Tải bản đầy đủ - 0 (trang)
V. Some Physical and Chemical Properties of the Gaseous Hydrocarbons

V. Some Physical and Chemical Properties of the Gaseous Hydrocarbons

Tải bản đầy đủ - 0trang

GASEOUS HYDROCARBONS IN SOIL



179



Bridges, B. A., and Horne, T. 1958. U.K. A t . Energy Res. Establ, Rep. 1/R, 2729.

Bryant, M. P., Campbell, L. L., Reddy, C. A., and Crabill, M. R. 1977. Appl. Environ. Microbiol.

33, 1162-1169.

Burford, J. R., and Stefanson, R. C. 1973. Soil Biol. Biochem. 5, 133-141.

Buyanovsky, G. A,, and Wagner, G. H. 1983. Soil Sci. Soc. Am. J . 47, 1139-1145.

Cappenberg, Th. E. 1974. Antonie van Leeuwenhoek 40, 297-306.

Cappenberg, Th. E. 1975. Microb. Ecol. 2, 60-72.

Claypool, G. E., and Kaplan, I. R. 1974. In “Natural Gases in Marine Sediments” (I. R. Kaplan,

ed.), pp. 99-139. Plenum, New York.

Colby, J., Stirling, D. I., and Dalton, H. 1977. Biochem. J. 165, 395-402.

Considine, P. J., and Patching, J. W. 1975. Ann. Appl. Biol. 81, 115-119.

Considine, P. J., Flynn, N., and Patching, J. W. 1977. Appl. Environ. Microbiol. 33, 977-979.

Cornforth, I. S . 1975. Plant & Soil 42, 85-96.

Cornforth, I. S., and Stevens, R. J. 1973. Plant & Soil 38, 581-587.

Dasberg, S., and Bakker, J. W. 1970. Agronomy J. 62, 689-692.

Dasilva, E. J., Henricksson, E., and Henriksson, L. E. 1974. Plant Sci. Lelt. 2, 63-66.

Davis, J. B., and Squires. R. M. 1954. Science 119, 381-382.

Davis, J. B., and Yarborough, H. E. 1966. Chem. Geol. 1, 137-146.

De Boks, P. A., Huber, T. F., Van Nes, W. J., Van Den Oosterkamp, P. F., Van Bekkum, H., Van

Eybergen, G. C., Van Den Hende, J. H., Kossen, N. W. F., Mooring, C. I., Oudejans, J. C.,

Snaterse, A. C., and Wesselingh, J. A. 1982. Biotechnol. Lett. 4, 447-452.

De Bont, J. A. M. 1976. Antonie van Leeuwenhoek 42, 59-71.

De Bont, J. A. M., and Albers, R. A. J. M. 1976. Antonie van Leeuwenhoek 42, 73-80.

Doelle, H. W. 1969. “Bacteria Metabolism.” Academic Press, New York.

Dowdell, R. J., Smith, K. A,, Crees, R.,and Restall, S. W. F. 1972. Soil Bid. Biochem. 4, 325-331.

Ehhalt, D. H. 1973. In “Carbon in the Biosphere” (G. M. Woodwell and E. V. Pecan, eds.),

pp. 144- 157. U.S. Atomic Energy Commission, Washington, D.C.

Elliott, L. F., and McCalla, T. M. 1972. Soil Sci. Soc. Am. Proc. 36, 68-70.

El-Sebaay, A. S. 1981. M.Sc. thesis, University of Ghent.

Erickson, A. E., and Van Doren, D. M. 1960. Int. Congr. Soil Sci. Trans., 7th, Madison. Wise. 3,

428-434.

Ferenci, T., Strom, T., and Quayle, J. R. 1975. J . Gen. Microbiol. 91, 79-91.

Ferman, M. A. 1981. In “Atmospheric Biogenic Hydrocarbons” (J. J. Bufalini and R. R. Arnts,

eds.), Vol. 2, pp. 51-75. Ann Arbor Science, Ann Arbor, New York.

