, P. E. (1991). A new greenbug virulent to

E-biotype resistant sorghum. Crop Sci. 31, 1689–1691.

Harvey, T. L., Wilde, G. E., and Kofoid, K. D. (1997). Designation of a new greenbug, biotype K,

injurious to biotype I resistant sorghum. Crop Sci. 37, 989–991.

Hausmann, B. I., Hess, D. E., Omanya, G. O., Reddy, B. V., Welz, H. G., and Geiger, H. H. (2001).

Major and minor genes for stimulation of Striga hermonthetica seed germination in sorghum, and

interaction with different Striga populations. Crop Sci. 41, 1507–1512.



SORGHUM IMPROVEMENT



101



Hazra, S., Thakur, R. P., and Devi, R. P. (1999). Pathogenic and molecular variability among

twelve isolates of Colletotrichum graminicola from sorghum. J. Mycol. Plant Pathol. 29,

176 –183.

Henzell, R. G., Brengman, R. L., Fletcher, D. S., and McCosker, A. N. (1992). Relationship between

yield and non-senescence (stay-green) in some grain sorghum hybrids grown under terminal

drought stress. In “Proceedings of the Second Australian Sorghum Conference, Gatton, Australia,

4 –6 February 1992”. “Occasional Publication No. 68” (M. A. Foale, et al., Eds.), pp. 355–358.

Australian Institute of Agricultural Science, Melbourne, Australia.

Henzell, R. G., Franzmann, B. A., and Brengman, R. L. (1994). Sorghum midge resistance research in

Australia. Int. Sorghum Millet Newslett. 35, 41–47.

Henzell, R. G., Peterson, G. C., Teetes, G. L., Franzmann, B. A., Sharma, H. C., Youm, O., Ratnadass,

A., Toure, A., Raab, J., and Ajayi, O. (1997). “Breeding for resistance to panicle pests of sorghum

and pearl millet”. Proceedings of the International Conference on Genetic Improvement of

Sorghum and Pearl Millet. INTSORMIL, Publ. 97-5, pp. 255– 280.

Hess, D. E., and Ejeta, G. (1992). Inheritance of Striga resistance in sorghum genotype SRN39. Plant

Breed. 109, 233–241.

Hess, D. E., Bandyopadhyay, R., and Sissoko, I. (2001). Reactions of sorghum genotypes to leaf,

panicle and grain anthracnose (Colletotrichum graminicola) under field conditions in Mali. In

“Towards Sustainable Sorghum Production, Utilization, and Commercialization in West and

Central Africa (19–22 April 1999, Lome, Togo)” (I. Akintayo and J. Sedgo, Eds.), pp. 163–177.

WCASRN/ICRISAT, Patancheru (A.P.), India.

Howarth, C. J., Rattunde, E. W., Bidinger, F. R., and Harris, D. (1997). “Seedling survival of abiotic

stress: sorghum and pearl millet”. Proceedings of the International Conference on Genetic

Improvement of Sorghum and Pearl Millet”. INTSORMIL, Lincoln, NE, pp. 379–399.

Hulse, J. H., Laing, E. M., and Pearson, O. E. (Eds.) (1980). “Sorghum and Millets: Their Composition

and Nutritive Value”. Academic Press, New York.

Islam-Faridi, M. N., Childs, K. L., Hodnett, G., Menz, M. A., Klein, R. R., Klein, P. E., Rooney, W. L.,

Mullet, D., Stelly, M., and Price, H. J. (2002). A molecular cytogenetics map of sorghum

chromosome 1: FISH analysis with mapped BACs. Genetics 161, 345 –353.

Izquierdo, L., Gray, S. J., and Godwin, I. D. (2001). A transgenic approach to improving the

digestability of sorghum grain. In “Proceedings of the 4th Australia Sorghum Conference,

Koorablyn, 5 –8 February 2001” (A. K. Borrell and R. G. Henzell, Eds.), CD-ROM Format, ISBN

0-7242-2163-8.

