Tải bản đầy đủ - 0 (trang)
VI. Conclusions and Research Needs

VI. Conclusions and Research Needs

Tải bản đầy đủ - 0trang

140



J. C. O’TOOLE AND W. L. BLAND



systems for plant culture or rapid screening must be viewed with skepticism.

Adequate resources should be allocated to field verification of such

methods.

Novel experiments will be required to gain an adequate understanding of

the impact of soil environments on phenotype, e.g., the study of phenotype

across a continuum of root environments between the endpoints of

aeroponic and field soil culture. The significance of numerous interacting

factors (temperature, oxygen, strength, water content, etc.) must be

recognized and experimental facilities constructed in which as many important physical parameters as possible are controlled.

Realization of the full potential for crop root system improvement remains a challenge to the quantitative geneticist, soil physicist, and root

physiologist. The traditional bounds of each discipline must be extended

until common ground is established and truly interdisciplinary studies

result. By comparison with the state of scientific research on plant shoots,

root science is in its infancy and may be expected to disclose many new and

exciting possibilities to further adapt crop plants to their environment.



REFERENCES

Aha, P. O., and Fapohunda, H. 0. 1986. Plant Soil 94, 257-265.

Ali-Khan, S. T., and Snoad, B. 1977. Ann. Appl. Biol. 85, 131-136.

Allard, R. W., and Bradshaw, A. D. 1964. Crop Sci. 4, 503-508.

Andrew, R. H., and Solanki, S. S. 1966. Agron. J. 58, 415418.

Arkin, G. F., and Taylor, H. M. 1981. Modifying the root environment to reduce crop stress.

Am. SOC.Agric. Eng. Monogr. No. 4. Am. SOC.Agric. Engr., St. Joseph, Michigan.

Armenta-Soto, J., Chang, T. T., Loresto, G. C., and O’Toole, J. C. 1983. SABRA0 J. 15,

103-116.



Asady, G. H., Smucker, A. J. M., and Adams, M. W. 1985. Crop Sci. 25, 802-806.

Aycock, M. K., and McKee, C. G . 1975. Agron. J. 67, 604-606.

Barber, S. A. 1984. “Soil Nutrient Bioavailability.” Wiley (Interscience), New York.

Barber, S. A., and Silberbush, M. 1984. In “Roots, Nutrient and Water Influx, and Plant

Growth” (S. A. Barber and D. R. Bouldin, eds.), pp. 65-87. ASA Special Publ. No. 49.

Am. Soc. Agron., Madison, Wisconsin.

Barley, K. P. 1970. Adv. Agron. 22, 159-201.

Barnes, D. K. 1983. In “Limitations to Efficient Water Use in Crop Production” (H. M. Taylor,

W. R. Jordan, and T. R. Sinclair, eds.), pp. 127-136. Am. SOC.Agron., Madison,

Wisconsin.

Bhan, S., Singh, H. G., and Singh, A. 1973. Indian J. Agric. Sci. 43, 828-830.

Blum, A. 1972. Agron. J. 64, 775-718.

Blum, A., Arkin, G. F., and Jordan, W . R. 1977a. Crop Sci. 17, 149-153.

Blum, A., Jordan, W. R., and Arkin, G. F. 197713. Crop Sci. 17, 153-157.

Blum, A., Mayer, J., and Gozlan, G. 1983. Plant Cell Environ. 6, 219-225.

Boyer, J. S. 1982. Science 218, 443-448.

Boyer, J. S. 1985. Ann. Rev. Plant Physiol. 36, 473-516.

Boyer, J. S., Johnson, R. R., and Saupe, S. G. 1980. Agron. J. 72, 981-986.



GENOTYPIC VARIATION IN PLANT ROOT SYSTEMS



141



Bradshaw, A. D. 1%5. Adv. Genet. 13, 115-155.

Brick, M. A., and Barnes, D. K. 1981. J. Hered. 72, 419-422.

Brick, M. A., and Barnes, D. K. 1982. Crop Sci. 22, 747-752.

Brouwer, R., and de Wit, C. T. 1968. Proc. Easter School Agric. Sci., 15th. Univ. Nottingham

pp. 224-242.

Brown, S. C., Keatinge, J. D. H., Gregory, P. J., and Cooper, P. J. M. 1987. Field Crops Res.

(in press).

Burch, G. J., Smith, R. C. G., and Mason, W. K. 1978. Aust. J. Plant Physiol. 5, 169-177.

