Tải bản đầy đủ - 0 (trang)
VI. Future Uses of Mutation in Rice Improvement

VI. Future Uses of Mutation in Rice Improvement

Tải bản đầy đủ - 0trang



consider the relative merits of induced mutation versus crossing. Induced mutation may be a means of quickly obtaining a needed gene in an adapted background, but the additional genetic diversity introduced during hybridization with

world collection sources may give greater long-term returns.

Induced mutation research relies heavily on availability or development of

effective screening methods. Most cases to date have been based on visual

screening techniques for semidwarfkm, early maturity, etc. Much current work

on tissue culture is directed at using physiological or biochemical screening

methods for identifying spontaneous or induced mutants. Tissue culture offers

the potential for screening extremely large populations, but this is counterbalanced by the problems of regenerating plants and determining if desired

characteristics expressed in culture also are expressed at the whole plant level. It

is important to remember that some of the physiological screening techniques

currently in use in tissue culture, for herbicide tolerance, salt tolerance, etc., can

also be used on whole-plant populations. Tseng and Seaman (1982), for example, were able to select for increased tolerance in rice breeding lines to the

herbicide thiolcarbamate by a seedling screening test. Similarly, Bright er al.

(1982) selected barley mutants with an altered aspartate kinase enzyme by

screening embryos for growth on a medium containing lysine plus threonine.

Although whole-plant screening may require more space than tissue culture, the

benefits of having a plant in hand at the end of the experiment can outweigh the


A particularly powerful tool for screening for mutants would result if genetic

systems were available for producing easily identified haploid seeds. Recessive

mutants could then be identified in the M, generation. Genetic techniques for

haploid seed production are available in maize (Sarkar, 1974), but so far similar

techniques have not been reported for rice.

Some specific examples of needed diversity in rice that might be obtained

through induced mutation include genes for naked or free-threshing grain, that is,

easy separation of the lemma and palea from the caryopsis as in wheat; longer

floret opening time; cytoplasmic male sterility; and herbicide resistance. According to Vavilov’s proposals (1951) on homologous series and parallel variation,

the naked gene should occur in rice, because it is present in the other cereals.

However, free-threshing, normal kernel shape types have not been found in rice,

probably because the hulls provide a strong selective advantage for survival of

the kernel in aquatic environments. With the advent of peroxide seed coatings,

the needs for a protective hull are diminished, and a naked rice kernel has a better

survival chance. Longer floret opening time would be useful in hybrid rice seed

production, as more time would be available for pollen transfer; rice florets

remain open only for an hour or less, whereas wheat florets remain open for

several hours. A recent report on another member of the grass family, pearl

millet, indicates that the induction of cytoplasmic male sterility is possible (Bur-



ton and Hanna, 1982), and it would seem worthwhile to make similar attempts in

rice. Cytoplasmic male sterility is available in several background genotypes in

rice, but it would be helpful to have more sources. Finally, resistance in crop

plants to grass-killing herbicides would be most useful in rice culture as an aid to

grassy weed control. Sufficient examples of herbicide resistance have been reported in other crops that additional’searchesin rice seem worthwhile.


Appreciation is expressed to Dr. H. L. Carnahan of the California Co-operative Rice Research

Foundation, Inc., for his reviews and suggestions for improving the manuscript.


Aquino, R. C., and Jennings, P. R. 1966. Crop Sci. 6, 551-554.

Awan, M.A., and Cheema, A. A. 1976. Mu#ut. Breed. Newsl. 7,4-5.

Awan, M. A., Cheema, A. A., and Tahir, G. R. 1982. Paper presented at the 2nd Res. Coordination

Meet. FAOIIAEA Pmg. Evaluation of Semi-Dwarf Cereal Mutants for Cross Breeding, Davis,

California, 30 August-3 September 1982.

&hi, L. E. 1983. Unpublished data.

Bhivare, L. N., and Das, P. K . 1980. J . Nucl. Agric. Biol. 9, 106-107.

Borah, S. P., and Goswami, B. C. 1981. J . Nucl. Agric. Biol. 10,6-8.

Brandon, D. M., Carnahan, H. L., Rutger, J. N., Tseng, S. T., Johnson, C. W., Williams, J. F.,

Wick, C. M., Canevari, W. M., Scardaci, S. C., and Hill, J. E. 1981. “California Rice

Varieties: Description, Performance and Management.” Univ. o;California, Davis (SpecF’ubl.

No. 3271, Div. Agric. Sci.).