Jambunathan, R., Kherdekar, M. S., and Stenhouse, J. W. (1992). Sorghum grain hardness and its

relationship to mold susceptibility and mold resistance. J. Agric. Food Chem. 40,

1403–1408.

Jeoung, J. M., Krishnaven, S., Muthukrishnan, S., Trick, H. N., and Liang, G. H. (2002). Optimization

of sorghum transformation parameters using genes for green fluorescent protein and

B-glucuronidase as visual markers. Hereditas 137, 20– 28.

Johnson, J. W., and Teetes, G. L. (1972). Evaluation of sorghum hybrids and lines for adult plant

greenbug resistance. Int. Sorghum Millet Newslett. 15, 137.

Johnson, J. W., Rosenow, D. T., Miller, F. R., and Schertz, K. F. (1971). “Sorghum Breeding and

Improvement”. TAES Publication PR-2942.

Johnson, J. W., Teetes, G. L., Phillips, J. M., and Riggs, V. (1981). Resistance to biotype E greenbug

in sorghum. Int. Sorghum Millet Newslett. 24, 84.

Jordan, W. R., and Miller, F. R. (1980). Genetic variability in sorghum root systems: implications for

drought tolerance. In “Adaptation of Plants to Water and High Temperature Stress” (P. C. Turner

and P. J. Kramer, Eds.), pp. 383–399. Wiley, New York.

Jordan, W. R., and Sullivan, C. Y. (1982). Reaction and resistance of grain sorghum to heat and

drought. In “Sorghum in the Eighties: Proceedings of the International Symposium on Sorghum,



102



W. L. ROONEY



2–7 November 1981, Patancheru, A.P., India” (L. R. House, L. K. Mughogho, and J. M. Peacock,

Eds.), pp. 131–142. ICRISAT, Patancheru (A.P.), India.

Jordan, D. R., Tao, Y., Godwin, I. D., Henzell, R. G., Cooper, M., and McIntyre, C. L. (2003).

Prediction of hybrid performance in grain sorghum using RFLP markers. Theor. Appl. Genet.

106, 559 –567.

Kalton, R. R. (1988). Overview of the forage sorghums. “Proceedings of the 43rd Annual Corn and

Sorghum Research Conference, Chicago, IL, December 8 –9, Chicago, IL”. American Seed

Trade Association, Washington, DC, pp. 1–12.

Karper, R. E. (1933). Inheritance of waxy endosperm sorghum. J. Hered. 24, 251–262.

Katsar, C. S., Paterson, A. H., Teetes, G. L., and Peterson, G. C. (2002). Molecular analysis of

sorghum resistance to the greenbug (Homoptera: Aphididae). J. Econ. Entomol. 95,

448–457.

Kebede, H., Subudhi, P. K., Rosenow, D. T., and Nguyen, H. T. (2001). Quantitative trait loci

influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor. Appl.

Genet. 103, 266 –276.

Kimber, C. T. (2001). Origins of domesticated sorghum and its early diffusion to India and China. In

“Sorghum: Origin, History, Technology and Production” (C. W. Smith and R. A. Frederiksen,

Eds.), pp. 3–98. Wiley, New York.

Klein, R. R., Rodriguez-Herrera, R., Scheulter, J. A., Klein, P. E., Yu, Z. H., and Rooney, W. L.

(2001a). Identification of genomic regions that affect grain mold incidence and other traits of

agronomic importance in sorghum. Theor. Appl. Genet. 102, 307 –319.

Klein, R. R., Klein, P. E., Chhabra, A. K., Dong, J., Pammi, S., Childs, K. L., Mullet, J. E., Rooney,

W. L., and Schertz, K. F. (2001b). Molecular mapping of the rf1 gene for pollen fertility

restoration in sorghum (Sorghum bicolor L.). Theor. Appl. Genet. 102, 1206–1212.