Campbell, L. G., and Lafever, H. N. 1977. In “Plant Adaptation to Mineral Stress in Problem

Soils” (M. J. Wright, ed.), pp. 277-286. AID, Washington, D. C.

I

Agric.

.

Res. 20, 213-219.

Caradus, J. R. 1977. N. Z. .

Caradus, J. R. 1981. N. Z. J. Agric. Res. 24, 43-54.

Carrigan, L., and Frey, K. J. 1980. Crop Sci. 20, 407-408.

Carson, E. W. (ed.) 1974. “The Plant Root and Its Environment.” Univ. Press of Virginia,

Charlottesville.

Carter, P. R., Sheaffer, C. C., and Voorhees, W. B. 1982. Crop Sci. 22, 425-427.

Chakravarty, D. N., and Karmakar, R. M. 1980. Indian J. Agric. Sci. 50, 527-531.

Chang, T. T., and Vergara, B. S. 1975. In “Major Research in Upland Rice,” pp. 72-90. Int.

Rice Res. Inst., Los Bafios, Philippines.

Chang, T. T., Loresto, G. C., and Tagumpay, 0. 1972. In “Rice Breeding,” pp. 645-661. Int.

Rice Res. Inst., Los Bailos, Philippines.

Chang, T. T., Loresto, G. C.,O’Toole, J. C., and Armenta-Soto, J. L. 1982. In “Drought

Resistance in Crops with Emphasis on Rice,” pp. 217-244. Int. Rice Res. Inst., Los

Balios, Philippines.

Chapin, F. S. 1977. In “The Belowground Ecosystem: A Synthesis of Plant-Associated Processes” (J. K. Marshall, ed.), pp. 99-107. Range Sci. Dep. Sci. Series No. 26, Colorado

State University, Ft. Collins, Colorado.

Christiansen, M. N., and Lewis, C. F. (eds.) 1982. “Breeding Plants for Less Favorable Environments.” Wiley, New York.

Cook, C. G. 1985. M.S. thesis, Texas A&M University, College Station, Texas.

Cooper, P. J. M., Gregory, P. J., Keatinge, J. D. H., and Brown, S. C. 1987. Field Crops Res.

(in press).

Cornish, P. S. 1981. Plant Soil 59, 119-125.

Cutforth, H. W., Shaykewich, C. F., and Cho, C. M. 1986. Can. J. Soil Sci. 66, 51-58.

Damodar, R., Rao, I. V. S., and Rao, N. G. P. 1978. Indian J. Gen. Plant Breed. 38,421-430.

Derera, N. F., Marshall, D. R., and Balaam, L. N. 1969. Exp. Agric. 5, 327-337.

Devine, T. E. 1982. In “Breeding Plants for Less Favorable Environments” (M. N. Christiansen

and C. F. Lewis, eds.), pp. 143-173. Wiley, New York.

Eavis, B. W., and Taylor, H. M. 1979. Agron. J. 71, 441-445.

Eissa, A. M., Jenkins, J. N., and Vaughan, C. E. 1983. Crop Sci. 23, 1107-1111.

Ekanayake, I. J., O’Toole, J. C., Garrity, D. P., and Masajo, T. M. 1985a. Crop Sci. 25,

927-933,



Ekanayake, I. J., Garrity, D. P., Masajo, T. M., and O’Toole, J. C. 1985b. Euphytica 34,

905-913.



Elkins, C. B. 1985. Proc. Beltwide Cotton Prod. Res. Conf., pp. 299-300.

Elkins, C. B., and Van Sickle, K. 1984. Solutions July-Aug., 38-40.

Elkins, C. B., Haaland, R. L., and Hoveland, C. S. 1977. Proc. South. Pasture Forage Crop

Improve. Conf. 34th, Auburn Univ. pp. 21-26.

Elkins, C. B., Haaland, R. L., Rodriguez-Kabana, R., and Hoveland, C. S. 1979. Agron. J. 71,

497-500.



Ennos, R. A., 1985. J. Ecol. 73, 615-624.



142



J. C. O’TOOLE AND W. L. BLAND



Epstein, E. 1972. “Mineral Nutrition of Plants: Principles and Perspectives.” Wiley, New York.

Epstein, E., and Jefferies, R L. 1964. Ann. Rev. Plant Physiol. 15, 169-184.

Esau, K. 1977. “Anatomy of Seed Plants,” 2nd Ed. Wiley, New York.

Fawole, l., Gabelman, W. H., and Gerloff, G. C. 1982. J. Am. Soc. Hortic. Sci. 107, 98-100.

