Tải bản đầy đủ - 0 (trang)
IX. Nitrogen-Supplying Capacity and Fertilizer Recommendations

IX. Nitrogen-Supplying Capacity and Fertilizer Recommendations

Tải bản đầy đủ - 0trang



nutrients such as P and K. The main problems seem to stem from the fact that

nitrogen availability to plants is governed by several environmental and soil

factors which are not taken into account whenempirical procedures for determining available N are used. However, tests for predicting the nitrogen-supplying

capacities of soils are important for the efficient use of fertilizer N. It is always

good to have a test which can provide a rough estimate of the pool of available N

in soils so that fertilizer N can be applied to achieve a given yield of rice. This

can be illustrated by an example taken from soil test crop-response project work

in India (see Velayutham, 1979; Randhawa and Velayutham, 1982). The alkaline permanganate digestion method (Subbiah and Asija, 1956) was used for

estimating the available N in soils for several crops, including rice (Ramamoorthy and Velayutham, 1976; Venkateswarlu, 1976). Based on the data obtained

for rice grain, it was established that approximately 1.5-1.8 kg N/ha is needed

for every 100 kg of grain in the alluvial soils of Delhi. From past experience it is

known that about 26% of the available N (determined by the alkaline permanganate method) is taken up by the rice crop. For example, if the available N in a soil

as measured by this method is 250 kg/ha, only about 65 kg of this pool will

appear in the rice plants. Based on the yield target, the amount of fertilizer

nitrogen (corrected for a use efficiency of 3040%) required for wetland rice can

be calculated. This test gives a rough guide for making fertilizer N recommendations which should result in the more efficient use of fertilizer than in cases

where the nitrogen-supplying capacity of the soil is not taken into considerdtion.

Velayutham (1979) has summarized the Indian work on soil test crop response

for rice. Briefly, the yield target and the required fertilizer nitrogen for achieving

the yield target can be calculated from the following equations:

T = ns/(m-r)


F = rns/(m-r)

where T is the yield target in 100 kg/ha, n is the ratio of percentage conmbution

from soil and fertilizer N, r is the N requirement in kg/ha of grain production, m

is the ratio of N requirement and contribution from fertilizer N, s is the soil test N

value in kg/ha, and F is the fertilizer nutrient rate in kg/ha. This scheme seems to

provide a fair degree of approximation for efficient use of fertilizer N considering

the N-supplying capacities of soils.

Another example for fertilizer N recommendation based on the N-supplying

capacity of rice soils is from the work done at the International Rice Research

Institute in the Philippines by Ponnamperuma and his colleagues, who used the

anaerobic incubation method to measure levels of available N. They sampled rice

fields in 13 provinces in the Philippines and, based on the analysis of 483 soil

samples, the available N in these soils ranged from 10 to 637 ppm. It was



possible to separate low- and high-N-supplying capacities using the anaerobic

incubation test (Ponnamperuma, 1978; Castro, 1979). Based on the results of

potentially mineralizableN, Ponnamperuma (1978) formulated a rough guide for

the fertilizer nitrogen requirements of a crop of 5 tons/ha for Philippine wetland

rice soils.

1. Soils that needed no fertilizer nitrogen (available N > 150 ppm)

2. Soils that needed 50 kg N/ha at panicle primordia initiation (available

N = 100-150 ppm)

3. Soils that needed about 50 kg N/ha at planting and about 50 kg N/ha again

at panicle primordia initiation (available N=50-100 ppm)

It was further observed that at eight locations in a province, rice yields of

4.5-7 tons/ha were obtained on soils containing more than 155 ppm available N;

zinc was applied but N was not (IRRI, 1974; Castro, 1979). These two examples

illustrate the principle of basing the recommendation of fertilizer nitrogen needs

of rice on the available N results, and it seems to be a step in the right direction. It

is, however, recognized that these recommendationsmust be modified from time

to time to reflect experience gained.


The high cost of fertilizer nitrogen combined with the need for increased yields

of rice has stimulated research on methods of using soil and fertilizer nitrogen

efficiently. For the judicious and efficient use of fertilizer, a measure of the

nitrogen-supplying capacity of soils is prerequisite because rice soils vary widely

in their capacity to release ammonium nitrogen when submerged. Our fertilizer

recommendations will be only as precise as our methods for measuring the

amounts of available soil nitrogen. Because of the fact that one-half to two-thirds

of the nitrogen used by the rice plant, even in well-fertilized paddies, comes from

soil nitrogen through mineralization, research on methods for measuring the

nitrogen-supplying capacities of wetland rice soils assumes still greater importance.

