Tải bản đầy đủ - 0 (trang)
XIII. Genetics of Quantitative Traits

XIII. Genetics of Quantitative Traits

Tải bản đầy đủ - 0trang

20



PREM P. JAUHAR AND WAYNE W. H A N N A



ture. The planet’s carrying capacity is not unlimited, and environmentalconstraints

are ever increasing. Moreover, the balance of demographic power has shifted to

the developing world, where about 78% of human beings live. Poverty is taking

its toll, and more than 1 billion people today survive on less than a dollar a day.

Immediate measures must be undertaken to provide quick and reasonable relief to

this large segment of society.

About one-sixth of the world’s population live in the semi-arid tropics encompassing parts of Asia, Africa, and Latin America-the regions typified by limited

and erratic rainfall and poor soils. Pearl millet provides sustenance to a large proportion of poor people in these regions. It has the capacity to grow in some of the

poorest soils in chronically drought-prone regions. The need for genetic improvement of pearl millet cannot, therefore, be overemphasized. Although its importance as a research tool in cytogenetics and breeding has been recognized, its potential as an economic crop has not been fully realized. This poses a challenge for

cytogeneticists,breeders, agronomists, and biotechnologists.

Pearl millet is endowed with an efficient C, photosynthetic pathway, and it

responds well to fertilizers. Although it has a remarkable ability to grow on poor,

depleted soils, nitrogen deficiency is a major factor limiting grain production.

Therefore, genotypes with high-nitrogen-use efficiency should be produced. Fortunately, pearl millet responds extremely well to heterosis breeding. Utilization of

hybrid vigor will, therefore, be the most efficient means of increasing both grain

and forage production. If the vast pearl millet growing areas in Africa and Asia

could be planted to improved hybrids, grain production would increase phenomenally. Apomixis provides a unique tool for reaping the fruits of heterosis over an

extended period of time. If apomixis is transferred to hybrids with desired heterozygosity and superior gene combination, it can fix and help perpetuate heterosis, thereby obviating the need to produce hybrid seed year after year. Research in

this area will be very rewarding.

Developing a broad genetic base of hybrids is imperative to ensuring resistance

to future diseases. With the availability of cytoplasmic-genic male-sterile lines in

the mid- 1960s, several excellent hybrids were produced in India. Particularly

promising among these was HB 3, which, because of its high yields, became widely accepted throughout India in the early 1970s. Soon afterward, however, the hybrid became vulnerable to downy mildew caused by the fungus Sclemsporu

gruminicolu. The disease devastated the relatively genetically uniform hybrid

crop. An effective solution to such an eventuality is to produce genetically broadbased male-sterile lines using disease-resistantgenetic resources. Recently, several male-sterile lines have been developed at ICRISAT, and thnx of these (ICMA

91113, ICMA 91114, and ICMA 91115) provide not only reasonable yields but

also resistance to ergot, smut, and even downy mildew.

Pearl millet is an important source of dietary protein for a sizable portion of

those living in poverty in Africa and Asia. Therefore, the nutritional quality of the



CYTOGENETICS AND GENETICS OF PEARL MILLET



21



grain, particularly its protein content and amino acid balance, needs to be improved. With genetic enrichment of the quantity and quality of its proteins, pearl

millet will be a more nutritional food source.

Cytogenetic manipulations have no doubt been instrumental in producing superior cultivars of pearl millet. An exciting recent development is the availability

of tools of modern biotechnology for crop improvement.The development and use

of molecular markers-random amplified polymorphic DNA (RAPDs) and restriction fragment length polymorphism (RFLPs)-are beginning to revolutionize

molecular mapping. For example, until recently, our knowledge of the inheritance

of downy mildew resistance was limited. Resistance was generally believed to be

monogenic dominant. However, molecular mapping has demonstrated that many

genes contribute to downy mildew resistance and that these genes are scattered

throughout the host genome. The use of DNA markers could help identify desired

genotypes more precisely and hence assist in adopting appropriate breeding strategy for pearl millet.