Finn, B. J., and Mack, A. R. 1964. Soil Sci. Soc. Am. Proc. 28, 782-785.

Fiscus, E. L. 1983. In “Limitations to Efficient Water Use in Crop Production” (H. M.

Taylor, W.R. Jordan, and T. R. Sinclair, eds.), pp. 183-194. Am. SOC.Agron., Madison,

Wisconsin.

Fitter, A. H. 1985. In “Ecological Interactions in Soil” (A. H. Fitter, ed.), pp. 87-106. Special

Publ. No. 4, British Ecological SOC.,Blackwell, Oxford.

Fowkes, N. D., and Landsberg, J. J. 1981. In “Mathematics and Plant Physiology” (D. A. Rose

and D. A. Charles-Edwards, eds.), pp. 109-125. Academic Press, New York.

Gabelman, W. H., and Gerloff, G. C. 1986. HortScience 21, 971-973.

Geisler, G., and Kriitzfeldt, B. 1983. Z . Acker Pflanzenbau 152, 336-353.

Goodman, P. J. 1983. In “Genetic Aspects of Plant Nutrition” (M. R. Saric and B. C.

Loughman, eds.), pp. 447-452. Nijhoff/Dr. W. Junk, The Hague.

Gorny, A. G., and Patyna, H. 1984. Z. Acker Pfanzenbau 153, 264-273.

Gulmon, S. L., and Turner, N. C. 1978. Plant Soil 49, 127-136.

Hackett, C. 1968. New Phytol. 67, 287-299.

Hamblin, A. P. 1985. Adu. Agron. 38, 95-158.

Harley, J. L., and Russell, R. S. 1979. “The Soil-Root Interface.” Academic Press, New York.

Harrigan, E. S., and Barrs, H. D. 1984. Center for Irrigation Research, 1983-1984 Report,

pp. 115-118. CSIRO, Griffith, N. S. W., Australia.

Harris, G. A., and Goebel, C. J. 1976. “Factor of Plant Competition in Seeding Pacific Northwest Bunchgrass Ranges.” Bull. No. 820, College of Agric. Res. Center, Washington

State University, Pullman.

Hasegawa, S. 1963. In “Crop Science, A Treatise, Vol. 1. The Rice Plant” (Y. Togari, ed.), pp.

1-124. Yokendo, Tokyo.

Heen, A. 1980. Meld. Nor. Landhrukshoegsk. 59 (17), 1-11.

Heinrichs, D. H. 1963. Adv. Agron. 15, 317-337.

Hernandez, L. F., and Orioli, G. A. 1985. Plant Soil 85, 229-235.

Hill, J. 1975. J. Agric. Sci. (Cambridge) 85, 477-493.

Hochmuth, G. J., Gabelman, W. H., and Gerloff, G. C. 1985. HortScience 20, 1099-1101.

Hurd, E. A. 1964. Can. J. Plant Sci. 44, 240-248.

Hurd, E. A. 1968. Agron. J. 60,201-205.

Hurd, E. A. 1%9. Euphytica 18, 217-226.

Hurd, E. A. 1971. In “Drought Injury and Resistance in Crops” (K. L. Larson and J. D. Eastin,

eds.), pp. 77-88. Crop Sci. SOC.Am., Madison, Wisconsin.

Hurd, E. A. 1974. Agric. Meteorol. 14, 39-55.

Hurd, E. A. 1976. In “Water Deficits and Plant Growth” (T. T. Kozlowski, ed.), Vol. IV, pp.

317-353. Academic Press, New York.

Hurd, E. A., and Spratt, E. D. 1975. In “Physiological Aspects of Dryland Farming” (US.

Gupta, ed.), pp. 167-235. Oxford & IBH Publ., New Delhi.

Hurd, E. A., Townley-Smith, T. F., Patterson, L. A., and Owen, C. H. 1972a. Can. J. Plant

Sci. 52, 687-688.



Hurd, E. A., Townley-Smith, T. F., Patterson, L. A., and Owen, C. H. 1972b. Can. J. Plant.

Sci. 52, 689-691.



Hurd, E. A., Townley-Smith, T. F., Mallough, D., and Patterson, L. A. 1973. Can J. Plant Sci.

53, 261-262.



IRRI (International Rice Research Institute) 1976-1985. Annual Reports for preceding years

(e.g., 1976 for 1975). Los Bafios, Philippines.