For devising effective methods for measuring available nitrogen in soils, it is

essential that the factors that affect mineralization and the availability of soil

nitrogen to the rice plant be well understood. Soil and environmental factors that

affect the mineralization of soil organic nitrogen are fairly well documented.

However, with the present state of knowledge it is not possible to quantify (1)

how the texture and the mineralogical makeup of a soil affect the release of

nitrogen under submerged conditions, or (2) how the mineralization of soil

organic nitrogen is affected by the presence of the rice plant. Attempts should be

made in the future by using stepwise regression analyses to separate the effects of



different soil characteristics on nitrogen mineralizationin flooded soils for different regions with due consideration of taxonomic criteria. It is envisaged that a

knowledge of the environmental (such as temperature and moisture) and soil

factors that affect mineralization will be useful in developing improved anaerobic

incubation tests and, eventually, in developing models for measuring soil nitrogen mineralization rates and hence nitrogen-supplying capacity under field conditions, No data are presently available on the measurement of soil nitrogen

mineralization rates in the field or on the comparative evaluation of mineralization rates as measured in the laboratory and in the field. Anaerobic incubation

tests have shown potential as indexes for soil nitrogen availability to rice in a

large number of greenhouse pot experiments and a few field experiments. Improved incubation tests should be devised by consideringthe climatic conditions

of a region, especially soil temperature. The anaerobic incubation method is

quite versatile in that it is very responsive and amenable to ranges in temperature.

Research is also needed for the development of standardized methods for (1)

determining the optimal time of soil sampling, (2) sampling soil (especially for

submerged paddy fields after land-preparatory operations), (3) preparing soil

samples for laboratory and greenhouse work, and fmally (4) use in laboratory

and greenhouse expriments. Recent work has revived interest in using organic

matter (as measured by organic C and total N) as the index of soil nitrogen

availability to wetland rice (Ponnamperuma, 1978; Ponnamperuma and Sahrawat, 1978; Sahrawat, 198Oc, 1982d, 1983b). However, researchers usually

have not obtained consistent results. It is known that both the quantity and the

quality of organic matter affect the mineralization and availability of soil nitrogen. Little is known about the quality of organic matter (except for the C/N ratio)

in wetland rice soils, which is indicated by our inability to answer simple questions even with our present knowledge about organic matter. For instance, (1)

What are the criteria for characterizing the quality of organic matter in relation to

its contribution to mineralizable nitrogen in submerged soils? and (2) How does

the quality of organic matter affect mineralization and soil nitrogen availabilityto

rice? More knowledge about the quality of organic matter, and especially about

the fraction that contributes to soil mineralizable N pools, should improve our

capability to use this simple index for predicting soil nitrogen availabilityto rice.

Considerableresearch efforts have been devoted to the development of chemical indexes for assessing available soil nitrogen in soils, but these indexes have

not been tested extensively for rice soils. Ideally, chemical indexes that extract

the soil organic nitrogen fraction, which is the source of mineralizable nitrogen

through the biological process, should be satisfactory in assessing the nitorgensupplying capacity of a soil. However, these conditions are usually not met and,

in the case of many chemical indexes, their chemistry is not fully known.

Alkaline pennanganate digestion is the most extensively used chemical method,

especially in India, for assessing the availability of soil nitrogen to rice. Recent



knowledge about the chemistry of the method has shown that it exhibits a better

potential for predicting soil nitrogen availability to wetland rice than to upland

crops (Sahrawat and Burford, 1982). Simple models based on regression equations relating potentially mineralizable nitrogen (as measured by biological indexes) with chemical indexes and/or soil characteristics should be tested for their

suitability to predict nitrogen availability to rice, since they have a sound basis

(Stanford, 1977; Stanford and Smith, 1978; Sahrawat, 1983b).