Fulton, J. M., and Erickson, A. E. 1964. Soil Sci. Soc. Am. Proc. 28, 610-614.

Games, L. M., and Hayes, J. M. 1976. In “Environmental Biochemistry” (J. 0. Nriagu, ed.),

Vol. 1, pp. 51-73. Ann Arbor Science, Ann Arbor, New York.

Gibson, D. T. 1971. Crit. Rev. Microbial. 1, 199-223.

Gilman, E. F., Leone, I. A., and Flower, F. B. 1982. Plant & Soil65, 3-10.

Glegg, R. E., and Kertesz, Z . I. 1957. J. Polymer Sci. 26, 289-297.

Goodlass, G., and Smith, K. A. 1978. Soil Biol. Biochem. 10, 193-199.

Grable, A. R. 1966. Ado. Agron. 18, 57-106.

Grable, A. R., and Siemer, E. G. 1968. Soil Sci. Soc. Am. Proc. 32, 180-186.

Griffin, D. M. 1963. Biol. Rev. 38, 141-166.

Harvey, R. G., and Lindscott, J. J. 1978. Soil Sci. Sue. Am. J. 42, 721-724.

Heyer, J. 1976. 2. Allg. Microbiol. 16, 633-637.

Hodgman, C. D., Weast, R. C., Shankland, R. S., and Selby, S . M. 1962. Handb. Chem. Phys. 44.

Ilag, L., and Curtis, R. W. 1968. Science 159, 1357-1358.

Iversen, N., and Blackburn, T. H. 1981. Appl. Enuiron. Microbiol. 41, 1295-1300.

Jakobsen, P., Patrick, W. H., Jr., and Williams, B. G. 1981. Soil Sci. 132, 279-287.



180



0. VAN CLEEMPUT AND A. S. EL-SEBAAY



Jenkins, D. 1963. In “Biochemistry of Industrial Micro-Organisms” (C. Rainbow and A. H.

Rose, eds.), pp. 508-536. Academic Press, New York.

Johnson, D. R., and Frederick, L. R. 1971. Agron. J. 63, 573-575.

Johnston, D. W., Holding, A. J., and McCluskie, J. E. 1974. Proc. R. S. E. ( B ) 74, 123-133.

Kosiur, D. R., and Warford. A. L. 1979. Est. Coast. Mar. Sci. 8, 379-385.

Kotze, J. P., Thiel, P. G., and Hattingh, W. H. J. 1969. Water Res. 3, 459.

Kvasnikov, E. I., Nesterenko, 0. A., Romanovskaya, V. A,, and Kasumova, S. A. 1971.

Mikrobiologiya 40, 280-288.

Laskowski, D., and Moraghan, J. T. 1967. Plant & Soil. 27, 357-368.

Leighton, P. A. 1961. “Photochemistry of Air Pollution.” Academic Press, New York.

Lill, R. E., and McWha, J. A. 1976. Soil Biol. Biochem. 8, 61-63.

Lindberg, T., Granhall, U., and Berg, B. 1979. Soil Biol. Biochem. 11, 637-643.

Lukins, H. B. 1962. Ph.D. thesis, U S A .

Lynch, J. M. 1972. Nature (London) 240,4546.

Lynch, J. M. 1974. J. Gen. Microbiol. 83, 407-411.

Lynch, J. M. 1975. Nature (London) 256, 576-577.

Lynch, J. M. 1983. Plant & Soil 70,415-420.

Lynch, J. M., and Harper, S. H. T. 1974. J . Gen. Microbiol. 80, 187-195.

McCarty, P. L. 1963. Rudolfs Res. Con$ Proc., Rutgers Univ.

McGarity, J. W., and Rajaratnam, J. A. 1973. Soil Biol. Biochem. 5, 121-131.