Irwin, R. L., Johnson, W. C., and Elkins, C. B. 1985. Highlights Agric. Res. 32, (1). Alabama

Agr. Exp. Stn., Auburn University, Alabama.

Jain, S. K. 1978. Experientia 34, 835-836.



GENOTYPIC VARIATION IN PLANT ROOT SYSTEMS



143



Jenison, J. R., Shank, D. B., and Penny, L. H. 1981. Crop Sci. 21, 233-237.

Jensen, F. H. 1985. Pisum Newslett. 17, 34-35.

Jezowski, S. 1978. Genet. Pol. 19, 457-465.

Jones, C. A. 1985. “C., Grasses and Cereals: Growth, Development and Stress Response.”

Wiley, New York.

Jordan, W. R., and Miller, F. R. 1980. In “Adaptations of Plants to Water and High Temperature

Stresses” (P. J. Kramer and N. C. Turner, eds.), pp. 383-399. Wiley, New York.

Jordan, W. R., and Monk, R. L. 1980. Proc. Annu. Corn Sorghum Res. Conf.. 35th, pp. 185-204.

Jordan, W. R., Miller, F. R., and Morris, D. E. 1979. Crop Sci. 19, 468-472.

Jordan, W. R., Dugas, W. A., and Shouse, P.J. 1983. Agric. Water Manage. 7 , 281-299.

Kahn, B. A. 1985. HortScience 20, 207-209.

Kahn, B. A., and Stoffella, P. J. 1987. J. Am. Soc. Hortic. Sci. 112, 402-406.

Kahn, B. A., Stoffella, P. J., Sandsted, R. F., and Zobel, R. W. 1985. J. Am. Soc. Hortic. Sci.

110,623-627.

Kaspar, T. C., Stanley, C. D., and Taylor, H. M. 1978. Agron. J. 70, 1105-1107.

Kaspar, T. C., Woolley, D. G., and Taylor, H. M. 1981. Agron. J. 73, 383-385.

Kaspar, T. C., Taylor, H. M., and Shibles, R. M. 1984. Crop Sci. 24, 916-920.

Katyal, J. C., and Subbiah, B. V. 1971. Indian J . Agric. Sci. 41,786-790.

Ketring, D. L., Jordan, W. R., Smith, 0. D., and Simpson, C. E. 1982. Peanut Sci. 9, 68-72.

Lafever, H. N. 1981. J. Plant Nutr. 4, 89-109.

Larcher, W. 1980. “Physiological Plant Ecology,” 2nd Ed. Springer-Verlag, Berlin.

Larsson, S. 1982. Z. Pflanzenzuecht. 89, 206-221.

Larsson, S. 1986. In “Research and Results in Plant Breeding” (G. Olsson, ed.), pp. 241-251.

Svalof AB, Svalof, Sweden.

Ludwig, J. A. 1977. In “The Belowground Ecosystem: A Synthesis of Plant-Associated Processes” (J. K. Marshall, ed.), pp. 85-91. Range Sci. Dept. Sci. Series No. 26, Colorado

State University, Ft. Collins.

Lupton, F. G. H., Oliver, R. H., Ellis, F. B., Barnes, B. T., Howse, K. R., Welbank, P. J., and

Taylor, P. J . 1974. Ann. Appl. Biol. 77, 129-144.

McIntosh, M. S., and Miller, D. A. 1980. Crop Sci. 20, 807-809.

McIntosh, M. S., and Miller, D. A. 1981. Crop Sci. 21, 15-18.

Mack, A. R., and Finn, B. J. 1970. Can. J. Plant Sci. 50, 295-305.

Mackay, A. D., and Barber, S. A. 1986. Agron. J . 78, 699-703.

MacKey, J. 1973. Proc. Int. Wheat Genet. Sympos., 4th, pp. 827-842.

MacKey, J . 1980. Proc. Int. Wheat Genet. Sympos., 5th. New Delhi, 1978, pp. 875-890.

McMichael, B. L., Burke, J. J., Berlin, J. D., Hatfield, J. L., and Quisenberry, J. E. 1985. Environ. Exp. Bot. 25, 23-30.

Mambani, B., and Lal, R. 1983a. Plant Soil 73, 59-72.

Mambani, B., and Lal, R. 1983b. Plant Soil 73, 73-94.

Mason, W. K., Rowse, H. R., Bennie, A. T. P., Kaspar, T. C., and Taylor, H. M. 1982. Field

Crops Res. 5 , 15-29.

Mitchell, R. L., and Russell, W. J. 1971. Agron. J. 63, 313-316.

