Tải bản đầy đủ - 0 (trang)
V. Protein Contents in Cassava Cultivars and Its Hybrid with Wild Manihot Species

V. Protein Contents in Cassava Cultivars and Its Hybrid with Wild Manihot Species

Tải bản đầy đủ - 0trang

226



NAGIB M. A. NASSAR

Table XXVII

Protein Content of Tubers of Cassava Clones



Clone

CBM 0206

EAB 348

BGM 188

CPM 0231

CPM 2002

CPM 0232

BGM 808

CPM 0225

BGM 204

CPM 1805

EAB 1156

EAB 484

BGM 048

BGM 020

CPM 1060

EAB 675

Hybrid



Approximate size (g)



Protein in peel (%)



Protein in pulp (%)



200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50

200

50



2.13

2.09

1.41

1.69



1.68



1.56



2.08

2.00

1.82

1.63



1.38

1.25

1.24



1.14

1.37

1.58

1.28

1.96



1.41

1.11

1.80

1.53



1.58

1.36

1.51

6.63

8.06



0.90

1.22

0.85

1.04



1.45



1.26



0.99

1.02

1.15

0.93



0.89

0.95

1.06



0.72

1.00

0.84

1.16

1.07



0.82

1.17

0.98

1.23



1.19

0.70

0.93

4.56

4.56



Manihot brachyandra is native to western Pernambuco and northern Bahia, two

of the driest areas in Brazil. Nassar (1980) reported that seed of wild cassava is

eaten by the population of these regions particularly in times of famine. Jones

(1959) reported that cassava seed is eaten in several parts of west and central

Africa. Thus, the discovery of the high protein content in native cassava hybrids

may open a new door to better protein-balanced food for people of the tropical

world.



CASSAVA, M. esculenta Crantz, GENETIC RESOURCES



227



Table XXVIII

Protein Content in Wild Manihot Species Seed

on Dry Matter Basis

Species



Protein%



M. glaziovii

M. caerulescens

M. brachyandra

M. pseudoglaziovii

M. alutacea

M. zenhtneri

M. dichotoma

M. reptans

M. esculenta



30.09

27.91

35.35

31.15

37.33

28.99

29.24

33.25

26.81



ACKNOWLEDGMENT

The living collection of wild Manihot species was established at the Universidade de Brasília with

the help of the International Development Research Center Ottawa, Ontario, Canada, for which the author is grateful.



REFERENCES

Abraham, A. (1975). Breeding of tuber crops in India. J. Genet. Plant Breeding 17, 212–217.

Abraham, A., Panicher, P. K., and Mathew, P. M. (1964). Polyploids in relation to breeding in tuber

crops. J. Indian Bot. Soc. 43, 278 –283.

Akinrele, I. A., Collins, C., Cook, A. S., Hogate, R. A., Junaid, Y., and Baumer, G. (1962). Pilot plant

(1 ton a day) results of 3 month trial run, Research Reprints, Vol. 13, pp. 1– 30. Federal Institute

of Industrial Research, Nigeria.

Anonymous (1968). Tabla de composicion de pastes y otros alimentos de Centro America, Publication

No. E-440. Instituto Nacional de Centro America e Panama.

Asker, S. (1979). Progress in apomixis research. Hereditas 91, 231–240.

Asker, S. (1980). Gametophytic apomixis: Elements and genetic regulation. Hereditas 93, 277–293.

Bolhuis, G. G. (1953). A survey of some attempts to breed cassava varieties with a high content of proteins in the roots. Euphytica 20, 107–112.

Brewer, J. L., and Henstra, S. (1974). Pollen of Pyrethrum. Fine structure recognition. Euphytica 23,

567–663.

Brown, W. V., and Emery, W. H. P. (1958). Apomixis in the Gramineae: Panicoideae. Am. J. Bot. 45,

253–263.

Chada, Y. R. (1961). Sources of starch in Commonwealth territories. III. Cassava. Trop. Sci. 3, 101–113.

Clement, W. M., Jr., and Stanford, E. M. (1961). A mechanism for the production of tetraploid and pertoploid progeny from diploid and tetraploid cross alfafa. Crop Sci. 1, 11–14.

