Tải bản đầy đủ - 0 (trang)
VII. Perspectives: Future Use of Geostatistics in Soil Research

VII. Perspectives: Future Use of Geostatistics in Soil Research

Tải bản đầy đủ - 0trang

90



B. B. TRANGMAR ET AL.



including management effects. The development of procedures for quantifying anisotropy, trends, and periodic phenomena gives geostatistics a versatility for dealing with natural phenomena that few other interpolation methods

have. Procedures for quantifying nested variation (Burrough, 1983a,b) and

computer production of maps at a range of spatial scales from a finely kriged

grid (Giltrap, 1983a) represent new approaches to dealing with scale-related

effects of soil processes and scientists’ perception of them.

The initial emphasis in geostatistical interpolation has been on punctual

kriging, due to its ease of computation. The relative benefits accruing from

block kriging, such as smoother maps, smaller estimation variances, and

easier use for design of sampling schemes, are now generally acknowledged

and are likely to result in increased use of areal interpolation in the future. In

designing spatial studies for estimation and mapping of properties for which

there are cheap surrogates, the co-regionalization of properties and use of cokriging should be considered as a potential cost-saver in making field and

laboratory measurements without loss in mapping precision.

Geostatistics could be used in soil survey operations for structural analysis

of soil variation to aid understanding of soil genesis and for analysis of

reconnaissance data for defining future sampling populations and configurations both within and among different terrain units. The cost-effectiveness of

geostatistics-based sampling schemes in practical soil survey operations

needs to be field tested in different types of terrain for comparison with

traditional sampling techniques. Kriging can augment general-purpose information contained in conventional soil maps by interpolation of interpretive

data and specific measured or derived properties, which may vary independently of mapping unit boundaries. The ease of data manipulation, speed of

computation, and precision of computer-generated maps based on kriging of

soil properties make geostatistical techniques particularly desirable in the

face of user demand for quick and reliable soil survey results (Giltrap, 1983a).

The versatility and range of geostatistical software now available make

spatial analysis of natural phenomena applicable to many areas of agronomic

research. Block kriging appears to be particularly useful for estimating soil

amendment requirements over areas the size of land management units.

Adaptation of volume-variance relationships for estimation of ore recovery in

mining (David, 1977; Clark, 1979) to the agronomic situation offers the

potential for spatial interpretation of critical levels of soil constraints to crop

production. Such an approach might be applied to using within-field

variation of properties such as soil moisture content for improving the

efficiency of irrigation water use, nutrient levels for fertilizer application, or

soil chemical properties for amendment needs, such as liming.

Analysis of the spatial response of crop growth to the variability of soil

properties, such as nutrient uptake in response to variation of soil nutrient



APPLICATION OF GEOSTATISTICS



91



parameters (Trangmar, 1982), available moisture (Tabor et al., 1984), or root

penetration, may further contribute to the agronomists’ understanding of the

role of spatial effects in soil-crop relations. Geostatistical analysis of the

incidence of pest and disease attacks in crops might aid identification of

spatial sources of such attacks. Identification of a spatially dependent

component of “random” error may help further reduce the confounding

effects of within-plot variability on treatment effects in agricultural experimentation. The use of spatial dependence in identifying optimal plot size and

spacing of samples within plots has already been described by Vieira et al.

(198 1).

Geostatistical analysis of spatial variation in natural phenomena has a

wide range of potential applications in soil and agronomic research. In

applying geostatistics, it should be remembered that semi-variograms and

kriging are tools constrained by their assumptions and, where these assumptions break down, other methods of spatial analysis may be more appropriate.

REFERENCES

Adams, J. A., and Wilde, R. H. 1976a. N . 2. J . Agric. Res. 19, 165-176.

Adams, J. A., and Wilde, R. H. 1976b. N . Z . J . Agric. Res. 19, 435-442.

Armstrong, M. 1984. J . Math. Geol. 16, 101-108.

Babaloa, 0. 1978. Soil Sci. 126, 269-279.