Kofoid, K. D., Vanderlip, R. L., and Tuinstra, M. R. (1999). Genetic analysis of grain fill duration in

grain sorghum. “Proceedings of the 21st Biennial Grain Sorghum Research and Utilization

Conference”, p. 16.

Kramer, P. J., and Boyer, J. S. (1995). “Water Relations of Plants and Soils”. Academic Press,

New York.

Kreig, D. R. (1993). Stress tolerance mechanisms in above ground organs. “Proceedings of a

Workshop on Adaptation of Plants to Soil Stresses. 1–4 August 1993, Lincoln, NE. INTSORMIL

Publication No. 94-2”, pp. 65–79.

Kulkarni, N., and Shinde, V. K. (1985). Genetics of grain yield in sorghum under Striga stress. Indian

J. Genet. 45, 21 –24.

Lee, R. D., Johnson, B. E., Eskridge, K. M., and Pederson, J. F. (1992). Selection of superior female

parents in sorghum utilizing A3 cytoplasm. Crop Sci. 32, 918– 921.

Leslie, J. F., and Marasas, W. F. O. (2002). Will the real Fusarium moniliforme please stand

up?. In “Sorghum and Millets Diseases” (J. Leslie, Ed.), pp. 201 –210. Iowa State Press,

Ames, IA.

Lijavetzky, D., Martinez, M. C., Carrari, F., and Hopp, H. E. (2000). QTL analysis and mapping of

pre-harvest sprouting resistance in sorghum. Euphytica 112, 125–135.

Lin, Y. R., Schertz, K. F., and Paterson, A. H. (1995). Comparative analysis of QTL affecting plant

height and maturity across the Poaceae in reference to an interspecific sorghum population.

Genetics 144, 391–411.

Ludlow, M. M. (1993). Physiological mechanisms of drought resistance. In “Proceedings of the

Symposium on Applications and Prospects of Biotechnology, 5–7 November 1992, Lubbock,

Texas, USA” (Mabry, H. T. Nguyen and Dixon, Eds.), pp. 11–34. IC2 Institute, University of

Texas, Austin, TX.

Magill, C. W., Boora, K. S., Kumari, R. S., Osorio, J., Oh, B. J., Gowda, B. S., Cui, Y., and

Frederiksen, R. A. (1997). Tagging sorghum genes for disease resistance: expectations and

reality. “Proceedings of the International Conference on Genetic Improvement of Sorghum and



SORGHUM IMPROVEMENT



103



Pearl Millet (22 – 27 September 1996, Lubbock, Texas)”. INTSORMIL, Lincoln, NE,

pp. 316–325.

Mahalakshmi, V., and Bidinger, F. R. (2002). Evaluation of stay-green sorghum germplasm lines at

ICRISAT. Crop Sci. 42, 965–974.

Maiti, R. K., Rao, K. E., Raju, P. S., House, L. R., and Prasada-Rao, K. E. (1984). The glossy

trait in sorghum: its characteristics and significance in crop improvement. Field Crops Res.

9, 279–289.

Malavolta, E., Nogueira, F. D., Oliveira, I. P., Nakayama, L., and Eimori, I. (1981). Aluminum

tolerance in sorghum and bean—methods and results. J. Plant Nutr. 3, 687– 694.

Mann, J. A., Gbur, E. E., and Miller, F. R. (1985). A screening index for adaptation in sorghum

cultivars. Crop Sci. 25, 593– 598.

Martin, J. H. (1936). Sorghum improvement. “USDA Yearbook of Agriculture”.

Mateo, R. A. (2003). “Evaluation and heritability of ergot resistance derived from sorghum

germplasm IS8525”. M.S. Thesis. Texas A&M University, College Station, TX.

Maunder, A. B., and Pickett, R. C. (1959). The genetic inheritance of cytoplasmic– genetic male

sterility in grain sorghum. Agron. J. 51, 47– 49.