Pearl millet provides unlimited opportunities for both basic and applied research. With further cytogenetic manipulation and marker-assisted selection, combined with the exploitation of recent advances in biotechnological research, pearl

millet may emerge as a leading economic crop that plays an ever-increasing role

in the welfare of those living in poverty, particularly in the semi-arid tropics of the

world.



REFERENCES

Amoukou, A. I., and Marchais. L. (1993). Evidence of partial reproductive barrier between wild and

cultivated pearl millets (Penniseturn gluucurn). Euphyrica 67, 19-26.

Anand Kumar, K., and Andrews, D. J. (1984). Cytoplasmic male sterility in pearl millet [Penniserurn

americunum (L.) Leekel-A review. Adv. Appl. Eiol. 10,113-143.

Anand Kumar, K., and Andrews, D. J. (1993). Genetics of qualitative traits in pearl millet: A review.

Crop Sci. 33, 1-20.

Andrews, D. J. (1987). Breeding pearl millet grain hybrids. In “Hybrid Seed Production of Selected

Cereal Oil and Vegetable Crops” (W. A. Feistzer and A. F. Kelly, eds.), pp. 83-109. FA0 Plant

Production and Protection, Paper 82, Rome.

Andrews, D. J., King, S. B., Witcomb, J. R., Singh, S. D., Rai, K. N., Thakur, R. P., Talukdar, B. S.,

Chavan, S. B., and Singh, P. (1985). Breeding for disease resistance and yield in pearl millet. Field

Crops Res. 11,241-258.

Appa Rao, S., Mengesha, M. H., and Rajagopal Reddy. C. (1992). Characteristics and inheritance of

xantha terminalis in pearl millet. J. Hered. 83,6243.

Appa Rao, S., Rai, K. N., Mengesha, M. H., and Rajagopal Reddy, C. (1995). Narrow leaf mutant: A

new plant type in pearl millet. J . Hered. 86,299-301.

Asker, S. E., and Jerling, L. (1992). “Apoxirnis in Plants.” CRC Press, Boca Raton, FL.

Bashaw, E. C.. Hussey, M. A,, and Hignight, K. W. (1992). Hybridization (n + n and 2n + n) of facultative apomictic species in the Penniseturn agamic complex. fnf.J. Planr Sci. 15,466470.

Bennett, M. D. (1976). DNA amount, latitude, and crop plant distribution. Environ. Exp. Bor. 16,

93- 108.



22



PREM P. JAUHAR AND WAYNE W. H A N N A



Bor, N. L. (1960). “Grasses of Burma, Ceylon, India, and Pakistan (excluding Bambuseae).” Pergamon Press, London.

Brunken, J. N., de Wet, J. M. J.. and Harlan, J. R. (1977). The morphology and domestication of pearl

millet. Econ. Bot. 31, 163-174.

Burton, G. W. (1942). A cytological study of some species in tribe Paniceae. Am. J. Bot. 29,355-359.

Burton, G. W. (1948). The performance of various mixtures of hybrid and parent inbred pearl millet,

Pennisetum glaucum (L.) R. Br. J . Am. SOC.Agron. 40,908-915.

Burton, G. W. (1951). Quantitative inheritance in pearl millet (Pennisetum glaucum) indicated by genetic variance component studies. Agron. J. 51,47948 l .

Burton, G. W. (1959). Breeding methods for pearl millet (Pennisetum glaucum). Agron. J. 43,409417.

Burton, G. W. (1965). Pearl millet Tift 23A released. Crops Soils 17, 19.

Burton, G. W. (1983). Breeding pearl millet. Plant Breeding Reviews 1, 162-182.

Burton, G. W. (1989). Composition and forage yield of hybrid-inbred mixtures of pearl millet. Crop

Sci. 29,252-255.