Cruz, N. D. (1968). Citologia no gờnero Manihot Adans. 1 Determinaỗóo do nỳmero de cromossomo

em algumas espécies. anal. Acad. Bras. Ci. 40, 81– 95.



228



NAGIB M. A. NASSAR



de Wet, J. M. J. (1980). Origin of polyploids. In “Polyploidy: Biological Relevance” (W. H. Lewis,

Ed.). Plenum, New York.

Dione, L. A. (1963). Studies on the use of Solanum acaule as a bridge between Solanum tuberosum

and species in the series Bulbocastana, cardiophylla and Pinnatisecta. Euphytica 12, 263 –269.

Dobzhansky, T. (1973). Genộtica do processo evolutivo. In Traduỗóo de Celso Abbade Mourão.”

Poligono, São Paulo, Brazil.

Doyle, J. J., and Doyle, J. L. (1987). Isolation of plant DNA from fresh tissues. Focus 12, 13 –15.

Food and Agriculture Organization (FAO) (1994). “Production Yearbook.” FAO, Rome.

Graner, E. A. (1942). Genet. Manihot Braganita 2, 13 –19.

Grattapaglia, D., and Sederoff, R. R. (1994). Genetic linkage maps of Eucalyptus grandis and E. uroplylla using a pseudo-testcross strategy and RAPD markers. Genetics 137, 1121–1137.

Grattapaglia, D. E., Nassar, N. M. A., and Dianese, J. (1986). Biossistemática de espécies brasileiras

do Gênero Manihot baseada em padrões de proteína da semente. Ciencia Cultura (J. Brazilian

Assoc. Advancement Sci) 19(3), 294 – 300.

Grattapaglia, D., Costa e Silva, C., and Nassar, N. M. A. (1996). Strict maternal inheritance of RAPD fingerprints confirm apomixis in cassava (Manihot esculenta Crantz). Can. J. Plant Sci. 76, 379–382.

Gustafsson, A. (1946). Apomixis in higher plants. Part 1. The mechanisms of apomixis. Lunds Univ.

Arsskr. Adv. 42, 1– 66.

Hahn, S. K., Bai, K. V., and Asiedu, R. (1990). Tetraploids, triploids and 2n pollen from diploid interspecific crosses with cassava. Theor. Appl. Genet. 79, 433 – 439.

Harlan, J. (1961). Geographic origin of plants useful to agriculture. Am. Assoc. Adv. Sci. 66, 3 – 9.

Harlan, J. R., and de Wet, J. M. J. (1975). On O wings and a prayer; The origins of polyploids. Bot.

Rev. 41, 361–390.

Hogland, M. (1970). Meiosis in Solomum phureja. Jereditas 66, 183 –188.

Jennings, D. L. (1959). Manihot melanobasis Muell. Arg.—A useful parent for cassava breeding. Euphytica 8, 157–162.

Knox, R. B., Willing, R. R., and Prior, L. D. (1972). Interspecific hybridization in populus using recognitioin pollen. Silvae Genet. 21, 263 –298.

Laemilli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage

T4. Nature 227, 680 – 685.

Lanjouw, J. (1939). Two interesting species of Manihot L. from Surinam. recueil Travaux Botaniques

Neerlandais 36, 542– 549.

Magoon, M. L., Jos, J. S., and Appan, S. G. (1966). Cytomorphology of interspecific hybrid between

cassava and ceara rubber. Chromosome Information Service (Japan), pp. 8 –10.

Mendiburu, A. O., and Peloquin, S. J. (1977). The significance of 2n gametes in potato breeding. Theor. Appl. Genet. 49, 53 – 61.

Mok, D. W. K., and Peloquin, S. S. (1975). The inheritance of three mechanisms of diploandroid (2n

pollen) formation in diploid potatoes. Heredity 35, 295 – 302.

Narty, F. (1969). Studies on cassava, Manihot utilissima Pohl. 1. Cyanogenesis: The biosynthesis of

linamarin and lutaustalin in etioled seedlings. Phytochemistry 7, 1307–1312.