Ball, D. F., and Williams, W. M. 1968. J . Soil. Sci. 19, 435-442.

Barnes, E. 1981. Ph.D. dissertation, Univ. of Hawaii, Honolulu.

Bascomb, C. L., and Jarvis, M. G. 1976. J . Soil Sci. 27, 420-437.

Beckett, P. H. T., and Burrough, P. A. 1971. Soil Sci. 22,466-489.

Beckett, P. H. T., and Webster, R. 1971. Soils Fert. 34, 1-15.

Biggar, J. W., and Nielsen, D. R. 1976. Water Resour. Rex 12, 78-84.

Blais, R. A., and Carlier, P. A. 1968. Can. Inst. Min. Metall. 9 (Special Vol.).

Blevins, R. L., Holowaychuk, N., and Wilding, L. P. 1970. Soil Sci. SOC.Am. Proc. 34, 315-331.

Bouma, J . 1983. In “Pedogenesis and Soil Taxonomy. I. Concepts and Interactions” (L. P.

Wilding, N. E. Smeck, and G. F. Hall, eds.), pp. 253-281. Elsevier, Amsterdam.

Box, G. E. P., and Jenkins, G. M. 1976. “Time Series Analysis, Forecasting and Control.”

Holden-Day, San Francisco.

Bresler, E., Dagan, G., Wagenet, R. J., and Laufer, A. 1984. Soil Sci. SOC.Am. J . 48, 16-25.

Buol, S. W., Hole, F. D., and McCracken, R. J. 1980. “Soil Genesis and Soil Classification,” 2nd

Ed. Iowa State Univ. Press, Ames.

Burgess, T. M., and Webster, R. 1980a. J . Soil Sci. 31, 315-331.

Burgess, T. M., and Webster, R. 1980b. J . Soil Sci. 31, 333-341.

Burgess, T. M.. Webster, R., and McBratney, A. 1981. J . Soil Sci. 32, 643-659.

Burrough, P. A. 1983a. J . Soil Sci. 34, 577-597.

Burrough, P. A. 1983b. J . Soil Sci. 34, 599-620.

Burrough, P. A,, Beckett, P. H. T., and Jarvis, H. G. 1971. J . Soil Sci. 22,368-381.

Butler, B. E. 1959. CSIRO Soil Publ. (14).

Campbell, J. B. 1978. Soil Sci. Soc. Am. J . 42, 460-464.



92



B. B. TRANGMAR ET AL.



Cassel, D. K., and Bauer, A. 1975. Soil Sci. Soc. Am. Proc. 39, 247-250.

Clark, I. 1979. “Practical Geostatistics.” Applied Science Publ., London.

Cutler, E. J. B. 1977.“Soil Resource Surveys, Interpretations and Applications.” Lincoln College

Press, Christchurch, New Zealand.

Dagbert, M., and David, M. 1976. Can. Inst. Mining Bull. Feb.

David, M. 1977. “Geostatistical Ore Reserve Estimation.” Elsevier, Amsterdam.

Delfiner, P. 1976. In “Advanced Geostatistics in the Mining Industry” (M. Guarascio, ed.), pp.

49-68. Reidel, Dordrecht.

Delfiner, P. 1979. Bull. Centre Geostat. Morphol. Math. France (C-77).

Delfiner, P., and Delhomme, J. P. 1973. I n “Display and Analysis of Spatial Data” (J. C. Davis

and M. J. McCullough, eds.), pp. 96-114. Wiley, New York.

Delhomme, J. P. 1978. Adu. Water Resour. 1, 251-266.

Delhomme, J. P. 1979. Water Resour. Res. 15, 269-280.

Dent, D., and Young, A. 1981. “Soil Survey and Land Evaluation.” Allen & Unwin, London.

Efron, B., and Gong, G. 1983. Am. Stat. 37, 36-48.

Food and Agricultural Organisation (FAO) 1974. “Soil Map of the World. Vol. I. Legend.”

UNESCO, Paris.