Burton, G. W.,

and Powell, J. B. (1968). Pearl millet breeding and cytogenetics.Adv. Agron. 20,49-89.

Burton, G. W., and Werner, B. K. (1991). Genetic markers to locate and transfer heterotic chromosome

blocks for increased pearl millet yields. Crop Sci. 31,576579.

Burton, G. W., and Wilson, J. P. (1995).Identification and transfer of heterotic chromosome blocks for

forage yield in short-day exotic pearl millet landraces. Crop Sci. 35, 1184-1 187.

Burton, G. W., Hanna, W. W., and Powell, J. B. (1980). Hybrid vigor in forage yields of crosses between pearl millet inbreds and their mutants. Crop Sci. 20,744-747.

Busso, C. S., Liu, C. S., Hash, C. T., Witcombe, J. R., Devos, K. M., deWet, J. M. J., and Gale, M. D.

(1995). Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers. Theoc Appl. Genet. 90,242-246.

Carman, J. G.. and Wang, R. R-C. (1992). Apomixis in Triticeae. In “Proc. of Apomixis Workshop,”

pp. 26-29. National Technical Service, Springfield, VA.

Chase, A. (1921).The Linnaean concept of pearl millet. Am. J . Bor. 8 , 4 1 4 9 .

Cherney, J. H., Axtell, J. D., Hassen, M. M., and Anliker, K. S. (1988).Forage quality characterization

of a chemically induced brown-midrib mutant in pearl millet. Crop Sci. 28,783-787.

Chittenden, L. M., Shertz, K. F., Lin, Y-R., Wing, R. A., and Paterson, A. H. (1994). RFLP mapping of

a cross between Sorghum bicolor and S.propinquum, suitable for high-density mapping, suggests

ancestral duplication of Sorghum chromosomes. Theor:Appl. Genet. 87,925-933.

Clegg, M. T., Rawson, J. R. Y., and Thomas, K. (1984). Chloroplast DNA variation in pearl millet and

related species. Genetics 106,449461,

Dave, H. R. (1987). Pearl millet hybrids. Proc. Intl. Pearl Millet Workshop, pp. 121-126.

Desdi, M. C. (1959). A naked flower mutant in pearl millet. Sci. Culture 25,207-208.

De Vincente, M. C., and Tanksley, S. D. (1991). Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theoc

Appl. Genet, 83, 173-178.

Dujardin, M., and Hanna, W. W. (1984).Microsporogenesis, reproductive behavior, and fertility in five

Penniserum species. Theoc Appl. Genet. 67,197-201.

Gepts, P., and Clegg, M. T. (1989). Genetic diversity in pearl millet (Pennisetumglaucum [L.] R. Br.)

at the DNA sequence level. J. Hered. SO, 203-208.

Gerlach, W. L., and Bedbrook, J. R. (1979).Cloning and characterization of ribosomal RNAgenes from

wheat and barley. Nucleic Acids Res. 7, 1869-1885.

Goyal, R. D. (1962).A “spreading” mutant in Bajra (Pennisetum typhoides S Kc H). Sci. Culture 28,

437438.

Gupta, S. C. (1995). Inheritance and allelic study of brown midrib trait in pearl millet. J. Hered. 86,

301-303.



CYTOGENETICS AND GENETICS OF PEARL MILLET



23



Hanna, W. W. (1987). Utilization of wild relatives of pearl millet. Proc. Inrl. Pearl Millet Workshop,

pp. 33-42.

Hanna, W. W. (1989).Characteristics and stability of a new cytoplasmic nuclear male-sterile source in

pearl millet. Crop Sci. 29, 1457-1459.

Hanna, W. W. (1990). Transfer of germplasm from the secondary to the primary gene pool in Pennisetum. Theor:Appl. Genet. 80,20&204.

Hanna, W. W. (1993).Registration of pearl millet parental lines Tift 8677 and A,/B I Tift 90D,El. Crop

Sci. 33, 1119.