Nassar, N. M. A. (1978a). Genetic resources of cassava: Chromosome behavior in some Manihot

species. Indian J. Genet. Plant Breeding 38, 135 –137.

Nassar, N. M. A. (1978b). Conservation of the genetic resources of cassava (Manihot esculenta); Determination of wild species localities with emphasis on probable origin. Econ. Bot. 32, 311– 320.

Nassar, N. M. A. (1978c). Microcenters of wild cassava Manihot spp. diversity in central Brazil. Turrialba 28(4), 345 – 347.

Nassar, N. M. A. (1978d). Hydrocyanic acid content in some wild Manihot (cassava) species. Can. J.

Plant Sci. 58, 577– 578.

Nassar, N. M. A. (1978e). Some further species of Manihot with potential value to cassava breeding.

Can. J. Plant Sci. 58, 915 – 916.



CASSAVA, M. esculenta Crantz, GENETIC RESOURCES



229



Nassar, N. M. A. (1978f ). Wild Manihot species of central Brazil for cassava breeding. Can. J. Plant

Sci. 58, 257–261.

Nassar, N. M. A. (1979a). A study of the collection and maintenance of the germoplasm of wild cassavas Manihot spp. Turrialba 29(3), 221.

Nassar, N. M. A. (1979b). Three brazilian Manihot species with tolerance to stress conditions. Can. J.

Plant Sci. 59, 533– 555.

Nassar, N. M. A. (1980a). Attempts to hybridize wild Manihot species with cassava. Econ. Bot. 34,

13–15.

Nassar, N. M. A. (1980b). The need for germplasm conservation in wild cassava. Indian J. Genet. Plant

Breeding 39(3), 465 – 470.

Nassar, N. M. A. (1982). Collecting wild cassava in Brazil. Indian J. Genet. Plant Breeding 42, 405–411.

Nassar, N. M. A. (1984). Natural hybrids between Manihot reptans Pax and M. alutaced Rogers & Appan. Can. J. Plant Sci. 64, 423 – 425.

Nassar, N. M. A. (1985). Manihot neusana Nassar: A new species native to Parana, Brazil. Can. J. Plant

Sci. 65, 1097–1100.

Nassar, N. M. A. (1986). Genetic variation of wild Manihot species native to Brazil and its potential

for cassava improvement. Field Crop Res. 13, 177–184.

Nassar, N. M. A. (1989). Broadening the genetic base of cassava, Manihot esculenta Crantz, by interspecific hybridization. Can. J. Plant Sci. 69, 1071–1073.

Nassar, N. M. A. (1991). Production of triploid cassava, Manihot esculenta Crantz, by hybrid diploid

gametes. Field Crop Res. 13, 173 –182.

Nassar, N. M. A. (1992). Cassava in South America: A plant breeder view. Ciëncia Cultura (J. Brazilian Assoc. Advancement Sci.) 44, 25 –27.

Nassar, N. M. A. (1994a). Selection and development of apomitic cassava clone. Ciëncia Cultura (J.

Brazilian Assoc. Advancement Sci. 41(6), 168 –171.

Nassar, N. M. A. (1994b). Relationship between Manihot species: A review of the proceedings of the

2nd Internacional Scientific Meeting of the Cassava Biotechnology Network. Bogor, 90 –100.

Nassar, N. M. A. (1995). Development of cassava interspecific hybrids for savanna (cerrado) conditions. J. Root Crops 22, 9 –17.

Nassar, N. M. A., and Costa, C. P. (1978). Tuber formation and protein content in some wild cassava

(mandioca) species native to central Brazil. Experiëncia 33, 1304 –1306.

Nassar, N. M. A., and Dorea, G. (1982). Protein contents of cassava cultivars and its hybrid with Manihot species. Turrialba 32(4), 429 – 432.

Nassar, N. M. A., and Grattapaglia, D. (1986). Variabilidade de clones de mandioca em relaỗóo ọ fertilidade e aspectos morfolúgicos. Turrialba 36(4), 555 559.

Nassar, N. M. A., and O’Hair, S. K. (1985). Variation among clones in relation to seed germination. Indian J. Genet. 45(2), 429 – 432.