MacGregor, A. N., and Keeney, D. R. 1973. Water Resour. Bull. 9, 1153-1158.

Mancinelli, R. L., Shulls, W. A., and McKay, C. P. 1981. Appl. Enuiron. Microbiol. 42, 70-73.

Marples, A., and Clew, G. 1958. U.K. At. Energy Res. Establ. Rep. HL 58,2634.

Martens, C. S., and Berner, R. A. 1974. Science 185, 1167-1169.

Martens, C. S., and Berner, R. A. 1977. Limnol. Oceunogr. 22, 10-25.

Nohrstedt, H.-C). 1983. Soil Biol. Biochem. 15, 281-286.

Oremland, R. S. 1981. Appl. Environ. Microbiol. 42, 122-129.

Oremland, R. S., and Taylor, B. F. 1978. Geochem. Cosmochem. Acia 42, 209-214.

Osborne, D. J. 1968. In “Plant Growth Regulator.” SOC.Chem. Ind. Monogr. (31), 236.

Patel, R. N., Hou, C. T., Laskin, A. I., and Felix, A. 1982. Appl. Environ. Microbiol. 44,1130-1 137.

Pohland, F. G. 1969. Biotechn. Bioeng. 11, 683-699.

Ponnamperuma, F. N. 1965. In “The Mineral Nutrition of the Rice Plant,” pp. 295-328. Proc.

Symp. Int. Rice Rex Inst., 1964. Johns Hopkins Univ. Press, Baltimore.

Ponnamperuma, F. N. 1972. Ado. Agron. 24,29-96.

Ponnamperuma, F. N., Martinez, E., and Loy, T. 1966. Sod Sci. 101,421-431.

Pratt, H. K., and Goeschl, J. D. 1969. Annu. Rev. Plani. Physiol. 20, 541-584.

Primrose, S. B. 1976. J. Gen. Microbiol. 97, 343-346.

Primrose, S. B. 1977. J . Gen. Microbiol. 98, 519-528.

Reehurgh, W. S. 1976. Earih Planei. Sci. Lert. 28, 337-344.

Reeburgh, W. S. 1980. Earth Planet. Sci. Lett. 47, 345-352.

Rovira, A. D., and Vendrell, M. 1972. Soil Biol. Biochem. 4, 63-69.

Skinner, F. A. 1968. “The Ecology of Soil Bacteria, an International Symposium,” Univ. of

Liverpool. Univ. of Toronto Press.

Smith, A. M. 1973. Naiure (London) 246, 311-313.

Smith, A. M. 1976a. Soil Biol. Biorh. 8, 293-298.

Smith, A. M. 1976h. Annu. Rev. Phyropaihol. 14, 53--73.

Smith, A. M., and Cook, R. J. 1974. Nature (London) 252, 703-705.

Smith, K. A. 1978. Soil Biol. Biochem. 10, 269-272.

Smith. K. A,, and Dowdell, R. J. 1973. J. Chromarogr. Sci. 11, 655-658.

Smith, K. A., and Dowdell, R. J. 1974. J . Soil Sci. 25, 217-230.



GASEOUS HYDROCARBONS I N SOIL



181



Smith, K. A., and Restall, S. W. F. 1971. J. Soil Sci. 22, 430-443.

Smith, K. A., and Robertson, P. D. 1971. Nature (London) 234, 148-149.

Smith, K. A., and Scott Russell, R. 1969. Nature (London) 222, 769-771.

Smith, K. A., Bremner, J. M., and Tabatabai, M. A. 1973. Soil Sci. 116, 313-319.

Stadtman, T. C., and Barker, H. A. 1951. J. Bacteriol. 61, 67-80.

Stumm, W. 1967. “Advances in Water Pollution Research.” Proc. Int. Con$ Water Pollut. Rex,

3rd 1,283-308.

Sutherland, J. B., and Cook, R. J. 1980. Soil Bid. Biochem. 12, 357-362.