Monyo, J. H., and Whittington, W. J. 1970. J . Agric. Sci. (Cambridge) 74, 329-338.

Munevar. F., and Wollum, A. G. 1982. Agron. J. 74, 138-142.

Murphy, C. F., and Long, R. C. 1979. Crop Sci. 19,723-726.

Murphy, C. F., Long, R. C., and Nelson, L. A. 1982. Crop Sci. 22, 1005-1009.

Nagaraj, G., and Gopalachari, N. C. 1979. J . Nucl. Agric. Biol. 8, 25-27.

Nass, H. G . , and Zuber, M. S. 1971. Crop Sci. 11, 655-658.

Nicou, R., %guy, L., and Haddad, G. 1970. Agron. Trop. 25, 639-659.

Nielsen, N. E., and Barber, S. A. 1978. Agron. J. 70, 695-698.

Nix, H. A. 1975. I n “Australian Field Crops: Vol. 1 , Wheat and Other Temperate Cereals” (A.

Lazenby and E. M. Matheson, eds.). Angus & Robertson, Sydney.



144



J. C. O’TOOLE AND W. L. BLAND



Nour, A. M., and Weibel, D. E. 1978. Agron. J. 70, 217-218.

O’Toole, J. C., and Chang, T. T. 1979. I n “Stress Physiology in Crop Plants” (H. Mussell and

R. C. Staples, eds.), pp. 373-405. Wiley, New York.

O’Toole, J. C., and Soemartono, 1981. Euphytica 30, 283-290.

Pan, W. L., Jackson, W. A., and Moll, R. H. 1985. J. Exp. Bot. 36, 1341-1351.

Passioura, J. B. 1972. Aust. J. Agric. Res. 23, 745-752.

Passioura, J. B. 1977. J. Awl. Inst. Agric. Sci. Sept./Dec., 117-120.

Passioura, J. B. 1983. Agric. Water Manage. 7, 265-280.

Penny, L. H. 1981. Crop Sci. 21, 237-240.

Pinthus, M. J. 1967. Crop Sci. 7, 107-110.

Quisenberry, J. E. 1982. In “Breeding for Less Favorable Environments” M. N. Christiansen

and C. F. Lewis, eds.), pp. 193-212. Wiley, New York.

Quisenberry, J. E., Jordan, W. R., Roark, B. A., and Fryrear, D. W. 1981. Crop Sci. 21,

889-895.

Raper, C. D., and Barber, S . A. 1970. Agron. J. 62, 581-584.

Retta, A., Sullivan, C. Y., and Watts, D. G. 1982. Sorghum Newslett. 25, 132.

Retta, A., Sullivan, C. Y., and Watts, D. G. 1983. Biennial Grain Sorghum Res. Util. Conf.

13th. p. 49.

Retta, A., Sullivan, C. Y., and Watts, D. G. 1984. Sorghum Newslett. 21, 146-147.

Reyniers, F. N., and Binh, T. 1977. In “Rice in Africa” (1. W. Buddenhagen and G. J. Persely,

eds.), pp. 279-284. Academic Press, London.

Richards, R. A., 1982. In “Drought Resistance in Crops with Emphasis on Rice,” pp. 303-316.

Int. Rice Res. Inst., Los Banos, Philippines.

Richards, R. A. 1987. In “Improving Winter Cereals for Moisture Limiting Environments,”

Proc. Capri Conf. (ICARDA), Oct. 1985. Wiley, New York.

Richards, R. A., and Passioura, J. B. 1981a. Crop Sci. 21, 249-252.

Richards, R. A., and Passioura, J. B. 1981b. Crop Sci. 21, 253-255.

Robertson, B. M., Hall, A. E., and Foster, K. W. 1985. Crop Sci. 25, 1084-1090.

Russell, R. S. 1977. “Plant Root Systems: Their Function and Interaction with the Soil.”

McGraw-Hill, London.

Sadhu, D., and Bhaduri, P. N. 1984. Z . Acker Pfanzenbau 153, 216-224.

Saint-Clair, P. 1977. Nut. Cana. 104, 537-541.

Saleh, G. B. 1986. Genetic control of root characteristics in peas. Ph.D. thesis, University of

Wisconsin, Madison.

Sanders, J. L., and Brown, D. A. 1979. I n “The Soil-Root Interface” (J. L. Harley and R. S.

Russell, eds.), pp. 369-379. Academic Press, New York.