Nassar, N. M. A., Silva, J. R., and Vieira, C. (1986). Hibridaỗóo insterespecica entre mandioca e espộcies silvestres do Manihot. Ciëncia Cultura ( J. Brazilian Assoc. Advancement Sci.) 33(6),

1050–1055.

Nassar, N. M. A., Nassar, H. N. M., Vieira, C., and Saraiva, S. L. (1995). Cytogenetic behavior of interspecific hybrids of cassava and M. neusansa Nassar. Can. J. Plant Sci. 75, 675 – 678.

Nassar, N. M. A., Nassar, H. N. M., Carvalho, C. G., and Vieira, C. (1996a). Induction of a productive

aneuploid in cassava, Manihot esculenta Crantz. Brazilian J. Genet. 19, 123 –125.

Nassar, N. M. A., Carvalho, C. G., and Vieira, C. (1996b). Overcoming barriers between cassava Manihot esculenta Crantz and wild relative M. pohili Warwa. Brazilian J. Genet. 19, 617– 620.

Nassar, N. M. A., Vieira, M. A., Vieira, C., and Grattapaglia, D. (1998a). Molecular and embionic evidence of apomix in cassava interspecific hybrids (Manihot spp). Can. J. Plant Sci. 78, 348 – 352.

Nassar, N. M. A., Vieira, M. A., Vieira, C., and Grattapaglia, D. (1998b). Molecular and embryonic evidence of apomix in cassava (Manihot esculenta Crantz). Euphytica 102, 9 –13.



230



NAGIB M. A. NASSAR



Nichols, R. F. W. (1947). Breeding cassava for resistance. East Afr. Agr. J. 12(3), 184 –194.

Novy, R. G., Kobak, C., Gofreda, J., and Vorsa, N. (1994). RAPDs identify varietal misclassification

and regional divergence in cranberry (Vaccinium macrocarpon (Ait.) Pursh. theor. Appl. Genet.

88, 1004–2020.

Oke, O. L. (1973). The mode of cyanide detoxification. In “Chronic Cassava Toxicity. Proceeding of

Inderdisciplinary Workshop, London, 29– 30 January 1973” (B. Nestel and R. MacIntyte, Eds),

pp. 97–104. IDRC-OLOe, Ottawa, Ontario, Canada.

Parrot, W. A., and Smith, R. R. (1984). Production of 2n pollen in red clover. Crop. Sci. 24, 467– 472.

Prakken, R., and Swaminathan, M. S. (1952). Cytological behaviour of some interspecific hybrids in

the genus Solanum. Genetic 54, 505 – 522.

Raymond, W. D., Jojo, W., and Zicodemus, Z. (1941). The nutritive value of some Tanganyka foods:

Cassava. East Afr. Agric. J. 6, 154 –159.

Roads, M. M., and Dempsey, E. (1966). Induction of chromosome doubling at meiosis by elongated

gene in maize. Genetics 54, 505 – 522.

Rogers, D. J. (1963). Studies on Manihot esculenta Crantz and related species. Bull. Torrey Bot. Cl. 99,

43–54.

Rogers, D. J., and Appan, C. (1973). Manihot, Manihotoides, Euphorbiaceae. In “Flora Neotropica.”

Hafner, New York.

Rogers, D. J., and Fleming, H. S. (1973). A monograph of Manihot esculenta with an explanation of

the taximetrics method used. Econ. Bot. 27, 1–113.

Sastri, D. C., and Shivanna, K. R. (1976). Attempts to overcome interspecific incompatibility in

Sesanum by using recognition pollen. Ann. Bot. 40, 891 893.

Schmidt, C. B. (1951). A mandioca, contribuiỗóo para o conhecimento de sua origem. Boletim Agric.

1, 1.

Stebbins, G. L. (1950). “Variation and Evolution in Plants.” Columbia Press, New York.

Vavilov, N. I. (1951). Phytogeographic basis of plant breeding. The origin, variation, immunity and

breeding of cultivated plants. Chronica Bot. 13, 1– 366.

Vásquez, N., and Nassar, N. M. A. (1994). Unreduced microspores in cassava, Manihot esculenta

Crantz clones. Indian J. Genet. Plant Breeding 54, 436 – 441.