In view of the diverse soil and climatic conditions (where rice is grown) that

affect soil nitrogen availability, it is quite probable that a single index of nitrogen

availability will not find universal acceptance. Research on nitrogen availability

indexes for wetland rice soils compared to arable soils is still in infancy, and it is

hoped that this article will stimulate research in this area which holds considerable promise for the efficient use of fertilizer nitrogen as well as for devising

conservative soil management and cultural practices to regulate soil nitrogen

release in connection with nitrogen uptake by the rice plant. International cooperation is desirable for extensive testing of the promising indexes of nitrogen



Part of this work was done at, and supported by, the International Rice Research Institute, Los

Banos, Philippines. I am grateful to Dr.F. N. Ponnamperuma, Principal Soil Chemist, IRRI, for his

valuable suggestions. I thank Dr.C. W. Hong for his helpful review of this article.


Acharya, C. N. 1935. Biochem. J . 29, 1116-1120.

Association of Official Agricultural Chemists 1930. “Official and Tentative Methods of Analysis of

the AOAC.” Washington, D.C.

Ayanaba, A,, Tuckwell, S. B., and Jenkinson, D. S. 1976. Soil Biol. Biochem. 8, 519-523.

Bajaj, J. C., and Hasan, R. 1978. Plum Soil 50, 707-710.

Bajaj, J. C., and Singh, D. 1980. Commun. Soil Sci. Plant Anal. 11, 93-104.

Bajaj, J. C., Gulati, M. L., and Tamahane, R. V. 1967. J. Indiun SOC. Soil Sci. 15, 29-33.

Bonner, J. 1946. Bot. Gaz. (Chicago) 108, 267-279.

Borthakur, H. P., and Mazumdar, N. N. 1968. J. Indiun SOC. Soil Sci. 16, 143-147.

Boswell, F. C., Richer, A. C., and Casida, L. E. 1962. Soil Sci. SOC. Am. Proc. 26, 254-257.

Bremner, J. M. 1965. In “Methods of Soil Analysis” (C. A. Balack, ed.),pp. 1324-1345. Am.

SOC. Agron., Madison, Wisconsin.

Broadbent, F. E. 1970. Soil Sci. 110, 19-23.

Broadbent, F. E. 1978. In “Soils and Rice,” pp. 543-559. Int. Rice Res. Inst., Los Barios,


Broadbent, F. E. 1979. In “Nitrogen and Rice,” pp. 105-118. Int. Rice Res. Inst., Los Baftos,


Broadbent, F. E., and Mikkelsen, D. S. 1968. Agron. J . 60,674-677.



Broadbent, F. E., and Reyes, 0. C. 1971. Soil Sci. 112, 200-205.

Castro, R. U. 1979. Saturday Seminar, March 24, 1979 (mimeograph). Int. Rice Res. Inst., Los


Chalk, P. M., and Waring, S. A. 1970. A m . J . Exp. Agric. Anim. Husb. 10, 306-312.

Chang, S. C. 1978. In ‘‘Soilsand Rice,” pp. 521-541. Int. Rice Res. Inst., Los Baiios,Philippines.

Chapman, H. D. 1971. Proc. Int. Symp. Soil Fert. Evaluation, New Delhi 1, 165-197.

Cho, D. Y., and P o ~ m p e mF., N. 1971. Soil Sci. 112, 184-194.

Chu, C. L. 1962. Tu Jang Hsueh Pa0 (Acra Pedol. Sin.) 10, 55-72.

Clausen, C. R., Russelle, M. P., Flowerday, A. D. and Olson, R. A. 1981. Soil Sci. Soc.Am. J . 45,

1238- 1240.

Craswell, E. T., and Waring, S. A. 1972a. Soil Biol. Biochem. 4,427-433.

Craswell, E. T., and Waring, S. A. 1972b. Soil Biol. Biochem. 4,435-442.

DeDatta, S . K., and Barker, R. 1978. In “Soils and Rice,” pp. 623-648. Int. Rice Res. Inst., Los

Batios, Philippines.

DeDatta, S. K., and Kerim, M.S.A.A.A. 1974. Soil Sci. Soc. Am. Proc. 38,515-518.

Dei, Y., and Yamasaki, S. 1979. In “Nitrogen and Rice,” pp. 451-463. Int. Rice Res. Inst., Los

Baiios, Philippines.

Dolmat, M. T., Patrick, W. H., lr., and Peterson,F. I. 1980. Soil Sci. 129, 229-237.

Fox, R. H., and F’iekielek, W. P. 1978a. Soil Sci. Soc. Am. J . 42, 747-750.

Fox, R. H., and Piekielek, W. P. 1978b. Soil Sci. Soc.Am. J. 42, 751-753.