Hanna, W. W. (1995).Use of apomixis in cultivar development. Adv. Agron. 54,333-350.

Hanna, W. W. (1997). Registration of Tift 8593 pearl millet genetic stock. Crop Sci. 37, 1412.

Hanna, W. W., and Bashaw, E. C. (1987).Apomixis: Its identification and use in plant breeding. Crop

Sci. 27, 1136-1 139.

Hanna, W. W., and Burton, G. W. (1992).Genetics of red and purple plant color in pearl millet. J. Hered.

83,386-388.

Hanna, W. W., and Dujardin, M. (199 I). Role of apomixis in building and maintaining genome comKimber, ed.), pp.

binations. In “Proc. 2nd Intl. symp. on Chromosome Engineering in Plants” (G.

112-1 17. University of Missouri, Columbia, MO.

Hanna, W. W., and Monson, W. G. (1980).Yield, quality, and breeding behavior of pearl millet X Napier grass interspecific hybrids. Agron. J. 72,358-360.

Hanna, W. W., Wells, H. D., Burton, G. W., Hill, G. M., and Monson, W. G. (1988). Registration of

Tifleaf 2 pearl millet. Crop Sci. 28, 1023.

Hanna, W. W., Dujardin, M.. and Monson, W. G. (1989).Using diverse species to improve quality and

yield in the Pennisetum genus. Proc. Intl. Grassl. Congr: 16,403404.

Hanna, W. W., Dujardin, M., Ozias-Akins, P., and Arthur, L. (1992). Transfer of apomixis in Pennisefum. In “Proc. of Apomixis Workshop,” pp. 30-33. National Technical Service, Springfield,

VA.

Hanna, W., Dujardin. M., Ozias-Akins, P., Lubbers, E., and Arthur, L. (1993).Reproduction, cytology,

and fertility of pearl millet X Penniserurn squamularum BC, plants. J. Hered. 84,213-216.

Hanna, W. W., Hill, G. M., Gates, R. N., Wilson, J. P., and Burton, G. W. (1997). Registration of

‘Tifleaf 3’ pearl millet. Crop Sci. 37, 1388.

Harlan, J. R. (1971).Agricultural origins: Centers and noncenters. Science 174,468474.

Helentjaris, T., Slocum, M., Wright, S. Shaefer, A,. and Neinhuis, J. (1986). Construction of genetic

linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor: Appl.

Genet. 72,76 1-769.

Hitchcock, A. S., and Chase, A. (1951). “Manual of the Grasses of the United States,” 2nd ed. U.S.

Dept. Agric. Misc. Publ. 200, Washington, DC.

Hulbert. S. H., Richter, T. E., Axtell, J. D., and Bennetzen, J. L. (1990).Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Nut Acad. Sci.

USA 87,425 14255.

Hussey, M. H., Bashaw, E. C., Hignight, K. W., Wipff, J., and Hatch, S. L. (1993).Fertilization of unreduced female gametes: A technique for genetic enhancement within the Cenchrus-Pennisetum

agamic complex. Proc. Intl. Grussl. Cong. 17,404-405.

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). (1996). Improving the

unimprovable: Succeeding with pearl millet. ICRISATReport, May.

Jauhar, P. P. (1968). Inter- and intra-genomal chromosome pairing in an interspecific hybrid and its

bearing on basic chromosome number in Pennisefum. Genefica39,360-370.

Jauhar, P.P. (1970a). Haploid meiosis and its bearing on phylogeny of pearl millet, Pennisefum typhoides Stapf et Hubb. Geneticcr 41,532-540.

Jauhar. P. P. (1970b).Chromosome behaviour and fertility of the raw and evolved synthetic tetraploids

of pearl millet, Pennisetum typhoides Stapf et Hubb. Geneticu 41,407424.



24



PREM I? JAUHAR AND WAYNE W. H A N N A



Jauhar, P. P, (1973). Inter- and intra-genomal chromosome relationships in a Pennisetum hybrid. In

“Proc. Intl. Cong. of Genetics.” Genetics 74, 126-127.