Vorsa, N., and Bingham, E. T. (1979). Cytology of pollen formation in diploid alfalfa, Medicago sativa. Can. J. Genet. Cytol. 21, 526 – 530.

Webber, K., and Osborn, M. J. (1969). The reliability of molecular weight determination by sulfate–

polyacrilamide gel electrophoresis. J. Biol. Chem. 244, 4406 – 4412.

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18,

6531–6535.

Young, B. A., Sherwood, R. T., and Bashaw, E. C. (1979). Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can. J. Bot. 57, 1668 –1672.



Index

A

Absorption

defined, 3–4

of phosphate in soil, 101

Acidolysis, 130

Adsorption

defined, 3

on mineral surfaces, 7

of phosphate in soil, 101, 102

pH and, 104–105

Advection-dispersion equation, 50

Agricultural chemicals, see Herbicides; Pesticides

Agricultural management

adverse environmental effects, 76, 77

effects on soil organic matter, 87– 88

Agroecosystem Resources Group, 77

Agroecosystems

environmental degradation and, 76

environmental indicators

biological, 79–82

chemical, 83–84

of greatest significance, 78 –79

landscape, 83, 84–85

physical, 78, 82–83

ranking of, 90, 91t

recommendations for using, 92

soil organic matter, 85 – 90

environmental monitoring and, 77–78

overview of, 76–77

Aluminum

chelated by organic acids, 129 –130

in soil phosphorus dynamics, 102, 103

Aluminum phosphate

solubility in liquid media, 125

Ammonium

effects on phosphate solubilization by fungi,

132

Aneuploidy

in cassava, 220–222

Apomixis

in cassava, 210–215



Apospory

in cassava, 214 –215

Aquifer remediation

modeling, 65

Arrhenius equation, 32

Aruak Indians, 185

Aspergillus, see Fungi, phosphate-solubilizing



B

Bacteria

phosphate solubilizing, 141–142

Base flow

described, 160t, 172

phosphorus transfer and, 157–158

Batch solution-solid techniques, 45 – 49

Bioavailability

coupled sorption-degradation kinetic models,

58 – 65

overview of, 56 – 58

of soil chemicals, 83

Biodegradation

sorption-degradation kinetic models, 58 – 65

Biporous diffusion model, 36 – 37

“Black carbon”