Fried, M., and Dean, L. A. 1952. Soil Sci. 73,263-271.

Gaballo, R. C. 1973. M.S. Thesis, Univ. of the Philippines, Los Bruios, Laguna.

Gasser, J. K. R. 1969. In “Nitrogen and Soil Organic Matter,” pp. 71-77. Ministry of Agric. Food

and Fisheries Tech. Bull. No. 15. HM Stationery Office, London.

Ghosh, A. B., and Hasan, R. 1980. Fert. News 25, 19-24.

Gopalswamy, A., Kumaraswamy, K., Durairaj Muthiah,N., and Nagalakshmi, K. 1973. Madrus

Agric. J . 60, 707-709.

Gotoh, S., and Onikura, Y. 1971. Soil Sci. Planr Nutr. (Tokyo)17, 1-8.

Greenland, D. J. 1%5. Soils Fert. 28,415-424.

Hafez, A. A. R., and Mikkelsen, D. S. 1981. Commun. Soil Sci. Planr Anal. 12, 61-69.

Harada, T., Hayashi, R., and Chikamato, A. 1964. Nippon Dojo Hiryogaku Zasshi (J. Sci. Soil

Manure Jpn.) 31, 21-24.

Hauck, R. D. 1978. In “Nitrogen in the Environment” (D. R. Nielsen and I. G. Mac Donald, eds.),

Vol. 1 , pp. 63-77. Academic Press, New York.

Hauck, R.D. 1979. In “Nitrogen and Rice,” pp. 73-94. Int. Rice Res. Inst., Los Barios,


Hauck, R. D., and Bremner, J. M. 1976. Adv. Agron. 28, 219-266.

Herlihy, M., and Sheehan, P. 1979. Plant Soil 53, 269-275.

Hiura, K., Hattori, T., and Furusaka, C. 1976. Soil Sci. Planr Nu@. (Tokyo)22, 459-465.

Houng, K. H. 1980. In “Increasing Nitrogen Efficiency for Rice Fertilization,” pp. 39-52. Food

and Fertilizer Technology Center, Taipei, Taiwan.

Hunter, A. S., and Carter, D. L. 1965. Soil Sci. 100, 112-117.

IAEA 1970. Joint FAOlIAEA Division of Atomic Energy in Food and Agric. Tech. Rep. Ser. No.

108. Int. Atomic Energy Agency, Vienna.

IAEA 1978. Joint FA0 IAEA Division of Atomic Energy in Food and Agric. Tech. Rep. No. 181.

Int. Atomic Energy Agency, Vienna.

IRRI 1964. “Annu. Rep. for 1963.” Int. Rice Res. Inst., Los Baiios, Philippines.

IRRI 1965. “Annu. Rep. for 1964.” Int. Rice Res. Inst., Los Baiios, Philippines.

IRRI 1967. “Annu. Rep. for 1966.” Int. Rice Res. Inst., Los Baiios, Philippines.

IRRI 1973. “Annu. Rep. for 1972.” Int. Rice Res. Inst., Los Babs. Philippines.



IRRI 1974. “Annu. Rep. for 1973.” Int. Rice Res. Inst., Los Ba~ios,Philippines.

IRRI 1978. “Annu. Rep. for 1977.” Int. Rice Res. Inst., Los Batios, Philippines.

Jenkinson, D. S. 1968. J . Sci. FoodAgric., 19, 160-168.

Jenkinson, D. S., and Powlson, D. S. 1976. Soil Biol. Biochem. 8, 209-213.

Jones, C. A., Ratliff, L. F.,and Dyke, P. T. 1982. Commun. Soil Sci. Plant Anal. 13, 75-86.

Jones, J. B., Jr., and Steyn, W. J. A. 1973. In “Soil Testing and Plant Analysis” (L. M. Walsh and

J. D. Beaton, eds.), pp. 249-270. Soil Sci. Soc. Am. Inc., Madison, Wisconsin.

Kai, H., Ahmad, Z., and Harada, T. 1969. Soil Sci. Plant Nutr. (Tokyo)15, 207-213.

Kawaguchi, K., and Kyuma, K. 1969. “Lowland Rice Soils in Thailand,” p. 187. Center for

Southeast Asian Studies, Kyoto Univ., Japan.