Jauhar, P. P. (1981a). “Cytogenetics and Breeding of Pearl Millet and Related Species.” Alan R. Liss,

New York.

Jauhar, P. P. (1981b). Cytogenetics of pearl millet. Adv. Agmn. 34,407479.

Jauhar, P. P. (1981~).The eternal controversy on the Latin name of pearl millet. Indian J. Bor. 4( I),

1-4.

Jauhar, P. P..and L. R. Joppa. (1996). Chromosome pairing as a tool in genome analysis: Merits and

limitations. In “Methods of Genome Analysis in Plants” (P. P. Jauhar, ed.), pp. 9-37. CRC Press,

Boca Raton, FL.

Jones, E. S., Lice, C. J., Gale, M. D., Hash, C. T., and Witcombe, J. K. (1995). Mapping quantitative

trait loci for downy mildew resistance in pearl millet. Theor: Appl. Genet. 91,448-456.

Kianian, S. F., and Quiros, C. F.(1992). Generation of Brassicu oleracea composite RFLP map: Linkage arrangementsamong various populations and evolutionary implications. Theor: Appl. Genet.

84,54&554.

Kindiger. B., Sokolov, V., and Khatypova, I. V. (1996). Evaluation of apomictic reproduction in a set

of 39 chromosome maize-Tripsacum backcross hybrids. Crop Sci. 36,1108-1 113,

Kishikawa, H. (1970). Effects of temperature and soil moisture on frequency of accessory chromosomes in rye, Secale cereale. Jup. J. Breed. 20,269-214.

Kodum, P. R. K., and Krishna Rao, M. (1983). Genetics of qualitative traits and linkage studies in pearl

90, 1-22.

millet-A review. Z. P’nzenziichtz.

Kumar, P., Kapoor, R. L., Dass, S., and Chandra, S. (1992). Genetics of days to heading and maturity

in pearl millet. Huryana Agric. Univ. J. Res. 12,282-286.

Laurie, D. A. (1989). The frequency of fertilization in wheat X pearl millet crosses. Genome 32,

1063-1 067.

Lee, W.J. (1966). On accessory chromosomes in Secale cereale. III. Relationship between the frequency of accessory chromosomesin rye and soil properties. Korean. J. Bot. 9 ( 3 4 ) , 1-6.

Linnaeus, C. (1753). “Species plantarum,” 1st ed. Stockholm.

Liu, C. J., Witcombe, J. R., Pittaway, T.S., Nash, M., Hash, C. T., Busso, C. S., and Gale, M. D. (1994).

An REP-based genetic map of pearl millet (Pennisetum glaucum). Theor: Appl. Genet. 89,

481487.

and Ozias-Akins, P. (1994). Molecular markers shared by diLubbers, E. L., Arthur, L., Hanna, W. W.,

verse apomictic Pennisetum species. Theor: Appl. Genet. 89,636-642.

Mahalakshmi, V., Bidinger, F.R., Rao, K. P., and Raju, D. S. (1992). Performance and stability of pearl

millet topcross hybrids and their variety pollinators. Crop Sci. 32,928-932.

Martel, E., Ricroch, A., and Sarr, A. (1996).Assessment of genome organization among diploid species

(2n = 2x = 14) belonging to primary and tertiary gene pools of pearl millet using fluorescent in

situ hybridization with rDNA probes. Genome 39,680687.

Matzk, F.(1996). Hybrids of crosses between oat and Andropogoneae or Paniceae species. Crop Sci.

36, 17-2 1.

Meredith, D. (ed.) (1955). “The Grasses and Pastures of South Africa.” Cape Times Ltd., Parrow CP,

South Africa.

Minocha, J. L., Gill, B. S., Sharma, H. L., and Sidhu, J. L. (1980a). Cytogenetic studies on primary trisomics in pearl millet. In “Trends in Genetical Research in Pennisetums.” (V. P. Gupta and I. L.