Takai, Y., and Kamura, T. 1966. Folia Microbiol. 11, 304-313.

Takai, Y., Koyama, T., and Kamuta, T. 1956. Soil Plant Food 2,63-66.

Taylor, G . S., and Abrahams, J. H. 1953. Soil Sci. SOC.Am. Proc. 24, 279-282.

Van Cleemput, O., and Baert, L. 1983. Pedologie 33, 105-115.

Van Cleemput, O., El-Sebaay, A. S., and Baert, L. 1981. In “Physico-Chemical Behaviour of

Atmospheric Pollutants” (B. Versino and H. Ott, eds.), pp. 349-355. Reidel, Dordrecht.

Van Cleemput, O., El-Sebaay, A. S.,and Baert, L. 1983a. Soil Biol. Biochem. 15, 519-524.

Van Cleemput, O., El-Sebaay, A. S., and Baert, L. 1983b. Proc. World Congr. Air Quai., 6th, Paris

1, 223-230.

Vanloocke, R., De Borger, R. Voets, J. P., and Verstraete, W. 1975. Int. J. Environ. Stud. 8,

99-1 11.

Vogel, T. M., Oremland, R. S., and Kvenvolden, K. A. 1982. Chem. Geol. 37, 289-298.

Warford, A. L, Kosiur, D. R., and Doose, P. R. 1979. Geomicrobiology 1, 117-137.

Watkinson, R. J. 1973. Thesis, University of London.

Weast, R. C. 1979. CRC Handb. Chem. Phys.

Whittenbury, R., Phillips, K. C., and Wilkinson, J. F. 1970. J. Gen. Microbiol. 61, 205-218.

Wiersum, L. K. 1960. Neth. J. Agric. Sci. 8, 245-252.

Wilkinson, J. F. 1975. In “Microbial Growth on C,-Compounds” (The Organizing Committee,

ed.), pp. 45-57. Society of Fermentation Technology, Osaka.

Winfrey, M. R., and Zeikus, J. G. 1977. Appl. Environ. Microbiol. 33, 275-281.

Winfrey, M. R., and Zeikus, J. G. 1979. Appl. Environ. Microbiol. 37, 244253.

Witt, W. W., and Weber, J. B. 1975. Weed Sci. 23, 302-307.

Yamane, I. 1957. Soil Planf Food 3, 100-103.

Yamane, I., and Sato, K. 1961. Sci. Rep. Res. Inst. Tohoku Uniu. D.(Agric.) 12, 1-10.

Yamane, I., and Sato, K. 1963. Soil Sci. Plant Nutr. 9, 32-36.

Yamane, I., and Sato, K. 1964. Soil Sci. Plant Nutr. 10, 35-44.

Yamana, I., and Sato, K. 1967. Soil Sci. Plant Nutr. 13,94-100.

Zehnder, A. J. B., and Brock, T. D. 1980. Appl. Environ. Microbiol. 39, 194-204.



This Page Intentionally Left Blank



ADVANCES IN AGRONOMY. VOL 38



REACTION OF ANIONS AND

CAT10 NS WITH VAR IAB LE- C HAR G E

SOILS

N. J. Barrow

CSlRO Division of Animal Production

Wernbley, Western Australia, Australia



I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11. The Development of Charge on Variable-Charge Surfaces . .

111. Adsorption on Variable-Charge Surfaces. . . . . . . . . . . . . .



............

...........