Faith, R., and Sheshinski, R. 1979. Dept. Stat., Stanford Uniu. Tech. Rep. (28).

Gajem, Y. M., Warrick, A. W., and Myers, D. E. 1981. Soil Sci. SOC.Am. J . 45, 709-715.

Giltrap, D. J. 1981. I n “Information Systems for Soil and Related Data” (A. W. Moore, B. G.

Cook, and L. G. Lynch, eds.), pp. 75-82. PUDOC, Wageningen.

Giltrap, D. J. 1983a. Geoderma 29, 295-311.

Giltrap, D. J. 1983b. Geoderma 29, 313-325.

Greville, T. N. E. 1969. “Theory and Applications of Spline Functions.” Academic Press, New

York.

Hajrasuliha, S. W., Baniabassi, N., Metthey, J., and Nielsen, D. R. 1980. Irrig. Sci. 1, 197-208.

Hammond, L. C., Pritchett, W. L., and Chew, V. 1958. Soil Sci. Soc. Am. Proc. 22, 548-552.

Henley, S. 1981. “Nonparametric Geostatistics.” Applied Science Publ., London.

Hodgson, J. M., Hollis, J. M., Jones, R. A,, and Palmer, R. C. 1976. J . Soil Sci. 27, 411-419.

Huijbregts, C. H. 1975. In “Display and Analysis of Spatial Data” (J. C. Davis and M. J.

McCullough, eds.), pp. 38-53. Wiley, New York.

Huijbregts, C. H., and Matheron, G. 1971. Can. Inst. Min. Metall. 12 (Special Vol.).

Jackson, M., and Marechal, A. 1979. Proc. APCOM Symp., 16th.

Jacob, W. C., and Klute, A. 1956. Soil Sci. SOC. Am. Proc. 20, 170-172.

Journel, A. G . 1980. J . Math. Geol. 12,285-303.

Journel, A. G. 1983. J . Math. Geol. 15,445-468.

Journel, A. G., and Huijbregts, C. H. 1978. “Mining Geostatistics.” Academic Press, New

York.

Krige, D. G. 1951. J . Chem. Metall. Min. SOC.South Afr. 52, 119-139.

Krige, D. G. 1960. J . South Afr. Inst. Min. Metall. 61, 231-233.

Luxmoore, R. J., Spalding, B. P., and Munro, I. M. 1980. Soil Sci. SOC.Am. J . 45, 687-691.

McBratney, A. B., and Webster, R. 1981a. Comput. Geosci. 7, 335-365.

McBratney, A. B., and Webster, R. 1981b. Geoderma 26, 63-82.

McBratney, A. B., and Webster, R. 1983a. J . Soil Sci. 34, 137-162.

McBratney, A. B., and Webster, R. 1983b. Soil Sci. 135, 177-183.

McBratney, A. B., Webster, R., and Burgess, T. M. 1981. Comput. Geosci. 7 , 331-334.

McBratney, A. B., Webster, R., McLaren, R. G., and Spiers, R. B. 1982. Agronornie 2, 969-982.

McCormack, D. E., and Wilding, L. P. 1969. Soil Sci. SOC. Am. Proc. 33, 587-593.

McIntyre, G. A. 1967. J . Aust. Inst. Agric. Sci. 33, 308-320.

Mandelbrot, B. B. 1977. “Fractals, Form, Chance and Dimension.” Freeman, London.



APPLICATION O F GEOSTATISTICS



93



Mapping Systems Working Group 1981. Land Resource Institute, Contribution No. 142.

Agricultural Canada, Ottawa.

Matheron, G. 1963. Econ. Geol. 51, 1246-1266.

Matheron, G. 1965. “Les variables regionalisees et leur estimation. Une application de la theorie

des functions aleatoires aux sciences de la nature.” Masson, Paris.

Matheron, G. 1969. Cab. Cent. Morphol. Math. Fontainebleau 1.

Matheron, G. 1970. I n “Geostatistics” (D. F. Merriam, ed.). Plenum, New York.