Keeney, D. R., and Bremner, J. M. 1965. Soil Sci. SOC. Am. Proc. 31, 34-39.

Koyama, T. 1971. Soil Sci. Pfant Nutr. (Tokyo) 17, 210-220.

Koyama, T. 1981. Ferr. Res. 2, 261-278.

Koyama, T., Chammek, C., and Niamsrichand, N. 1973. Trop. Agric. Res. Cent. Tech. Bull. No. 3,

pp. 1-79. Min. Forestry and Agriculture, Tokyo.

Krishnamoorthy, Ch., Venkateswarlu, J., Reddy, M. G. R., and Rao, G. V. M. M. 1971. Proc. Inr.

Symp. Soil Fert. Evaluation, New Delhi 1, 954-967.

Legg, J. O . , and Stanford, G. 1967. Soil Sci. SOC.Am. Proc. 31, 215-219.

Lin, C. F., Chang, A. H., and Tseng, C. C. 1973. Nung Yeh Yen Chiu (J. Taiwan Agric. Res.) 22,


Lopez, A. B., and Galvez, N. L. 1958. Philipp. Agric. 42, 281-290.

Lynch, J. M., and Panting, L. M. 1982. J . Sci. Food Agric. 33, 249-252.

MacLean, A. A. 1964. Nature (London) 203, 1307-1308.

Mangaraja, S. C., Panda, D., Panda, N., and Misra, C. 1976. J . Res. Orissa Univ. Agric. Technol.

6, 43-52.

Mengel, K. 1982. Plant Soil 64, 129-138.

Michrina, B. P., Fox, R. H., and Piekielek, W. P. 1981. Commun. Soil Sci. Plant AM^. 12,

5 19-535.

Michrina, B. P., Fox, R. H., and Piekielek, W. P. 1982. Plant Soil 64, 331-341.

Moormann, F. R. 1978. In ”Soils and Rice,” pp. 255-272. Int. Rice Res. Inst., Los Barios,


Myers, R. J. K. 1975. Soil B i d Biochem. 7, 83-86.

Nemeth, K. 1979. Adv. Agron. 31, 155-188.

Nemeth, K., Makhdum, I. Q., Koch, K., and Beringer, H. 1979. Plant Soil 53, 445-453.

Onikura, Y.,Yoshino, T.,and Maeda, K. 1975. Nippon Dojo Hit-yogakuZasshi ( J . Sci. Soil Manure

Jpn.) 46,255-259.

Patnaik, N. 1970. Indian Farming 20, 5-8.

Patrick, W. H.,Jr., and Mahapatra, 1. C. 1968. Adv. Agron. 20, 323-359.

Ponnamperuma, F. N. 1958. Int. Rice Comm. Newsl. 7 , 10-13.

Ponnamperuma, F. N. 1965. In “Mineral Nutrition of Rice Plant,’’ pp. 295-328. Johns Hopkins

Press, Baltimore, Maryland.

Ponnampemma, F. N. 1972. Adv. Agron. 24, 29-96.

Ponnamperuma, F. N. 1978. Paper presented at the Int. Rice Conf. on Rainfed Lowland Rice, April

1978. Int. Rice Res. Inst., Los Baiios, Philippines.

Ponnamperuma, F. N., and Sahrawat, K. L. 1978. Agron. Abstr., p. 160.

Powlson, D. S. 1980. J . Soil Sci. 31, 77-85.

Powlson, D. S., and Jenkinson, D. S. 1981. J . Agric. Sci. 97, 713-721.

Purvis, E. R., and Leo, W. M. M. 1961. J. Agric. Food Chem. 9, 15-17.

Rajamamar, A., Ramamoorthy, S., Varadarajan, V., and Khadir, A. A. 1970. Madras Agric. J . 57,

139- 140.



Raammoorthy, B., and Velayutham, M. 1976. In “Soil Fertility-Theory and Practice F’ractice” (J.

S. Kanwar, ed.), pp. 156-201. Indian Council of Agric. Res., New Delhi.

Ramamoorthy, B.,Pathak, V. N., and Bajaj, J. C. 1971. I n “Soil Survey and Soil Fertility Research

in Asia and the Far East,” pp. 85-90. FAO-UNDP World Soil Resources Rep. No. 41.

Ramanathan, K. M., and Krishnamoorthy, K. K. 1973. Madras Agric. J. 60, 720-723.