A. General Description of Adsorption . . . . . . . . . . . . . . . . . . . . . . . . .

B. Models Used to Describe Adsorption on a Variable-Charge Surface. . . . . .

IV. Rates of Adsorption and Desorption . . . . . . . . . . . . . . . . . . . . . . . . . . .

A. The Rate of the Adsorption Process. . . . . . . . . . . . . . . . . . . . . . . . .

B. The Slow Process that Follows Adsorption. . . . . . . . . . . . . . . . . . . . .

V. Transferring the Variable-Charge Models to Soils . . . . . . . . . . . . . . . . . . .

A. The Observations To Be Described . . . . . . . . . . . . . . . . . . . . . . . . .

B. Qualitative Modeling of the Reaction with Soils. . . . . . . . . . . . . . . . . .

C. Quantitative Modeling of the Reaction with Soils. . . . . . . . . . . . . . . . .

V1. Conclusions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



183

185

186

186

190

207

208

209

21 1

21 1

221

222

227

228



I . INTRODUCTION

In the last dozen or so years there has been a quiet revolution in our

thinking about the way that many chemicals react with soils. We have

recognized the importance of the variable-charge constituents of soils. These

are especially important for reactions with anions such as phosphate,

molybdate, sulfate, and fluoride and with cations such as copper, lead, zinc,

and cadmium-that is, for both nutrients and pollutants. The term “variable

charge” is used to describe those constituents whose charge varies with the

pH of the soil solution. The charge is also affected by the amount of reaction

with anions and cations that has occurred. Important variable-charge

constituents of soils are the oxides of iron, aluminium, titanium, and

manganese. (It is convenient to use the term “oxides” to include oxyhydroxides such as goethite, FeOOH.) Organic matter is also a variable-charge

183



Copyright 0 1985 by Academic Press, Inc.

All rights of reproduction in any form reserved



184



N. J. BARROW



material. The variable-charge constituents may be contrasted with the “fixedcharge” constituents, mostly the crystalline clay minerals that develop a

negative charge as a result of lattice substitutions. These fixed-charge

constituents are very prominent in the soils of Europe and North America.

This is one reason for their intensive study by soil scientists. Another is that

the tools for their study, for example, X-ray diffraction techniques, were

available and, indeed, the clay minerals provided an interesting application of

such techniques. Bolt and van Riemsdijk (1982) have suggested that the soil

scientists’contribution to knowledge on what was then called montmorillonite was both “impressive and excessive.” They used the word excessive to

imply that the chemistry of the variable-charge constituents of soils had been

neglected.

Three reasons for the recent expansion of knowledge of the variable-charge

constituents of soils may be suggested. One is the extension of soil science to

regions outside Europe and North America and thus to soils for which the

variable-charge constituents were more important. The paper by van Raij

and Peech (1972) marks the beginning of the recognition of this. Another

reason is the development of appropriate tools-in this case, the electron

microscope and microprobe. These techniques allowed us to see how

important oxides were in soils and how strongly they were associated with

some nutrients. These developments have recently been reviewed by Norrish

and Rosser (1983) and by Taylor et al. (1983), and further studies have been

described by Fordham and Norrish (1983). A third reason for the expansion

of knowledge is the development of a theoretical framework within which the

observations can be understood. However, the widespread applicability of

this theoretical framework means that publications are spread over a wide

range of fields. For example, Bowden et al. (1980a) specify the applications

as: froth flotation; geochemical transport; water clarification; biomembrane

function; blood agglutination; coal washing; cellulose fiber processing; and

detergency. A further difficulty is that the theoretical framework is still fairly

novel, and so the literature contains many detailed and specialist papers in

which the theories are developed. As is inevitable in a new field, some of these

theories conflict and confusion sometimes arises when publications from the

same “school” reevaluate earlier theories and present newer and better ones.

Finally, individual scientists tend to study the reactions of one kind of

reactant, for example, either anions or metallic cations. Few have attempted

to study both, and so the existence of unifying theories applicable to both

groups has not been widely appreciated.

The aim of this article is to try to overcome these difficulties. In it I shall try

to describe and compare current theories as simply as possible and to

emphasize applicability to both anions and cations. The article will first

outline the development of charge on variable-charge surfaces. It will then



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

V. Some Physical and Chemical Properties of the Gaseous Hydrocarbons

Tải bản đầy đủ ngay(0 tr)

×