Bright, S. W. J., Miflin, B. J., and Ropes, S . E, 1981. Biochem. Gener. 20, 229-243.

Burton, G. W., and W. W . Hanna. 1981. Crop Sci. 22, 651-652.

Buu, J. H., and Huang, C. S. 1975. Chung-huaNung Hsuch Hui Po0 (J. Agric. Assoc. China) 92,


Caldecon, R. S., Stevens, H., and Roberts, B. 1. 1959. Agron. J . 51,401-403.

Camahan, H. L., Mastenbroek, J. H., Tseng, S. T., and Johnson, C. W. 1975. Crop Sci. 15,887.

Camahan, H. L., Johnson, C. W., and Tseng, S . T. 1978a. Crop Sci. 18, 356-357.

Camahan, H. L., Johnson, C. W., Tseng, S. T., and Mastenbroek, J. H. 1978b. Crop Sci. 18,


Carnahan, H. L., Johnson, C. W., Tseng, S. T., and Brandon, D. M. 1979. Crop Sci. 19, 746.

Carnahan, H. L., Johnson, C. W., Tseng, S. T., and Brandon, D. M. 1980. Crop Sci. 20, 551.

Camahan, H. L., Johnson, C. W., Tseng, S. T., and Rutger, J. N. 1981a. Crop Sci. 21,985-986.

Camahan, H. L., Johnson, C. W., Tseng, S. T., and Brandon, D. M. 1981b. Crop Sci. 21,


Carnahan, H. L., Johnson, C. W., Tseng, S. T.,and Oster, J. H. 1982. Proc. Rice Technul. Work.

Group 19th. pp. 19-20.

CIAT. 1980 Report, Cali, Colombia, pp. 59-60.

CIAT. 1981 Report, Cali, Colombia, p. 52.

Coffman, W. R., and Juliano, B. 0. 1983. In ‘‘Nutritional Quality of Cereal Grains: Genetic and

Agronomic Improvements” (K.J. FEY, ed.). Amer. Soc. Agron., Madison, Wisconsin. (In



41 1

Dat, T. V., Peterson, M. L., and Rutger, J. N. 1978. Crop Sci. 18, 1-4.

Davis, L. L. 1965. Certification Application for Earlirose, Calif. Crop Improvement Assoc.

Feenstra, W. J., Jacobsen, E., and deviser, A. J. C. 1981. Inr. Symp. Induced Mutations. (pp.

321-332). IAEA, Vienna.

Foster, K. W., and Rutger, J. N. 1978. Generics 88 , 559-574.

Fujimaki, H., Hiraiwa, S., and Kushibuchi, K. 1977. IkushugukuZusshi (Jpn. J. Breed.) 27,70-77.

Futsuhara, Y. 1968. Gamma Field Symp. 7, 87-109.

Gale, M. D., and Gregory, R. S . 1977. Euphyticu 26, 733-738.

Gale, M. D., Law, C. N., Marshall, G. A., Snape, J. W., and Worland, A. J. 1982. In “SemiDwarf Cereal Mutants and Their Use in Cross-Breeding,” pp. 7-23. IAEA, Vienna (IAEATEC DOC-268).

Gunawardena, S . D. I. E., Navaratne, S . K., and Ganashan, P. 1971. In “Rice Breeding with

Induced Mutations 111,” pp. 29-33. IAEA, Vienna.

Hajra, N. G., and Halder, S . 1980. Genet. Agr. 35, 327-338.

Hajra, N. G., Bairagi, P., and Dasgupta, P. 1980. SubruoJ. 12, 125-138.

Hajra, N. G., Mallick, E. H., and Bairagi, P. 1982. Actu Agron. Acnd. Sci. Hung. 31, 35-41.

Harada, J., and Vergara, B. S . 1971. Crop Sci. 11, 373-374.

Hargrove, T. R., Coffman, W. R., and Cabanilla, V. L. 1979. IRRf Res. Paper Ser.. No. 23.

HilleRisLambers, D., Rutger, J. N., Qualset, C. O . , and Wiser, W. J. 1973. Euphyricu 22,


Hiraiwa, S . , and Tanaka, S . 1980. Gamma Field Symp. 19, 103-115.

Hu, C. H. 1973. Euphyticu 22, 562-574.

Hu, C. H., and Alionte, G. 1978. Proc. Rice Technol. Work. Group 17th. pp. 14-15.

IAEA. 1973. “Nuclear Techniques for Seed Protein Improvement.” IAEA, Vienna.