sorption by, 13

Bolivia

wild species of Manihot in, 184

Brazil

domestication of cassava in, 185

wild species of Manihot in, 181t, 182–184

Bridge species, 208, 209 –210

Bypass flow, 160t, 165



C

Calcium

in soil phosphorus dynamics, 102, 103

Calcium phosphate

solubility in liquid media, 125

Carbon, atmospheric

soil organic matter and, 86– 87

Carboxylic acids

chelation of phosphate metal cations, 129



231



232



INDEX



Cassava, see also Manihot

apomixis in

as apospory, 214 –215

embryo sac analysis of, 212–213, 214 –215

genetic study of, 210 –212

molecular analysis of, 213 –215

genetic origins of, 184 –185, 221–222

interspecific hybrids, 184 –185, 187

aneuploidy in, 221–222

apomixis and, 211–212

drought tolerance and, 204 –207

with M. anomala, 198 –200

with M. neusana, 198 –204

overcoming crossing barriers to M. pohlii,

207–210

polyploidy and, 217–220

protein content, 225 –226

unreduced microspores in, 217–220, 223 –

224

place of domestication, 185

polyploidy in, 218

advantages of, 215

aneuploids, 220–222

through interspecific hybridization, 201–

202, 217–220

triploids, 222–224

unreduced microspores and, 215 –220,

223–224

protein content, 194, 196, 225, 226t

relationship to Manihot species, 190

sectorial chimera in, 216

Catchment/watershed hydrological pathways,

163, 164, 166, 168 –172

Charge-transfer interactions, 6

Chelation

by organic acids, 127–130

Chemisorption, 5

Chimeras

in cassava, 216

Citric acid

excreted by phosphate-solubilizing fungi, 126

Clays

hindered diffusion and, 20

Coal

sorption by, 13

Condensation

defined, 4

Continuous-flow stirred tank reactor, 54 – 56

Coordination complexes

chemisorption and, 5



Crop diversity

as environmental indicator, 81– 82

Crop yield

as environmental indicator, 78

soil organic matter and, 86



D

Darcian flow, 160t, 165

Darken equation, 31– 32

Delphi technique, 90

Denbigh soil

hydrological characteristics, 155, 156t

Desorption, see also Sorption

defined, 3

nonequilibrium

mechanisms in, 17–27

uptake and release profiles, 16 –17

rate of, 14

zero-length columns, 56

Diffusion

defined, 17–18

intraorganic matter diffusion, 20–23

soil pore diffusion, 18 –20

Diffusion equations, 31– 32

Diffusion models

combined organic matter/pore diffusion model, 39 – 41

coupled with biodegradation kinetics, 62– 63

for fixed-pore systems, 32– 37

general considerations in, 30 – 32

for multiple particle sizes, 41– 43

for organic matter, 37– 39

for soil columns, 52– 54

Drought tolerance

cassava interspecific hybrids and, 204–207

Dual resistance diffusion model, 36 – 37



E

Earthworms

as environmental indicators, 80

Electrodynamic thermogravimetric analyzer, 49

Environmental indicators

agricultural chemical use, 79

biological, 79

crop diversity, 81– 82

crop productivity, 78

earthworms, 80

fecal pathogens, 82



233



INDEX

genetic diversity, 79

honeybees, 80–81

insects, 78, 81

pesticide resistance, 81

soil microbial status, 80

landscape, 83, 84–85

physical, 78, 82–83

ranking of, 90, 91t

recommendations for using, 92

soil chemicals, 83–84

soil organic matter, 85 – 90

Environmental monitoring

assessment endpoints, 77–78

federal agencies in, 77

pressure-state-response framework, 78

Environmental Protection Agency

ranking of landscape metrics, 85

Equilibrium partition bioavailability model, 58

Erosion

effects on soil organic matter, 87– 88



F

Fava-Eyring model, 30

Fecal pathogens

as environmental indicators, 82

Ficks’s laws, 31–32

Field capacity, 157

Film resistance sorption model, 30

First-order solute transport model

with biodegradation term, 61

with sorption kinetic term, 52

Freundlich equation, 34

Fulvic acids, 8

Fungi

vesicular mycorrhizal, 100, 141–142

Fungi, phosphate-solubilizing, 100, 144

agar studies, 107

liquid medium studies

chelation of cations by organic acids, 127–

130

nitrogen source effects, 132

pH effects, 109, 124, 130–131

production of organic acids, 126 –127

results from, 110–123t

solubility of phosphate compounds, 109,

124–126

time-related soluble phosphate fluctuations,

132–133

titratable acidity and, 130



promotion of plant growth by, 133, 134 –140t,

141–143



G

Genetic diversity

as environmental indicator, 79

Gluconate

excreted by phosphate-solubilizing fungi,

126 –127

Graciles, 186

Groundwater

phosphorus transfer and, 172



H

Hallsworth soil

hydrological characteristics, 155, 156t

Herbicides

environmental health and, 79

Honeybees