Randhawa, N. S., and Velayutham, M. 1982. Fert. News 27, 35-64.

Ranganathan, V.,Balasundaram, S. C., Govindaraj, K., and Samboomaraman, S. 1972. Int. Rice

C O ~N m

. d . 21, 18-26.

Reddy, K. R.,and Patrick, W.H.,Jr. 1980. Planf Soil 57, 375-381.

Beisenauer, H. M. ( 4 . ) 1978. Div. Agric. Sci. Univ. Calf. Bull. No. 1879.

Rennie, D. A., and Fried, M. 1971. Proc. In?. Symp. Soil Fert. Evaluation, New Delhi 1,639-656.

Robinson, J. B. D. 1975. Spec. Bull. No. 1. Common W. Bureau Soils, Harpenden, England.

R o v h , A. D., and Greacen, E. L. 1957. Ausr. J. Agric. Res. 8,659-673.

Sahrawat, K. L. 1978. Rep. Int. Rice Res. Inst. L a Barios, Philippines.

Sahrawat, K. L. 1979. Fert. News 24, 38-48.

Sahrawat, K. L. 198Oa. P h r Soil 55, 225-233.

Sahrawat, K. L. 1980b. Planr Soil 57, 143-146.

Sahrawat, K. L. 1980~.Planr Soil 55, 181-187.

Sahrawat, K. L. 198Od. Agrochimica 24, 149-153.

Sahrawat, K. L. 1981a. Soil Biol. Biochem. 13, 323-324.

Sahrawat, K. L. 1981b. Commun. Soil Sci. Plant Anal. 12, 919-932.

Sahrawat, K. L. 1982a. Oryza 19,43-46.

Sahrawat, K. L. 1982b. Planr Soil 65, 281-286.

Sahrawat, K. L. 1982c. Comun. Soil Sci. P h i Anal. 13,67-73.

Sahrawat, K. L. 1982d. P h r Soil 65, 111-121.

Sahrawat, K. L. 198%. Commun. Soil Sci. Plant Anal. 13, 363-377.

Sahrawat, K. L. 1982f. Phnr Soil 69, 73-77.

Sahrawat, K. L. 19828. Planf Soil 69, 283-285.

Sahrawat, K. L. 1983a. Geoderma 29, 77-80.

Sahrawat, K. L. 1983b. A m . J. Soil Res. 21, 133-138.

Sahrawat, K. L., and Burford, I. R. 1982. Soil Sci. 133, 53-57.

Sahrawat, K. L., andPonnampemma, F. N. 1978. Soil Sci. Soc. Am. J . 42, 282-283.

Sakanoue, Y., and Matsubara, K. 1967. Nippon Dojo Hiryogaku Znsshi (J. Sci. Soil Manure Jpn.)


Sanchez, P. A. 1973a. Soil Sci. 115, 149-158.

Sanchez, P. A. 1973b. Soil Sci. 115, 303-308.

Shiga, H., and Ventura, W. 1976. Soil Sci. Plant Nutr. (Tokyo) 22, 387-399.

Shioixi, M. 1948. Bull. Agric. Expt. Stn., Ministry of Agric. (Japan) 64, 1-24.

Shioiri, M., Aomine, S., Uno,Y., and Harada, T. 1941.Nippon Dojo Hiryogaku Zasshi (J. Sci. Soil

Manure Jpn.) 15, 331-333.

Sims, J. L., and Blackmon, B. G. 1967. Soil Sci. SOC. Am. Proc. 31, 676-680.

Sims, J. L., Wells, J. P., and Tackett, D. L. 1%7. Soil Sci. SOC.Am. Proc. 31, 672-676.

Singh, R. M., and Tripathi, B. R. 1970. J. Indian SOC.Soil Sci. 18, 313-318.

Singh, T., and Pasricha, N. S. 1977. Indian J. Agric. Sci. 47, 460-464.

Smith, J. L., Schnabel, R. R., McNeal, B. L., and Campbell, G. S. 1980. Soil Sci. SOC.Am. J. 44,


Srivastava, 0.P. 1975. J. Indian Soc. Soil Sci. 23, 349-352.

Stanford,G. 1968. Soil Sci. 106, 345-351.

Stanford, G. 1977. Proc. Int. Semin. Soil Environ. Soil Fert. Management Intensive Agric., Tokyo,

p ~ 412-418.