Matheron, G . 1971. Cab. Cent. Morphol. Math. Fontainebleau 5.

Matheron, G. 1973. Adv. Appl. Prob. 5,439-468.

Matheron, G. 1976. I n “Advanced Geostatistics in the Mining Industry” (M. Guarascio, ed.), pp.

23 1-236. Reidel, Dordrecht.

Miller, F. P., Holowaychuk, N., and Wilding, L. P. 1971. Soil Sci. Soc. Am. Proc. 35, 324-331.

Murphy, C.P., and Banfield, C. F. 1978. J . Soil Sci. 29, 156-166.

Nielsen, D. R., Biggar, J. W., and Erh, K.T. 1973. Hilgardia 42, 215-260.

Norris, J. M. 1971. J . Soil Sci. 22, 69-80.

Nortcliff, S. 1978. J . Soil Sci. 29, 403-417.

Olea, R. A. 1974. J . Geophys. Rex 79,695-702,

Olea, R. A. 1975. “Optimum Mapping Techniques Using Regionalized Variable Theory.”

Kansas Geol. Survey, Lawrence, Ser. Spatial Anal. (3).

Parker, H. M., Journel, A. G., and Dixon, W. C. 1979. Proc. APCOM Symp., 16th.

Price, S . C. 1980. Water Resour. Res. 16, 787-795.

Protz, R., Presant, E. W., and Arnold, R. W. 1968. Can. J . Soil Sci. 48, 7-19.

Rendu, J. M. 1979. Proc. APCOM Symp., 16th.

Royle, A. G. 1980. “Geostatistics.” McGraw-Hill, New York.

Russo, D., and Bresler, E. 1981. Soil Sci. Soc. Am. J . 45, 682-687.

Russo, D., and Bresler, E. 1982. Soil Sci. Soc. Am. J . 46, 20-26.

Sawhney, B. L. 1977. I n “Minerals in Soil Environments” (J. B. Dixon and S. B. Weed, eds.), pp.

405-434. Soil Sci. SOC.Am., Madison, Wisconsin.

Schafer, W. M. 1979. Soil Sci. Soc. Am. J . 43, 1207-1212.

Silva, J. A. 1984. I n “A Multi-Disciplinary Approach to Agrotechnology Transfer” (G. Uehara,

ed.), pp. 17-28. Univ. of Hawaii, Honolulu.

Simmons, C. S., Nielsen, D. R., and Biggar, J. W. 1979. Hilgardia 47, 77-174.

Sisson, J. B., and Wierenga, P. J. 1981. Soil Sci. Soc. Am. J . 45, 699-704.

Smeck, N. E., and Wilding, L. P. 1980. Geoderma 24, 1-16.

Soil Survey Staff, 1951. “Soil Survey Manual.” US. Dept. Agric. Handbook (18).

Sokal, R. R., and Rohlf, F. J. 1969. “Biometry.” Freeman, San Francisco.

Starks, T. H., and Fang, J. 1982. J . Math. Geol. 14, 309-319.

Starks, T. H., Fang, J., and Chiu, C. 1980. Geostat. Report No. 1 . Coal Extraction and Utilization

Research Center, Southern Illinois University, Carbondale.

Tabor, J. A,, Warrick, A. W., Pennington, D. A,, and Myers, D. E. 1984. Soil Sci. Soc. Am. J . 48,

602- 607.

Taylor, N. H., and Pohlen, I. J. 1962. Soil Survey Method. N. 2. Soil Bur. Bull. (25).

Trangmar, B. B. 1982. Benchmark Soils News 6,4-5.

Trangmar, B. B. 1984. Ph.D. dissertation, Univ. of Hawaii, Honolulu.

Trangmar, B. B., Singh, U., Yost, R. S., and Uehara, G. 1982. Proc. Int. Soil Class. Workshop, 5th,

Wad Medani, Sudan.