Minocha, eds.), pp. 129-132. Punjab Agric. Univ., Ludhiana, India.

Minocha. J. L.. Gill, B. S., and Sidhu, J. S. (1980b). Inheritance and linkage studies in pearl millet. In

“Trends in Genetical Research in Pennisetums” (V. P. Gupta and J. L. Minocha, eds.), pp. 99-1 10.

Punjab Agric. Univ.. Ludhiana, India.

Minocha, J. L., Bra, D. S., Saini. P. S., Multani, D. S., and Sidhu. S. S. (1982). A translocation tester

set in pearl millet. Theor: Appl. Genet. 62,3 1-33.



CYTOGENETICS AND GENETICS OF PEARL MILLET



25



Muldoon, D. K., and Pearson, C. J. (1979). The hybrids between Pennisetum americanum and Pennisetum purpureum. Herbage Absr. 49, 189-199.

Miintzing, A. (1958).Accessory chromosomes. Trans. Bose Res. Insr. (Calcutta) 22, 1-15.

Osgood, R. V., Hanna, W. W., and Tew, T. L. (1997).Hybrid seed production of pearl millet X Napier

grass triploid hybrids. Crop Sci. 37,998-999.

Ouendeba, B.. Ejeta, G., Nyquist. W. E., Hanna. W. W., and Kumar, A. (1993).Heterosis and combining ability among African pearl millet landraces. Crop Sci. 33,735-739.

Ozias-Akins, P., Lubbers, E. L., Hanna, W. W., and McNay, J. W. (1993).Transmission of the apomictic mode of reproduction in Penniserum: Co-inheritance of the trait and molecular markers. Theo,:

Appl. Genet. 85,632438.

Paterson, A. H., Tanksley, S. D., and Sorrells. M. E. (199 I). DNA markers in plant improvement. Adv.

Agron. 46,39-90.

Patil, B. D., and Singh, A. (1964).An interspecific cross in the genus Pennisetum involving two basic

numbers. Cur,: Sci. 33, 161-162.

Patil, B. D., and Singh, A. (1980).Genetic and cytogenetic improvement of Penniserum and its allied

species for grassland and pasture production. In “Trends in Genetical Research in Pennisetums”

(V. P. Gupta and J. L. Minocha, eds.), pp. 112-122. Punjab Agric. Univ., Ludhiana, India.

Pantulu, J. V. (1960).Accessory chromosomes in Penniserum ryphoides. Cur,: Sci. 29,28-29.

Powell, J. B., and Burton, G. W. (1966). Nucleolus-organizing accessory chromosomes in pearl millet, Pennisetum ryphoides. Crop Sci. 6, 131-134.

and Majmudar, J. V. (1980). “Pearl Millet.” Pennsylvania State Univ. Press, University

Rachie, K. 0..

Park.

Rai, K. N. (1995).A new cytoplasmic-nuclear male sterility system in pearl millet. Plunr Breed. 114,



445447.

Rao, P. K., Nambiar, A. K., and Menon, P. M. (1951).Maximisation of production by cultivation of hybrid strains with special reference to cumbu (pearl millet). Madras Agric. J. 38,95-100.

Rao, P. N., Nirmala, A,. and Ranganadham, P. (1988).Trisomic categories in pearl millet (Pennisetum

umericunum (L.) Leeke). Theo,: Appl. Genet. 75,340-343.

Rau, N. S. (1929). On the chromosome numbers of some cultivated plants of south India. J. Indian.

Bot. Sci. 8, 1261 28.

Reader, S . M., Miller, T. E., and Purdie, K. A. (1996).Cytological analysis of plant chromosomes using rapid in situ hybridization. Euphytica 89, 121-124.

SAT (Semi-Arid Tropics) News. (19964997). ICRISAT. Patancheru, India, pp. 12-14.