Sathe, A., Seethambaram, Y., and Rao, M. B. 1984. J. Nucl. Agric. Biol. 13, 141-142.

Savant, N. K., DeDatta, S. K.,and Crasswell, E. T. 1982. Soil Sci. Soc. A m . J. 46, 567-573.

Sawyer, M. F., Elkins, C. B., and Chambliss, 0. L. 1984. Highlights Agric. Res. 31 (1).

Alabama Agric. Exp. Stn., Auburn Univ., Alabama.

Schlichting, C. D. 1986. Annu. Rev. Ecol. Syst. 17, 667-693.

Simpson, J. R., Pinkerton, A., and Lazdovskis, J. 1979. Aust. J. Agric. Res. 30, 609-619.

Sirohi, G. S., Uprety, D. C., and Tomar, 0. P. S . 1978. Indian J. Plant Physiol. 21, 185-196.

Smucker, A. J. M. 1984. In “Roots, Nutrient and Water Influx, and Plant Growth” (S. A.

Barber and D. R. Bouldin, eds.), pp. 27-46. ASA Special Publ. No. 49. Am. SOC.Agron.,

Madison, Wisconsin.

Smucker, A. J. M. 1985. Proc. World Soybean Res. Conf., 3rd, pp. 1000-1006.

Snoad, B., and Arthur, A. E. 1974. Euphytica 23, 105-113.

Stoffella, P. J. 1983. HortScience 18, 70-72.

Stoffella, P. J., Sandsted, R. F., Zobel, R. W., and Hymes, W. L. 1979a. Crop Sci. 19,

823-826.

Stoffella, P. J., Sandsted, R. F., Zobel, R. W., and Hymes, W. L. 1979b. Crop Sci. 19,

826-830.



GENOTYPIC VARIATION IN PLANT ROOT SYSTEMS



145



Stoffella, P. J., and Sandsted, R. F., Zobel, R. W., and Hymes, W. L. 1981. HortScience 16,

543-545.

Stone, J. A. 1985. Agron. J. 77, 787-789.

Stone, J. A., and Taylor, H. M. 1983. Agron. J. 75, 613-618.

Stone, J . A., Kaspar, T. C., and Taylor, H. M. 1983. Agron. J. 75, 1050-1054.

Sullivan, C. Y. 1983. Iowa State J. Res. 57, 423-439.

Sullivan, B. P., and Pfahler, P. L. 1986. Crop Sci. 26, 795-799.

Sultan, S. 1987. Evol. Biol. 21, 127-176.

Sydes, C. L., and Grime, J. P. 1984. J. Ecol. 72, 937-946.

Tandon, J. B., and Saini, J. P. 1977. In “Genetics and Wheat Improvement” (A. K. Gupta,

ed.), pp. 62-67. Oxford & IBH Publ., New Delhi.

Taylor, H. M. 1980. Proc. World Soybean Res. Conf., 2nd pp. 161-178.

Taylor, H. M. 1983. In “Root Ecology and Its Practical Application” (W. Bohm, L. Kutschera,

and E. Lichtenegger, eds.), pp. 463472. Bundesanstalt fuer alpenlaendische Landwirtschaft, Gumpenstein, Irdning.

Taylor, H. M., and Klepper, B. 1978. Adv. Agron. 30, 99-128.

Taylor, H. M., and Nguyen, H. T. 1987. In “Improving Winter Cereals for Moisture Limiting

Environments,” Proc. Capri Conf. (ICARDA), Oct., 1985. Wiley, New York.

Taylor, H. M., Burnett, E., and Booth, G. D. 1978. Z. Acker Pflanzenbau 146, 33-39.

Torrey, J. G., and Clarkson, D. T. 1975. “The Development and Function of Roots.”

Academic Press, London.

Torrey, J. G., and Zobel, R. 1977. In “The Physiology of the Garden Pea” (J. F. Sutcliffe and J.

S. Pate, eds.), pp. 119-152. Academic Press, New York.

Troughton, A. 1980. J. Agric. Sci. (Cambridge) 95, 533-538.

Troughton, A., and Whittington, W. J. 1969. In “Root Growth” (W. J. Whittington, ed.), pp.

296-314. Butterworths, London.

Veitenheimer, E. E. 1981. M. S. thesis, University of Wisconsin, Madison.

Veitenheimer, E. E., and Gritton, E. T. 1984. Pisum Newslett. 16, 73-74.

Vincent, C., and Gregory, P. J. 1986. Exp. Agric. 22, 233-242.