45 1

Stanford, G . 1978. Soil Sci. 126, 244-253.

Stanford, G., and DeMar, W. H. 1969. Soil Sci. 107, 203-205.

Stanford, G., and Smith, S. J. 1972. Soil Sci. Soc. Am. Proc. 36, 465-472.

Stanford, G., and Smith, S. J. 1976. Soil Sci. 122, 71-76.

Stanford, G., and Smith, S. J. 1978. Soil Sci. 126, 210-218.

Subbiah, B. V., and Asija, G. L. 1956. Curr. Sci. 25, 259-260.

Subbiah, B. V., and Bajaj, J. C. 1962. Curr. Sci. 31, 196.

Tamhane, R. V., and Subbiah, B. V. 1960. Inr. Rice Comm. Newsl. 9, 1-10.

Tanaka, A. 1961. J. Fac. Agric. Hokkaido Univ. 51, 449-550.

Tanaka, A., and Yoshida, S. 1970. Int. Rice Res. Inst., Tech. Bull. No. 10. Int. Rice Res. Inst., Los


Thenabadu, M. W. 1972. Plant Soil 37, 41-48.

Truog, E. 1954. Commer. Fert. 88, 72-73.

Udy, D. C. 1971. Am. OilChem. SOC. J . 48, 29A-33A.

Ulrich, A. 1952. Annu. Rev. Plant Physiol. 3, 207-228.

Velayutham, M . 1979. Fer?. News. 24, 12-20.

Venkateswarlu, J. 1976. In “Soil Fertility-Theory and Practice” (J. S. Kanwar, ed.), pp.

410-456. Indian Council of Agric. Res., New Delhi.

Ventura, W., and Watanabe, I. 1978. Soil Sci. Planr Nu@. (Tokyo) 24,535-545.

Wallihan, E. F., and Moomaw, J. C. 1967. Agron. J. 59, 473-474.

Wanasuria, S., Mengel, K.,and DeDatta, S. K . 1980. Proc. Int. Symp. Applic. EUF Agric.

Production, Budapest.

Waring, S . A., and Bremner, J. M. 1964a. Nature (London) 201, 951-952.

Waring, S. A,, and Bremner, J. M. 1964b. Nature (London) 202, 1141.

Whitehead, D. C. 1981. J. Sci. FoodAgric. 32, 359-365.

Whitehead, D. C., Barnes, R. J., and Morrison, J. 1981. J. Sci. Food Agric. 32, 211-218.

Wiklicky, L. 1982. Planr Soil 64, 115-127.

Yamane, I. 1967. Rep. Inst. Agric. Res. Tohoku Univ. 18, 87-108.

Yanagisawa, M., and Takahashi, J. 1964. Nogyo Gijutsu Kenkyusho Hokoku B (Bull. Natl. Inst.

Agric. Sci.) 14, 41-171.

Yoshino, T., and Dei, Y. 1974. Jpn. Agric. Res. Q. 8, 137-141.

Yoshino, T., and Dei, Y. 1977. Noji Shikenjo Kenkyu Hokoku ( J . Cent. Agric. Exp. Stn.) 25, 1-62.