McIntyre, C. L., Tao, Y., Jordan, D. R., Drenth, J., and Henzell, R. G. (2001). In “Proceedings of the

4th Australia Sorghum Conference, Koorablyn, 5– 8 February 2001” (A. K. Borrell and R. G.

Henzell, Eds.), CD-ROM Format, ISBN 0-7242-2163-8.

McWilliams, J. R., Manokaran, W., and Kipnis, T. (1979). Adaptation to chilling stress in sorghum. In

“Low Temperature Stress in Crop Plants” (M. Lyons, D. Graham, and J. R. Raison, Eds.),

pp. 491–505. Academic Press, New York.

Mehta, P. J. (2002). “Anthracnose resistance genes in sorghum: characterization and molecular

markers”. Ph.D. Dissertation. Texas A&M University, College Station, TX.

Mehta, P. J., Collins, S. D., Rooney, W. L., Frederiksen, R. A., and Klein, R. R. (2000). Identification

of different sources of genetic resistance to anthracnose in sorghum. Int. Sorghum Millets

Newslett. 41, 51–54.

Menkir, A., Ejeta, G., Butler, L., and Melakeberhan, A. (1996). Physical and chemical kernel

properties associated with resistance to grain mold in sorghum. Cer. Chem. 73, 613– 617.

Menz, M. A., Klein, R. R., Mullet, J. E., Obert, J. A., Unruh, N. C., and Klein, P. E. (2002). A highdensity genetic map of Sorghum bicolor L. Moench based on 2926 AFLP, RFLP, and SSR

markers. Plant Mol. Biol. 48, 483–499.

Menz, M. A., Klein, R. R., Unruh, N. C., Rooney, W. L., Klein, P. E., and Mullet, J.E. (in press)

Genetic diversity of public inbreds of sorghum using mapped AFLP and SSR markers.

Crop Sci.

Miller, F. R., and Kebede, Y. (1984). Genetic contributions to yield gains in sorghum, 1950– 1980. In

“Genetic Contributions to Yield Gains of Five Major Crop Plants” (W. R. Fehr, Ed.). American

Society of Agronomy, Madison, WI.

Miller, F. R., Dusek, T. F., Prihoda, K. L., and Rooney, L. W. (1992a). Registration of RTx436

sorghum parental line. Crop Sci. 32, 1518.

Miller, D. R., Waskom, R. M., Duncan, R. R., Chapman, P. L., Brick, M. A., Hanning, M. A., Timm,

D. A., and Nabors, M. W. (1992b). Acid soil stress tolerance in tissue culture-derived sorghum

lines. Crop Sci. 32, 324– 327.

Moran, J. L. (2003). “Quantitative trait loci affecting the agronomic performance of a Sorghum bicolor

L. Moench recombinant inbred restorer line population”. Ph.D. Dissertation. Texas A&M

University, College Station, TX.

Moran, J. L., Rooney, W. L., Frederiksen, R. A., and Odvody, G. N. (2002). Differences in ergot

vulnerability among sorghum genotypes and the relationship between stigma receptivity and

ergot vulnerability. In “Sorghum and Millets Diseases” (J. F. Leslie, Ed.), pp. 113– 120. Iowa

State Press, Ames, IA.



104



W. L. ROONEY



Mortlock, M. Y., and Vanderlip, R. L. (1989). Germination and establishment of pearl millet and

sorghum of different seed qualities under controlled high-temperature environments. Field Crop

Res. 22, 195 –209.

Muchow, R. C., Cooper, M., and Hammer, G. L. (1996). Characterizing environmental challenges

using models. In “Plant Adaptation and Crop Improvement” (M. Cooper and G. L. Hammer,

Eds.), pp. 349–364. CAB International, Wallingford, UK.

Mukuru, S. Z. (1999). The ergot disease of sorghum in Africa. In “Proceedings of the Global

Conference on Ergot of Sorghum” (R. Casela, et al., Eds.), pp. 55–58. ICRISAT/INTSORMIL,

Sete Lagoas, Brazil.