as environmental indicators, 80 – 81

HOST classification, see Hydrology of soil

types classification

Humic acids, 8

Humic substances, 8

Humin, 8

Hydrocyanic acid

in Manihot tubers, 194, 195

Hydrogen bonding

in organic molecules, 5

Hydrological pathways

phosphorus transfer and

overview of, 154 –155

scale effects, 162–164

at the slope/field scale, 166, 168 –172

at the soil profile scale, 165 –166

temporal aspects of, 158, 159f

terminology and, 164

timescales in, 158 –161

types of, 160 –161t

variable source areas, 171

Hydrology of soil types (HOST) classification,

155, 166, 167f

Hydrophobic effect, 13 –14

Hydroxylated mineral surfaces, 6

Hysteresis

isotherm, 24 –26

kinetic, 26 –27

overview of, 24



234



INDEX

I



Infiltration-excess overland flow, 170 –171

Insects

as environmental indicators, 78

Intraorganic matter diffusion

overview of, 20–22

structure activity relationships in, 22–23

Ion-exchange forces, 6

Iron

in soil phosphorus dynamics, 102, 103

Isotherm hysteresis, 24 –26



K

Kerogen

sorption by, 13

␤-Ketogluconic acid, 130

Kinetic hysteresis, 26–27



L

Land drainage

phosphorus transfer and, 172

Landscape

in environmental assessments, 83, 84 – 85

National Resource Inventory and, 83

Langmuir kinetic model, 27–28

Leaching

described, 160t

use of term, 164

Linear driving force sorption models, 29 – 30

with biodegradation term, 61– 62



M

Macropore flow, 160t, 165

Macropores

modeling diffusion in, 33 – 35

size of, 18

Manihot, see also Cassava

adaptation to climatic conditions, 197–198

centers of diversity, 184, 185 –186

chromosome number, 186, 187t

genetic variability, 190, 193 –198

growth habit, 193t, 196

hybridization with cassava, 184 –185, 187

aneuploidy in, 221–222

apomixis and, 211–212

characterization of hybrids, 200 –204



drought tolerance and, 204 –207

overcoming crossing barriers, 207–210

polyploidy and, 217–220

production of hybrids, 198 –200

protein content, 225 –226

unreduced microspores in, 217–220, 223 –

224

interspecific hybridization in, 186 –187, 196

natural habitats, 193t, 196

relationships between species, 186 –190,

191t, 192t

species in Brazil, 181t, 182–184

taxonomy of, 180 –181

tuber formation patterns, 193 –194

tuber hydrocyanic acid content, 194, 195

tuber protein content, 194 –195, 196, 225 –

226, 227t

M. anomala, 198 –200

M. brachyandra, 225, 226

M. caerulescens, 197–198

M. dichotoma, 211

M. falcata, 196

M. glaziovii, 181, 200, 204, 218, 220

M. oligantha, 225

M. oligantha subsp. nestili, 194, 195

M. paviaefolia, 196

M. pohlii, 207–210

M. procumbens, 198

M. pruinosa, 196

M. pseudoglaziovii, 201, 204, 220, 221, 222–

223

M. reptans, 186 –187, 196

M. saxicola, 195

M. stipularis, 198

Manihot esculenta, see Cassava

Manihot neusana

as bridge species in hybridization, 208, 209 –

210

hybridization with cassava, 198 –200, 220

cytogenetic behavior of backcrossed generation, 202–203

cytogenetic behavior of parents, 203

evolutionary and breeding significance of,

203 –204

meiotic behavior of F1 hybrids, 200–202

Manihotoides pouciflora, 186

Meiotic restitution

in cassava interspecific hybrids, 201, 202

Mentor pollen, 208

Mercuric chloride, 47



INDEX

Mesopores

modeling diffusion in, 33 – 35

size of, 18

Meteorological field capacity, 157

Mexico

wild species of Manihot in, 183

Micropores

modeling diffusion in, 35

size of, 18

Microspores, unreduced

in cassava, 216–217

interspecific hybrids, 217–220, 223 –224

overview of, 215–216

Mineral surfaces

sorption and, 6–7

types of, 6



N

National Resource Inventory, 83

Nitrate

effects on phosphate solubilization by fungi,

132

Nitrogen

effects on phosphate solubilization by fungi,

132

Nonaqueous phase liquids

sorption by, 13

Nonlinear driving force sorption models, 29 – 30



O

Organic acids

excreted by phosphate-solubilizing fungi,

126–127

chelation of phosphate metal cations by,

127–130

excreted by roots, 106

stability constants for, 128t

Organoclays

sorption in, 20

Overland flow

described, 160t, 164

phosphorus transfer and, 170 –171

Oxalic acid

excreted by phosphate-solubilizing fungi, 126



P

Partial-area runoff, 170

Penicillium, see Fungi, phosphate-solubilizing



235



Pesticide resistance

as environmental indicator, 81

Pesticides

environmental health and, 79

pH, see also Soil pH

effects on phosphate solubility in liquid media, 109, 124, 130 –131

Phenathrene, 17

Phosphate, see also Fungi, phosphate-solubilizing; Phosphorus transfer; Soil phosphorus