IAEA. 1974. “Induced Mutations for Disease Resistance in Crop Plants.” IAEA, Vienna.

IAEA. 1977. “Induced Mutations against Plant Diseases.” IAEA, Vienna.

IAEA. 1978. “Seed Protein Improvement by Nuclear Techniques.” IAEA, Vienna.

IAEA. 1979. “Seed Protein Improvement in Cereals and Grain Legumes.” IAEA, Vienna.

IAEA. 1982. Mutar. Breed. Newsl., No. 19.

Ikehashi, H., and Kikuchi, F. 1982. JARQ 15, 231-235.

IRFU. 1966 Annu. Rep., Los Banos, Philippines.

IRRI. 1980 Annu. Rep., Los Banos, Philippines.

Ismachin, M., and Mikaelsen, K. 1976. In “Induced Mutations in Cross-Breeding,” pp. 119-121.

IAEA. Vienna.

Jacquot, M. 1978. In “Rice in Africa” (I. W. Buddenhagen and G. J. Persley, eds.), pp. 117-129.

Academic Press, New York.

Johnson, C. W., Carnahan, H. L. 1982. Proc. Rice Technol. Work. Group 19th p. 45.

Johnson, C. W., Carnahan, H. L., Tseng, S. T., and Brandon, D. M. 1980. Crop Sci. 20, 551.

Johnson, C. W., Carnahan, H. L., Tseng, S. T., and Hill, J. E. 1981. Crop Sci. 21, 986.

Kaul, M. L. H., and Kumar, V. 1981. Int. Rice Res. Newsl. 6 , 3-4.

Kawai, T. 1968. In “Mutations in Plant Breeding 11,” pp. 161-192. IAEA, Vienna.

Kawai, T. 1974. In “Induced Mutations for Disease Resistance in Crop Plants,” p. 153. IAEA,


Kawai, T. 1982. Paper presented at the 2nd Res. Coordination Meet. FAO/IAEA Prog. Evaluation

of Semi-Dwarf Cereal Mutants for Cross Breeding, Davis, California, 30 August-3 September


Kawai, T., and Sato, H. 1969. Nogyo Gijutsu Kenkyusho Hokoku D (Bull. Nutl. Inst. Agric. Sci. Ser.

D ) No. 20, 1-33.

Khambanonda, P., Dookamana, P., and Sarigabutr, A. 1982. Paper presented at the 2nd Res.

Coordination Meet. FAOlIAEA h g . Evaluation of Semi-Dwarf Cereal Mutants for Cross

Breeding, Davis, California, 30 August-3 September 1982.



KO, T., and Yamagata, H. 1980. Ikushugaku Zusshi (Jpn. J . Breed.) 30, 367-374.

Konzak, C. F. 1959. Agron J . 51, 518-520.

Mine, H. R. 1982. M.S. Thesis, Univ. of California, Davis.

Mackill, D. J., and Rutger, J. N. 1979. J . Hered. 70, 335-341.

Mahadevappa, M., Ikehashi, H., Noorsyamsi, H., and Coffman, W. R. 1981. IRRIRes. Paper Ser.,

No. 57.

Mallick, E. H., Hajra, N. G., and Bairagi, P. 1980. Riso 28, 3-7.

McKenzie, K. S., Board, J. E., Foster, K. W., and Rutger, J. N. 1978. Sabrao J . 10, 96-102.

McKenzie, K. S., Lee, F. N., and Wells, B. R. 1982. Ark. Farm Res. 31, 3.

Miah, A. J . , Mansur, M. A., and Uddin, M. J. 1981. Indian J . Agric. Sci. 51, 145-146.

Micke, A. 1979. Gamma Field Symp. 18, 1-23.

Mikaelsen, K. 1980. In “Innovative Approaches to Rice Breeding,” pp. 67-79. IRRI, Los Banos,


Mikaelsen, K., Saja, J., and Simon, J. 1971. In “Rice Breeding with Induced Mutations III,” pp.

97-101. IAEA, Vienna.

Mohanty, H. K., and Das, S. R. 1979. Proc. Symp. Role Induced Mutat. Crop Imrovement, pp.


Nilan, R. A., Kleinhofs, A., and Konzak, C. F. 1977. Ann. N. Y. Acad. Sci. 287, 367-384.

Nilan, R. A., Kleinhofs, A., and Wamer, R. L. 1981. Int. Symp. Induced Mutations. pp. 183-200

IAEA, Vienna.