Virk, D. S., Bhullar, G. S., Gill, K. S., and Pooni, G. S. 1978. CereulRes. Commun. 6, 75-84.

Welbank, P. J., Gibb, M. J., Taylor, P. J., and Williams, E. D. 1973. Report of the Rothamsted

Experiment Station for 1973, Part 2, pp. 26-66.

Whittington, W. J. 1969. “Root Growth.” Butterworths, London.

Willatt, S. T., and Taylor, H. M. 1978. J. Agric. Sci. (Cambridge) 90, 205-213.

Williams, C. B., Elkins, C. B., Haaland, R. L., Hoverland, C. S., and Rodriguez-Kabana, R.

1981. Proc. In/. Grassland Congr., 14th pp. 121-124.

Williams, C. B., Elkins, C. B., and Rodriguez-Kabanaa, R. 1982. Highlights Agric. Res. 29 (3).

Alabama Agric. Expt. Stn., Auburn University, Alabama.

Wright, G. C. 1981. J. Aust. Inst. Agric. Sci. 47, 218-219.

Wright, G . C., and Smith, R. C. G. 1983. Aust. J. Agric. Res. 34, 627-636.

Yoshida, S., and Hasegawa, S. 1982. In “Drought Resistance in Crops with Emphasis on Rice,”

pp. 97-114. Int. Rice Res. Inst., Los Banos, Philippines.

Zobel, R. W. 1972a. J. Hered. 63, 94-97.

Zobel, R. W. 1972b. Ph.D. dissertation, University of California, Davis.

Zobel, R. W. 1974. Can. J. Bot. 52, 735-741.

Zobel, R. W. 1975. In “The Development and Function of Roots” (J. G. Torrey and D. T.

Clarkson, eds.), pp. 261-275. Academic Press, New York.

Zobel, R. W. 1986. HortScience 21, 956-959.



This Page Intentionally Left Blank



ADVANCES IN AGRONOMY, VOL. 41



APPLICATION OF CELL AND

TISSUE CULTURE TECHNIQUES

FOR THE GENETIC IMPROVEMENT

OF SORGHUM, Sorghum

bicolor (L.) Moench

PROGRESS AND POTENTIAL’

S. K r e s ~ v i c hR.

, ~E.

~ ~McGee,* L. Panella,4

A. A. R e i l l e ~ ,and

~ . ~F. R. Miller4

*Texas Agricultural Experiment Station, The Texas A&M University System

Wesiaco, Texas 78596

Department of Soil and Crop Sciences, Texas A&M University

College Station, Texas 77843



I.



INTRODUCTION



Having evolved over a great period of time and a broad spectrum of

species, plant breeding is a science-based technology directed towards

economic objectives (Simmonds, 1983). It is one component of agricultural

production and, along with agronomic practices, agricultural chemistry,

plant pathology, entomology, and agricultural engineering, has been

responsible for past successes associated with increased yields of food, feed,

fiber, and fuel at low costs to the consumer. Plant breeding has long since

passed from being an “art,” as some of the older plant breeders would lead

one to believe, and is now heavily dependent on the disciplines of genetics

and biometry.

During the past two decades, an integration of plant biochemistry and

physiology has allowed for the development of basic techniques, i.e., cell

and tissue culture, which have the potential for improving our understanding of plant biology. Early proponents of the cell and tissue culture

methodology expounded its advantages and predicted that this array of

I This article is a contribution of the Texas Agricultural Experiment Station, College Station, Texas 77843. Approved as Technical Article No. 22187.

’ Present address: United States Department of Agriculture, Agricultural Research Service,

Germplasm Resources Unit, NYSAES, Geneva, New York 14456.

’ Present address: DNA Plant Technology Corporation, Watsonville, California 95076.



147

Copyright 0 1987 by Academic Press. Inc.

All rights of reproduction in any form reserved.



148



S. KRESOVICH ET A L .



of tools might supplant conventional plant breeding. It was suggested that

their implementation would cause an agricultural “revolution” which

greatly would exceed preceding revolutions initiated through the application of fertilizer and mechanization to the agricultural production system.