Savidan, Y.,LeBlanc, 0..and Berthaud, J. (1993).Progress in the transfer of apomixis in maize. Agron.

Absr. 1993, 101.

Schank, S., and Hanna, W. (1995).Usage of Pennisetum in Florida and the tropics. Proc. Intl. Conj: on

Livestock in the Tropics. pp. 1-13.

Schumann, K. (1 895). 11. Die Graser Ostafrikas und ihre Verwerthung. (The grasses of East Africa and

their utilization.) In “Die Pflanzenwelt Ost-Afrikas und der Nachbargebiete,” R.B (A. Engler,

ed.). pp. 51-59.

Sidhu, S. S., and Minocha, S. L. (1984).Peroxidase isozyme patterns in primary trisomics of pearl millet. Theo,: Appl. Genet. 68, 179-182.

Slocum, M. K., Figdore, S. S.. Kennard, W. C., Suzuki, J. Y., and Osborn, T. C. (1990).Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theo,: Appl. Genet.

so,57-64.

Stapf, O., and Hubbard, C. E. (1933).Notes on African grasses: XIII. Kew Bull. 1933,269-302.

Stapf, 0..

and Hubbard, C. E. (1934).Pennisetum. In “Flora of Tropical Africa” (D. Prain, ed.), Vol. 9,

Pt. 6, pp. 954-1070. Reeve & Co, Ltd. Ashford, Kent, England.

Sujata, V., Sivaramakrishnan, S., Rai, K. N., and Seetha, K. (1994).Anew source of cytoplasmic male

sterility in pearl millet: RFLP analysis of mitochondria1 DNA. Genome 37,482486.



26



PREM P. JAUHAR AND WAYNE W. H A N N A



Terrell, E. E. (1976). The correct names of pearl millet and yellow fox tail. Taxon. 25,297-304.

Tostain, S., Riandey, M. F., and Marchais, L. (1987). Enzyme diversity in pearl millet (Penniserurn

gluucurn). 1. West Africa. Theor Appl. Genet. 74, 188-193.

Uma Devi, K., Narasinga Rao, P.S.R.L., and Krishna Rao, M. (1996). Linkage of semidwarf phenotype to interchange homozygosity in pearl millet. J. Hered. 87, 170-172.

Vari, A. K., and Bhowal, J. G. (1986). Studies on the trisomics of Pennisetum urnericunum (L.)

Leeke.-Morphological and cytological behaviour of primary trisomics. Cyrologiu 51,679492.

Vavilov, N. I. (1949-1950). The origin, variation, immunity, and breeding of cultivated plants. Chronicu Borunicu 13, 1-366.

Veyret, Y.(1957). Les chromosomes somatiques chez quelques esptces de Penniserum. (Somatic chromosomes in some species of Penniserurn.) Agron. Trop. 12,595-598.

Virk, D. S. (1988). Biometrical analysis in pearl millet-A review. Crop Imprv. 15, 1-29.

Whitkus, R., Doebley, J., and Lee, M. (1992). Comparative genome mapping of sorghum and maize.

Genetics 132, 11 19-1 130.

Williams, R. J., and Andrews, D. J. (1983). Breeding for disease and pest resistance in pearl millet.

FA0 Plant Pro?. Bull. 31, 136-158.

Wilson, J. P. (1996). A recessive homeotic mutant in pearl millet. J. Hered. 87,66-67.

Wilson, J. P., Burton, G. W., Zongo, J. D., and Dicko, I. 0. (1991). Disease resistance and morphological traits of pearl millet landraces from south Burkina Faso. Crop Sci. 31,641-645.

Zenkteler, M., and Nitzsche, W. (1984). Wide hybridization experiments in cereals. Theor:Appl. Gener.

68,3 11-3 15.