Okuno, K., and Kawai, T. 1977. Gamma Field Symp. 16, 39-62.

Okuno, K., and Kawai, T. 1978a. Ikushugaku-Zasshi (Jpn. J . Breed.) 28, 243-250.

Okuno, K., and Kawai, T. 1978b. Ikushugaku Zasski (Jpn. J . Breed.) 28, 336-342.

Padma, A., and Reddy, G. M. 1977. Crop Sci. 17,860-863.

Reddy, G. M., and Padma, A. 1976. Theor. Appl. Genet. 47, 115-118.

Reddy, G. M., and Reddy, T. P. 1973. Radiat. Bot. 13, 181-184.

Reddy, T. P. 1979. Riso 28, 9-13.

Ree, J. H. 1973. Sabra0 J. 6, 83-85.

Rutger, J . N. 1982a. Int. Rice Comm. Newsl. 31, 31-33.

Rutger, J. N. 1982b. Paper presented at the 2nd Res. Coordination Meet. FAOlIAEA Prop. Evaluation of Semi-Dwarf Cereal Mutants for Cross Breeding, Davis, California, 30 August-3 September 1982.

Rutger, J. N., and Camahan, H. L. 1981. Crop Sci. 21, 373-376.

Rutger, J. N., and Lehman, W. F. 1977. Calif. Agric. 31, 29.

Rutger, J . N., and Peterson, M. L. 1976. Calif. Agric. 30, 4-6.

Rutger, J. N., and Peterson, M. L. 1981. Int. Symp. Induced Mutations, pp. 457-468. IAEA,


Rutger, J. N., and Qualset, C. 0. 1976. In ‘‘Opportunities to Improve Protein Quality and Quantity

for Human Food,” pp. 143-158. Univ. of California, Davis (Special Publ. No. 3058).

Rutger, 1. N. Peterson, M. L., Hu, C. H., and Lehman, W. F. 1976. Crop Sci. 16, 631-635.

Rutger, J. N., Peterson, M. L., and Hu, C. H. 1977. Crop Sci. 17, 978.

Rutger, J. N., Foster, K. W., McKenzie, K. S . , Mackill, D. J., Peterson, M. L., and Hu, C. H.

1979a. Crop Sci. 19, 229-300.

Rutger, J. N., Peterson, M. L., Camahan, H. L., and Brandon, D. M. 1979b. Crop Sci. 19,929.

Rutger, J. N., Camahan, H. L., and Johnson, C. W. 1982a. Crop Sci. 22, 164-165.

Rutger, J. N., Mese, M. D., and Lu, Y. G. 1982b. Agron. Abstr., p. 82.

Sairk S. S., Gagneja, M. R., and Brar, G. S. 1977. Sci. Cult. 43, 259.

Samoto, S . , and Kanai, D. 1975. Ikushugaku Zasshi (Jpn. J . Breed.) 25, 1-7.

Sarkar, K. R. 1974. In “Haploids in Higher Plants” (K.J. Kasha, ed.), pp. 33-41. Univ. of

Guelph, Ontario.



Sato, H. 1980.Mutat. Breed. Newsl. 15, 2-4.

Satoh, H., and Omura, T. 1981. Ikushugaku zOsshi-(Jpn. J . Breed.) 31, 31-6-326.

Schaeffer. G. W.. and Sharpe, F.T., Jr. 1982.Beltsville Symp. Agricult. Rex 7th, Genet. Eng. pp.


Sigurbjijmsson, B., and Micke, A. 1974.In “Polyploidy and Induced Mutation in Plant Breeding,”

pp. 303-343. IAEA, Vienna (IAEA-PL-503-40).

Simons, M. D., Caldecott, R. S., and Frey, K. J. 1%2. Plant Dis. Repl. 46, 88-91.

Singh, R. J., and Ikehashi, H. 1981.Crop Sci. 21, 286-289.

Singh, V. P., Siddiq, E. A,, and Swamhathan, M. S. 1979. Theor. Appl. Genet. 55, 169-176.

Suh, H.S., and Heu, M. H. 1978. Yuk Chong Hakhoe Chi (Korean J . Breed.) 10, 1-6.

Tanaka, S. 1978. In “Seed Protein Improvement by Nuclear Techniques,” pp. 199-201. IAEA,


Tanaka, S., and Hiraiwa, S. 1978. In “Seed Protein Improvement by Nuclear Techniques,” pp.