in liquid medium studies

chelation of metal ions by organic acids,

127–130

pH effects and, 109, 124, 130–131

solubility of, factors affecting, 109, 124 –

126

time-based fluctuations in, 132–133

titratable acidity and, 130

precipitation in soils, 102–103

sorption in soils, 101–102

Phosphate fertilizers

soil accumulation of phosphate, 100, 103, 154

Phosphorus transfer

effective rainfall and, 155, 157, 158

hydrological pathways

scale effects, 162–164

at the slope/field scale, 166, 168 –172

at the soil profile scale, 165 –166

temporal aspects of, 158, 159f

levels of hydrological activity and, 157–158

overview of, 154 –155, 173

Physisorption

on mineral surfaces, 7

overview of, 5 – 6

rates of, 14 –15

Piston flow, 161t, 165

Plants

uptake of soil phosphate, 105 –106

Pollen

mentor, 208

Pollutant transfer, 154, see also Phosphorus

transfer

Polycyclic aromatic hydrocarbons

sorption by soot, 13

Polyploidy, in cassava, 218

advantages of, 215

aneuploids, 220 –222

through interspecific hybridization, 201–202,

217–220

triploids, 222–224



236



INDEX



Polyploidy (continued)

unreduced microspores and, 215 –220, 223 –

224

Precipitation

phosphorus transfer and, 155, 157, 158

Preferential flow, 161t, 165 –166

Pressure-state-response framework, 78

Probability density functions, 43 – 44

Propylene oxide, 47



R

Radial diffusion laws

coupled with biodegradation kinetics, 62– 63

Rainfall

phosphorus transfer and, 155, 157, 158

Return flow, 161t, 171

Rhizosphere

solubilization of phosphates in, 105 –106

Roots

of drought tolerant cassava hybrids, 205 –207

Runoff

described, 161t

phosphorus transfer and, 169 –170

use of term, 164



S

Saturated flow, 161t, 165

Saturation-excess overland flow, 171

Self-diffusion, 31–32

Shale

sorption by, 13

Siloxane mineral surfaces, 6

Slope/field hydrological pathways, 162, 164,

166, 168–172

Sodium azide, 47

Soil

accumulation of phosphate in, 100, 103, 154

bioavailability of chemicals in, 56 – 58

soil organic matter in

factors controlling content of, 87– 88

functions of, 86

sorption in

heterogeneous soils, 23 –24

mineral surfaces, 6 –7

other carbonaceous material, 13

soil organic matter, 8 –12

types of hydrological pathways through, 158 –

161



typing by hydrological characteristics, 155,

156t

Soil aggregates, 33

Soil chemicals

bioavailability of, 83

as environmental indicators, 83 – 84

Soil columns

advection-dispersion equation, 50

overview of, 49 – 51

transport models with sorption kinetic terms,

51– 54

zero-length, 56

Soil degradation

as environmental indicator, 82

Soil microorganisms

as environmental indicators, 80

phosphate solubilizing, 106 –108 (see also

Fungi, phosphate–solubilizing)

soil phosphorus dynamics and, 100

Soil nutrients

as environmental indicators, 83 – 84

Soil organic matter

atmospheric carbon and, 86 – 87

components of, 8

defined, 85 – 86

diffusion models for, 37– 41

as environmental indicator, 85 – 90

functions of, 86

hindered diffusion in, 20 –22, 23

hysteresis and, 25 –26

measures of, 88

models of sorption in, 8 –12

quantities of, measuring and expressing, 89 –

90

rubber-glassy polymer concept of, 9 –12

in soil aggregates, 33

soil content of, factors controlling, 87– 88

sorption rates, 15

Soil particles

description of, 32– 33

diffusion models and

for multiple particle sizes, 41– 43

for particles with fixed pore sizes, 32– 37

Soil pH

phosphate solubility and, 104 –105

Soil phosphorus, see also Fungi, phosphate-solubilizing

cycle, 103 –104

deficiency in, 104

overview of, 100



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

V. Protein Contents in Cassava Cultivars and Its Hybrid with Wild Manihot Species

Tải bản đầy đủ ngay(0 tr)

×