Trangmar, B. B., Yost, R.S., Sudjadi, M., Soekardi, M., and Uehara, G. 1984. HITAHR Res. Ser.

26.

Van Der Zaag, P., Fox, R. L., Yost, R. S., Trangmar, B. B., Hayashi, K., and Uehara, G. 1981.

Proc. Int. Soil Class Workshop, 4th, Kigali, Rwanda.



94



B. B. TRANGMAR ET AL.



Van Kuilenburg, J., De Gruijter, J. J., Marsman, B. A., and Bouma, J. 1982. Geoderma 27,

31 1-325.

Van Wambeke, A,, and Dudal, R. 1978. I n “Diversity of Soils in the Tropics.” Am. SOC.Agron.

Spec. Publ. 34, 13-28.

Vauclin, M., Vieira, S. R., Vauchaud, G., and Neilsen, D. R. 1983. Soil Sci. SOC. Am. J . 47,

175-184.

Vieira, S. R., Nielsen, D. R., and Biggar, J. W. 1981. Soil Sci. SOC.Am. J . 45, 1040-1048.

Wagenet, R. J., and Jurinak, J. J. 1978. Soil Sci. 126, 342-349.

Warrick, A. W., Mullen, G . J., and Nielsen, D. R. 1977. Soil Sci. Soc. Am. J . 41, 14-19.

Watson, G. S. 1972. Geol. SOC.Am. Spec. Pap. 46, 39-46.

Webster, R. 1973. Math. Geol. 5, 27-37.

Webster, R. 1977. “Quantitative and Numerical Methods in Soil Classification and Soil Survey.”

Clarendon, Oxford.

Webster, R. 1978. J . Soil Sci. 29, 388-402.

Webster, R., and Burgess, T. M. 1980. J . Soil Sci. 31, 505-524.

Webster, R., and Burgess, T. M. 1984. J . Soil Sci. 35, 127-140.

Webster, R., and Butler, E. 1976. Aust. J . Soil Res. 14, 1-24.

Webster, R., and Cuanalo, H. E., de la C. 1975. J . Soil Sci. 26, 176-194.

Whitten, E. H. T. 1975. I n “Display and Analysis of Spatial Data” (J. C. Davis and M. J.

McCullough, eds.), pp. 282-297. Wiley, New York.

Wilding, L. P., and Drees, L. R. 1978. I n “Diversity of Soils in the Tropics.” Am. Soc. Agron. Spec.

Pub/. 34, 1-12.

Wilding, L. P., and Drees, L. R. 1983. I n “Pedogenesis and Soil Taxonomy. I. Concepts and

Interactions” (L. P. Wilding, N. E. Smeck, and G. F. Hall, eds.), pp. 83-116. Elsevier,

Amsterdam.

Wilding, L. P., Jones, R. B., and Schafer, G. M. 1965. Soil Sci. Soc. Am. Proc. 29, 711-717.

Yost, R. S., and Fox, R. L. 1981. Soil Sci. Soc. Am. J . 45, 373-377.

Yost, R. S., and Fox, R. L. 1983. Geoderma 29, 13-26.

Yost, R. S., Fox, R. L., and Uehara, G . 1982a. Soil Sci. Soc. Am. J . 46, 1028-1032.

Yost, R. S., Fox, R. L., and Uehara, G. 1982b. Soil Sci. Soc. Am. J . 46, 1033-1037.

Zubrow, E. B. W., and Harbaugh, J. W. 1979. I n “Simulation Studies in Archaeology”

(I. Hodder, ed.), pp. 109-122. Cambridge Univ. Press, London and New York.



ADVANCES IN AGRONOMY. VOL 38



THE INFLUENCE OF SOIL

STRUCTURE O N

WATER MOVEMENT,

CROP ROOT GROWTH,

A N D WATER UPTAKE

Ann P. Hamblinl

Western Australian Department of Agriculture

South Perth. Western Australia, Australia



....... .......... ..

..

A. Total Porosity; Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Pore-Size Distribution and the Moisture Characteristic . . . . . . . . . . . .