This Page Intentionally Left Blank



Absorbed-ion activity, 224-226

Acetochlor, 268, 276, 282, 284, 287

AD-2, 268, 280

AD-67, 268, 280, 305

Aegilops, 107

Aegilops bicornis, 167

Aegilops bicuncialis, 167

Aegilops caudata, 158, 167, 171, 172

Aegilops columnaris, 167

Aegilops comosa, 167

Aegilops crassa, 167

Aegilops cylindrica, 167

Aegilops heldreichii, 167

Aegilops juvanalis, 167

Aegilops kotschyi, 163-164, 167

Aegilops longissima, 167

Aegilops mutica, 167

Aegilops ovata, 159, 167, 172

Aegilops sharonensis, 167

Aegilops spelroides, 165, 167

Aegilops squarrosa, 163, 167

Aegilops triaristata, 167

Aegilops tricuncialis, 167

Aegilops umbellulata, 167

Aegilops uniaristata, 167

Aegilops variabilis, 163, 167

Aegilops ventricosa, 167

Aegilotricum, 159

Alachlor, 268, 275, 276, 282-287, 297, 302

Alexandergrass, 270, 283

Alfalfa, 270

Allium cepa, 270

Alnus, 44

Amaranthus retrojlexus, 270

Amiirol, 268

Ammonium production, 417-421

Anabaena, 3

Anhydrite, 72

Ascorbic acid, 288

Asulam, 268, 290

Atrazine, 268, 369

Avena fatua, 270

Avena sativa, 270

Azotobacterin, 291


Barban, 268, 271, 277, 282, 299

Barley, 105, 108, 110, 114-115, 122-123,

270, 278, 281, 282

Bamyardgrass, 270, 286


common, 116, 127-129

field, 129-130, 270, 275, 276, 281

Beet, 270, 291

Bensulide, 268, 285

Bentazon, 369

Bentonite, 237, 248

Beta vulgaris. 270

Bluegrass, Kentucky, 270, 276-278

Boron, 37

Brachiaria plantaginea, 270

Bromacil, 369

Butachlor, 268, 276, 285, 287

Butam, 268, 278

Buthidazole, 268, 278

Butylate, 268, 277, 281, 297, 306


Calcite, 72, 86

Captan, 369

Carbon distribution, 26

Carboxin, 280

Carrot, 270, 291

Casuarina, 44

Cation exchange, thermodynamics,

2 15 -264

CCC, 268

CDAA, 268, 279

CDEC, 268, 282

Ceanothus, 44

Celestite, 72

Centrosema pubscens, 25

CGA-43089, 268, 272, 274, 280, 283-285,

290, 293-301, 308-309

CGA-92194, 268, 272, 283, 286, 293-301

Chenopodium album, 270

Cblormequat, 268

Chlornitrofen, 268, 289




Chloroacetanilide, 280

2-Chlomthyl phosphoric acid, 181

Chlorsulfuron, 268, 278, 282-283, 285, 286

Cisanilide, 268, 275, 278

Claviceps purpurea, 194

Clay mineral

potksium exchange, 215-264

Clover, 33

white, 42, 43

Colletia. 44

Competition selection, 105-1 11

Comptonia, 44

Concep I, 297

Concep 11, 297

Coriaria. 44

Corn, 270

herbicide antidote, 274-289, 297, 299-310

Cotton, 103, 117, 120, 131-133, 275, 286

Crop evolution, annual, 97-143

Cucurbita foetidissima, 317, 319-331

Cycloate, 268, 277, 280, 282

Cysteine, 288

Cytoplasmic sterility, 157-169

Electro-ultrafiltration, 441-442

Eleusine, 283

Epronaz, 268, 278

Eptam, 369

EPTC, 269, 271-281, 284-287, 291,


Eradicane, 297-299

Ergot, 194

Erosion, reclamation, 38

Ethephon, 181, 182

Ethofumesate, 269, 279, 280, 285


Feldspar, 67-68, 82

Flax, 270

Flowering behavior, 183-185

Fluazifop-butyl, 269, 279, 285

Foxtail, green, 270, 275, 286

Frankia, 3



2,4-D, 269, 270-272, 288, 369

Dalapon, 370

Datisca, 44

Daucus carota, 270

DCPA, 268, 278

DDCA, 292

Diallate, 268, 276, 282

Dicamba, 369

Diclopop-methyl, 268, 278, 283, 285

Diethatyl, 268, 276, 282, 284

Dimefuron, 268, 278

2,3-Dimercaptopropanol, 288

Dinoseb, 369

Diphenamid, 268, 275, 278, 280, 283

Diquat, 369

Discaria. 44

Diuron, 268, 286

Dowco, 221, 268, 278

Dryas, 44


Echinochloa crus-gali, 270

Eleagnus, 44


cross-fertilization factors, 183- 190

cytoplasmic differentiation, 164- 166

cytoplasmic sterility, 157-169

fertility restoration, 169-180

hybrid seed production, 191-196

rice mutations, 383-413

Glomus, 35

Glycine mar, 130, 270

Glycine soja, I30

Glyphosate, 269

Goethite, 73

Gossypium barbadense, 131

Gossypium hirsutum, 131, 270

Gourd, buffalo, 317, 319-331

Gypsum, 72, 73


H-26910, 269, 276, 282

Hackberry, 74

Halite, 72

Haynaldia villosa. 167

Hedysarum coronarium, 33

Helianthus annuus, 133

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

IX. Nitrogen-Supplying Capacity and Fertilizer Recommendations

Tải bản đầy đủ ngay(0 tr)