191-198. IAEA, Vienna.

Tanaka, S., Kawai, T., Yamasaki, Y.,Niizeki, H., Kiyosawaa, S.,Wada, M., Moue, T.,and

Sekiguchi, F. 1978. Gamma Field Symp. 17, 61-74.

Toda, M. 1979.Gamma Field Symp. 18, 73-82.

Trees, S. C., and Rutger, J. N. 1978.J. Hered. 69, 270-272.

Tseng, S. T., and Seaman, D. E. 1982.Proc. Rice Techno!. Work. Group 19tk p. 18.

Vavilov, N. I. 1951.Chron. Bot. 13, 1-364.

Vose, P. B. 1981.Int. Symp. Induced Mutations. pp. 159-181. IAEA, Vienna.

Woo,S. C., Wu, W. H., and Tung, I. J. 1974. Bor. Bull. Acad. Sin. 15, 54-56.

Yamaguchi, H.,Watanabe, M., Sato, S., and Kanbayashi, Y. 1981.Int. Symp. Induced Murations

pp. 201-211. IAEA, Vienna.

This Page Intentionally Left Blank




K. L. Sahrawat

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

ICRISAT Patancheru P.O., Andhra Pradesh, India

I. Intmduction

Factors Affecting Mineralization of Organic Nitrogen .

A. Temperature

B. Moisture Regime and Soil Drying.

C. Soil Characteristics.

D. Organic Amendments

E. Land Preparation and Tillage Practices

III. Biological Indexes .

A. Anaerobic Incubation Methods

B. Factors Affecting Results of Laboratory Incubation Tests.

C. Ammonium Content in Soil Solution .

D. Soil Biomass Nitrogen

IV . Chemical Indexes.

A. Organic Carbon and Total Nitrogen Content of Soils

B. Alkaline Pennanganate Method.

C. Acid Permanganate Method

D. Other Chemical Methods.

V. Simple Models of Nitrogen-Supplying Capacity Based on Biological and

Chemical Indexes.

VI . A Values.

VII. Electro-Ultrafiltration.

VIII. Plant Analyses . .

IX. Nitrogen-Supplying Capacity and Fertilizer Recommendations

X. Perspectives .









42 1

42 1


















Rice culture occurs on soils that differ considerably in their characteristics,

including their nitrogen-supplying capacity. According to Moormann ( 1978),

rice is grown on all the 10 soil orders given in the soil classification system of


Coonieht Q bv Academic Press. Inc.

AII rights of;;pr;ductio;l in any form reserved.

ISBN 0-12-000736-3



Table I

Major sdtl CLe4sweations According to Soil Taxonomy Used for Rice Growinga


Suborders of soils used for rice culture


Major importance





Aqalfs, Ustalfs


Aquepts, Ochrepts,










Aquult, Udults


Local importance

Minor importance



Orthids, Argids

Orthents, Psamments

Hemists, Saprists,










orthox, ustox





“From Moomann (1978).

soil taxonomy. The relative importance of the various soil suborders is shown in

Table I.

The mineralizable nitrogen (N) pool in soils plays a dominant role in nitrogen

nutrition of wetland rice. Studies using lSN-labeled fertilizers have shown that

approximately one-half to two-thirds of the total N utilized by a rice crop, even in

well-fertilized rice paddies, comes from the soil-mineralizable N pool (Broadbent, 1978; IAEA, 1978; Reddy and Patrick, 1980; Koyama, 1981). The current

shortage of fertilizers coupled with soaring prices resulting from energy costs

involved in their manufacture warrant the most judicious and efficient use of

fertilizer N, for which it is essential to know the nitrogen-supplying capacity of

soils. Thus, development of laboratory indexes for predicting soil nitrogen availability to rice forms an important component of research for efficient use of

fertilizer nitrogen.

Numerous biological and chemical laboratory methods have been proposed for

predicting soil N availability to various crops, including rice, and these have

been reviewed by Bremner (1963, Gasser (1969), Robinson (1975), and Chang

(1978). However, there is no comprehensive review available on the nitrogen

availability indexes for submerged soils, although rice yields more than those of

any other crop depend on soil nitrogen availability. This article will review the

recent literature on methods proposed for assaying the nitrogen-supplyingcapacity of wetland rice soils and recommend those methods which have potential for

predicting soil N availability, thus making possible the judicious and efficient

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VI. Future Uses of Mutation in Rice Improvement

Tải bản đầy đủ ngay(0 tr)