C. Pore Continuity and Hydraulic Conductivity . . . , . . . . . . . . , . . . . .

Stability of the Pore System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :.

A. The Concept of Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Clay and Aggregate Bonding in Agricultural Soils. . . . . . . . . . . . . . . .

C. Organic Matter Bonding in Agricultural Topsoils. . . . . . . . . . . . . . . .

Water Flow in Agricultural Soils . . , . . . . . . . . . . . . . . . . . . . . . . . . .

A. Infiltration.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Redistribution within the Root Zone . . . . . . . . . . . . . . . . . . . . . . .

Patterns of Root Growth. . . . , , . . . . . . . . . . . . . . . . . . . . . . . . . . .

A. Genotypic Variation . . . . , . . . . . . . . . . , . . . , . . . . . . . . . . . . .

B. Environmental Influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Water Upake by Roots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Speculation: Are We Measuring and Averaging at Consistent Scales?. . . . . . .



I. Introduction . .



......



........



. .



.



. .



11. Soil Structure: Components of the Soil-Pore System. . . . . . . . . . . . . . .



111.



IV.



V.



VI.

VII.

VIII. Summary

References



95

96

97

97

102

107

107

108

113

114

114

122

127

129

132

144

149

151

152



I . INTRODUCTION

In recent years soil physics has been concerned with extending quantitative

predictions of soil-water movement from defined, uniform conditions to the

greater complexity of the “real world,” where heterogeneity of soil parameters occurs at many space and time scales. Concurrently, in plant physiology

Present address: CSIRO Dryland Crops and Soils Research Program, Private Bag,

Wembley P.O., Western Australia 6014, Australia.

95



Copyright CI 1985 by Academic Press, Inc.

All rights of reproduction in any form reserved.



96



A N N P. HAMBLIN



efforts have increased to locate and quantify resistances to water flow in the

soil-plant system, as has been reviewed by Taylor and Klepper (1978). The

aim of much of this work has been to model water transport quantitatively

to provide accurate solutions to water-use problems in agriculture and

hydrology.

The aim of this paper is to link these two topics by focusing on the role of

the soil structure (the soil-pore system) through which both water and roots

move. The principle reason for concentrating on soil structure is that, of the

soil’s intrinsic physical properties, it is the one most easily, frequently, and

widely altered, particularly by cultivation. Greater understanding of the role

of soil structure, with both its inherent and induced variations, should

improve our ability to manipulate deliberately the soil environment for more

effective crop production and water management.

Although the scope of this article is large, space considerations alone must

make its treatment selective. The environments which have received most

attention are temperate to subtropical, in the context of rain-fed arable

agriculture.



II. SOIL STRUCTURE: COMPONENTS OF THE

SOIL-PORE SYSTEM

Almost any paper or book on soil structure written over the past 40 years

commences with a reverential acknowledgment of the subject’s importance to

soil physical conditions for crop growth. In the next breath, however, many of

these works will confess the singularly intractable nature of the problem of

characterizing those aspects of soil structure most relevant to plants. As in

many branches of science, advances in understanding have frequently had to

wait upon techniques for measurement and observation. In the case of soil

structure, advances in colloid science and sedimentology led to more

knowledge about the arrangement (and composition) of the solid soil

particles at an earlier date than knowledge about the pores within and

between them. Yet, as early as 1911, Green and Ampt, whose work on “the

flow of air and water through soils” still provides the basis for many studies

on water movement, commented that “the relations of the soil to the

movements of air and water through it.. .are much less obscure if we direct

our attention to the number and dimensions of the spaces between the particles

rather than to the sizes of the particles themselves.” In recent years studies of

soil structure have come around to their viewpoint and have concentrated on

the soil-pore system. However, the true complexity of spatial variation and

surface reactivity of soil structure is still seldom adequately quantified. We



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VII. Perspectives: Future Use of Geostatistics in Soil Research

Tải bản đầy đủ ngay(0 tr)

×