ADVANCESIN ICP EMISSION

AND ICP M i s s SPECTROMETRY

Parviz N. Soltanpour,' Greg W. Johnson,2 Stephen M. W ~ r k m a n , ~

J. Benton Jones, Jr.: and Robert 0. Miller'

'Department of Soil and Crop Sciences

Colorado State University

Fort Collins, Colorado 80523

2Matheson Gas Products

Longmont, Colorado 80501

'Analytical Technologies, Inc.

Fort Collins, Colorado 80524

'+Macro-MicroAnalytical Services

Athens, Georgia 30607



I. Introduction

11. ICP-AES and ICP-MS Instrumentation

A. ICP Generation

B. Properties of ICP

C. Sample Introduction Systems

111. Spectrometers

A. ICP-Atomic Emission Spectrometry

B. ICP-Mass Spectrometry

n! Analytical Capabilities

A. Selection of Wavelength

B. Selection of Isotope

C. ICP-AES Detection Limits

D. ICP-MS Detection Limits

v. ICP-AES Interferences

A. Solute Vaporization

B. Ionization

C. Unwanted Radiation

D. Correction for Interferences (ICP-ms)

VI. ICP-MS Interferences

A. Solids Deposition on Sampler and Skimmer Cones

27

Advrmrm in Agrorm~y,Volume 64

Copynght 0 1998 by Academic Press. All rights of reproduction in any form reserved.

0065-~11~/9n

$ZS.OO



28



PAFWIZ N. SOLTANPOUR ETAL.

B. NonspectroscopicInterferences

C. Mass Discrimination

D. Unwanted Ions

E. Methods of Correction for Interferences(ICP-MS)

VII. Practical Applications

A. Grinding Soil Samples

B. Obtaining Soil Extracts

C. Digestion of Organic Matter and Dissolution of Silicates for Total

Elemental Analysis

D. Analysis of Soil Extracts and Digests

E. Determination of Trace Levels of As, Se, and Hg Using the HydrideMercury Vapor Generator

VIII. Quality Control Methods

IX.Summary

Appendix

References



I. INTRODUCTION

The application of inductively coupled plasma-atomic emission spectrometry

(ICP-AES) to the analysis of soil was reviewed in 1982 and again in 1996 with inclusion of ICP-mass spectrometry (ICP-MS) (Soltanpour et al., 1982, 1996). In

this review we treat ICP-MS more comprehensively and include a table for isotopes of elements (see Section 1V.B.) and an example for Ca, Fe, Ni, Zn, and Pb

isotope selection for plant-tissue analysis (Appendix 1).

New developments in ICP-AES include suspension-nebulization analysis of

clays (Laird et al., 1991); interfacing ICP spectrometers with flow-injection analyzers for automatic dilution, calibration, separation, concentration, standard additions, and other operations (Greenfield, 1983; LaFerniere et al., 1985); interfacing ICP-AES with liquid chromatographs for concentration and speciation of

elements (Roychowdhury and Koropchack, 1990); using high-salt nebulizers to

prevent clogging of nebulizers (Legere and Burgener, 1985): successfully using

concentration and reduction of spectral interference techniques such as chelation-solvent extraction (Huang and Wai, 1986; Bradford and Bakhtar, 1991); using computer programs such as orthogonal polynomials (Hassan and Loux, 1990),

simplex optimization (Belchamber et al., 1986), and that recommended by Taylor

and Schutyser (1986) to optimize spectrometer operating conditions and automatic correction for spectral interferences; and compiling ICP emission lines still in

progress (McLaren and Berman, 1985; Boumans, 1984; Parsons et al., 1980).

The ICP-MS method of analysis has been developed over the last 15 years.

Houk et al. (198 1) showed suprathermal ionization in an ICP Ar plasma. Within

the last 10 years the method has been applied to routine analytical concentration

determinations. Several review articles document the ICP-MS developmental

milestones (Beauchemin, 1989; Hieftje and Vickers, 1989; Douglas, 1989; Houk



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

XIII. Genetics of Quantitative Traits

Tải bản đầy đủ ngay(0 tr)

×