Murty, D. S., and House, L. R. (1984). Components of generation means for resistance to grain

mold-causing fungi Curvularia and Fusarium in sorghum. Cer. Res. Commun. 12,

237–244.

Musabyimana, T., Sehene, C., and Bandyopadhyay, R. (1995). Ergot resistance in sorghum in

relation to flowering, inoculation technique and disease development. Plant Pathol. 44,

109–115.

Nguyen, H. T., Xu, W. W., Rosenow, D. T., Mullet, J. E., and McIntyre, L. (1997). Breeding for preand post-flowering drought stress resistance in sorghum. “Proceedings of the International

Conference on Genetic Improvement of Sorghum and Pearl Millet”. INTSORMIL, Lincoln, NE,

pp. 412 –424.

Nordquist, P. T. (1971). Use of earliness and cold tolerance in breeding sorghums. Proc. Annu. Corn

Sorghum Res. Conf. 26, 33– 41.

Obilana, A. T. (1984). Inheritance of resistance to Striga (Striga hermonthetica Benth.) in sorghum.

Prot. Ecol. 7, 305–311.

Oh, B. J., Frederiksen, R. A., and Magill, C. W. (1994). Identification of molecular markers linked to

head smut resistance gene (SHS) in sorghum by RFLP and RAPD analysis. Phytopathology 84,

830–833.

Oh, B. J., Frederiksen, R. A., and Magill, C. W. (1996). Identification of RFLP markers linked to a

gene for downy mildew resistance in sorghum. Can. J. Bot. 74, 315–317.

Paterson, A. H., Schertz, K. F., Lin, Y. R., Liu, S. C., and Chang, Y. L. (1995). The weediness of wild

plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass,

Sorghum halepense (L.) Pers. PNAS 92, 6127– 6131.

Patil, R. C., and Thombre, M. V. (1985). Inheritance of earhead midge resistance in sorghum. Int.

Sorghum Millet Newslett. 27, 90.

Pauli, A. W., Stickler, F. C., and Lawless, J. R. (1964). Developmental phases of grain sorghum as

influenced by variety, location and planting date. Crop Sci. 4, 10–13.

Peacock, J. M. (1982). Response and tolerance of sorghum to temperature stress. In “Sorghum in the

Eighties: Proceedings of the International Symposium on Sorghum, 2–7 November 1981,

Patancheru, A.P., India” (L. R. House, L. K. Mughogho, and J. M. Peacock, Eds.), pp. 143– 159.

ICRISAT, Patancheru (A.P.), India.

Pedersen, J. F., and Rooney, W. L. (2004). Sorghum. In “Warm-Season (C4) Grasses” (L. E. Mosher,

B. L. Burson, and L. E. Sollenberger, Eds.). ASA/CSSA/SSSA, Madison, WI, in press.

Pedersen, J. F., and Toy, J. J. (1997). Forage yield, quality, and fertility of sorghum £ sudangrass

hybrids in A1 and A3 cytoplasm. Crop Sci. 37, 1973–1975.

Pedersen, J. F., Gorz, H. J., Haskins, F. A., and Ross, W. M. (1982). Variability for quality and

agronomic traits in forage sorghum hybrids. Crop Sci. 22, 853– 856.

Pereira, M. G., and Lee, M. (1995). Identification of genome regions affecting plant height in sorghum

and maize. Theor. Appl. Genet. 90, 380–388.

Pereira, M. G., Ahnert, D., Lee, M., and Klier, K. (1995). Genetic mapping of quantitative trait loci for

panicle characteristics and seed weight in sorghum. Rev. Brasil. Genet. 18, 249–257.

Peterson, G. C., Teetes, G. L., and Pendleton, B. B. (1994). Resistance to the sorghum midge in the

United States. Int. Sorghum Millet Newslett. 35, 48 –63.



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VII. Biotechnology in Sorghum Improvement

Tải bản đầy đủ ngay(0 tr)

×