Fortunately, we all have mellowed a bit from the initial rhetoric

associated with cell and tissue culture techniques. Plant scientists now

realize that these techniques really cannot supplant plant breeding in all of

its many-faceted forms, but rather serve as adjuncts to it. Furthermore, the

uniqueness of individual crop species requires researchers to fit new techniques into current frameworks of crop improvement. With these considerations in mind, we attempt to highlight the “state of the discipline”

with regard to the status and potential of these techniques for the genetic

improvement of sorghum, Sorghum bicolor (L.) Moench. Sorghum is

recognized not only as a source of food and feed in marginal production

areas, but as a potential “biomass” energy crop because of its productivity,

efficiency, and adaptability. Within this article, a framework is developed

in which the potential applications of cell and tissue culture techniques to

the genetic improvement of sorghum may be viewed and, also, their current

limitations may be identified. Specific developments in molecular biology as

related to sorghum improvement are considered beyond the scope of this

article.



II.



BACKGROUND



The origin of cultivated sorghum is agreed generally to have occurred on

the African continent (Mann et al., 1983); however, disagreement exists

whether the origin has a monophyletic or a polyphyletic basis. Therefore,

the systematics of sorghum are quite complex (de Wet et al., 1970; Doggett,

1970). Sorghum bicolor (L.) Moench includes a diverse collection (Fig. 1)

including grass types and cultivated sorghum, all having a diploid

chromosome complement of 2n = 20. Harlan and de Wet (1972) have

devised a working classification of cultivated sorghum that encompasses

five basic races including bicolor, guinea, caudatum, kafir, and durra.

These races are identified by mature spikelet and panicle type. In addition,

10 hybrid races are recognized, of which kafir-caudatum is the source of

most hybrid grain sorghum grown in the United States (Harlan, 1972).

Other important sorghum types grown include sorghum (sorgos) for syrup

and sugar, grass types for forages, and specialty types such as popping

sorghum and broomcorn. Although sorghum encompasses a great diversity

of types, the basic morphology and anatomy is consistent. This is particularly

important when considering source tissues for culture establishment.



CELL AND TISSUE CULTURE TECHNIQUES



149



FIG. 1. Phenotypic diversity exhibited in Sorghum hicolor (L.) Moench. (Courtesy of L.

W . Panella.)



150



S. KRESOVICH ET A L .



The seed germinates with the emergence of a coleoptile and coleorhiza.

The shoot apex is forced to the soil surface by the expansion of cells in the

mesocotyl region, while one to several primary roots may emerge from the

embryonic axis. A node forms at the juncture of the mesocotyl and the

shoot apex, from which secondary roots and adventitious buds develop.

The primary roots and mesocotyl deteriorate at this early stage, and it is the

secondary roots that continue to support the sorghum plant. Secondary

shoots may form from the adventitious buds at this basal node. The culm is

comprised of nodes and internodes. Internode tissue may be thick or pithy,

juicy or dry, and either insipid or sweet. Leaves arise from the nodal areas

and consist of a sheath region and blade. The sheath base is primarily

meristematic tissue which allows the sheath to elongate.

In cultivated sorghum, floral initiation may occur 30-75 days or more

following germination, with anthesis (flowering) occurring from 15-30 days

later. The sorghum inflorescence is a panicle that matures from the apex

downward. The rachis branches contain paired spikelets, one sessile and

one pedicellate. The sessile spikelet generally contains one fertile and one

sterile floret; sometimes both are fertile, resulting in twin seededness. The

pedicelled spikelet may contain a floret with functional anthers but is usually without a functional ovary. Anthesis generally occurs during the early

morning (around sunrise) when paired lodicules at the base of the spikelet

swell, forcing the glumes apart and exposing the stigmas and anthers. This

flowering process takes about 10-30 min.

The caryopsis reaches physiological maturity about 30-35 days following

pollination. The mature seed coat consists of a pericarp and fused testa. The

pericarp color may appear as red, yellow, or white. The testa may also contain pigmented compounds, composed mainly of phenolics and tannins

(Rooney and Miller, 1982; Oberthur et al., 1983; Doherty et al., 1987). (For

more details of growth and development, see Rangaswami Ayyangar and

Panduranga Rao, 1936; Artschwager, 1948; Artschwager and McGuire,

1949; Paulson, 1969; Doggett, 1970; Wall and Ross, 1970; Vanderlip and

Reeves, 1972).



111.



GOALS IN BREEDING



Regardless of the crop involved, a breeding program must be defined

with set goals. In addition, the program must have the means to achieve

those goals. Naturally, the screening and selection criteria vary with the

crop, location, and goals. A plant breeder may try to address any one or any

combination of these goals. The earlier in the improvement program the

breeder can identify the trait@)desired, the more quickly progress can be



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VI. Conclusions and Research Needs

Tải bản đầy đủ ngay(0 tr)

×