Tải bản đầy đủ - 0 (trang)
VII. Ecological and Agronomic Importance of Protein Transformation

VII. Ecological and Agronomic Importance of Protein Transformation

Tải bản đầy đủ - 0trang



Protein mineralization affects public health because of its role in the biodegradation of industrial and sewage wastes (Gray and Biddlestone, 1974). In

addition, the tendency of protein to bind with soil substituents could pose problems for sanitation. It is feared that the protein coats of enteric viruses are sorbed

to clays in sludge-amended soils. The sorbed viruses may later be released

(especially if there is an increase in the ionic strength of the soil solution) and

could contaminate the soil, crops, and groundwater (Harter, 1975; Seidler et al.,


The most important function of protein in soil is as a nitrogen source. In the

years to come more emphasis will probably be placed on protein function in this

respect. With increasing petroleum prices, crop fertilization becomes a more

expensive proposition; to offset cost increases, it is probable that farmers will use

more organic fertilizer and will apply agricultural practices that enhance the

availability of nitrogen from protein. For instance, pesticide treatments and

tillage could be changed so as to facilitate maximum proteolysis by the soil

microflora. This might include the substitution of pesticides which do not interfere in protein metabolism. No-till methods may not be best for the degradation

of proteins and peptides, as proteolysis is an aerobic process. Plowing helps to

increase soil aeration, which is important for the incorporation and transformation of organic fertilizer in soil. In some cases liming acid soils may improve the

degradation of proteinaceous wastes.

Protein transformation affects many agricultural and biological processes.

Therefore, more research on proteolysis and protein transformation in soil is

needed. A better understanding of these problems could help agronomists to

improve and maintain soil fertility through the use of proteinaceous wastes as

supplemental fertilizers.


The authors thank Drs. Jon K. Hall and Les E. Lanyon for their assistance and helpful comments.


Albert, J. T., and Harter, R. D. 1973. Soil Sci. 115, 130-136.

Alexander, M. 1977. “Introduction to Soil Microbiology,” 2nd ed. Wiley, New York.

Ambroz, Z. 1966. Sb. Vys. Sk. Zemed. Brne Rada Al, 57-62.

Ambroz, 2. 1970. Zentralbl. Bakteriol. Parasitende. Abt. 2 125, 433-437.

Aomine, S.,and Kobayashi, Y. 1964. Soil Sci. P h Nutr. (Tokyo)10, 28-32.

Appleby, J. C. 1955. J . Gen. Microbiol. 12, 526-533.

Armstrong, D. E., and Chesters, G. 1964. Soil Sci. 98, 39-52.

Banwart, W. L., and Bremner, J. M. 1976. Soil Biol. Biochem. 8, 439-443.

Basaraba, J., and Starkey, R. L. 1966. Soil Sci. 101, 17-23.



Batistic, L., and Mayaudon, J. 1978. Rev. Ecol. Biol. Sol 14, 499-507.

Bei-Bienko, N. V. 1970. Pochvovedenie 2, 87-93.

Bellinck, C., and Mayaudon, J. 1978. Rev. Ecol. Biol. Sol 15, 435-444.

Benoit, R. E., Starkey, R. L., and Basaraba, J. 1968. Soil Sci. 105, 153-158.

Biederbeck, V. O., and Paul, E. A. 1W. Soil Sci. 115,357-366.

Black, C. A. 1968. “Soil-Plant Relationships,” 2nd ed. Wiley, New York.

Blackbum, T. H., and Hobson, P. N. 1962. J. Gen. Microbiol. 29, 69-81.

Blagoveshchenskaya,Z. K., and Danchenko, N. A. 1974. Sov. SoilSci. (Engl. Transl.) 6,569-575.

Behme, H., and Ziegler, H. 1969. Mycopathol. Mycol. Appl. 38, 247-255.

Boulter, D., and Derbyshire, E. 1977. In “Plant Proteins” (G. Norton, ed.),pp. 3-24. Buttenworth,


Boyd, S. A., Sommers, L. E., and Nelson, D. W. 1980. Soil Sci. Soc. Am. J . 44, 1179-1186.

Bremner, J. M. 1949. J. Agric. Sci. 39, 181-193.

Bremner, J. M. 1955. J. Agric. Sci. 46, 247-256.

Bremner, J. M. 1965. In “Soil Nitrogen’’ (W. V. Bartholomew and F. E. Clark, eds.). Amer. Soc.

Agron., Madison, Wisconsin.

Brydon, J. E., and Sowden, F. J. 1959. Can.J. Soil Sci. 39, 136-143.

Buckman, H. O., and Brady, N. C. 1966. “The Nature and Proprties of Soils.” MacMillan, New


Butler, I. H. A., and Ladd, J. N. 1969. Aust. J. Soil Res. 7, 263-268.

Butler, J. H. A., and Ladd, J. N. 1971. Soil Biol. Biochem. 3, 249-257.

Cahenzli, M., and Staffeldt, E. E. 1976. Proc. Int. Biodegradation Symp. 3rd, pp. 523-532.

Campbell, C. A., Biederbeck, V. O., and Warder, F. G. 1971. Soil Sci. SOC. Am. Proc. 35,


Capaldi, R. A. 1977. In “Membrane Proteins and Their Interactions with Lipids” (R. A. Capaldi,

ed.), pp. 1-19. Dekker, New York.

Chalvignac, M. A. 1953. Ann. Inst. Pusteur (Paris)84, 816-819.

Chang, C. W., and Bandurski, R. S. 1964. Plant Physiol. 39, 60-64.

Cheng, H. H., and van Hove, J. 1964. Pedologie 14, 8-23.

Chmel, L., and Vlacilikova, A. 1975. Sabouraudia 13, 185-191.

Chunderova, A. N. 1970. Sov. Soil Sci. (Engl. Transl.) 2, 308-314.

Clark, F. E. 1967. In “Soil Biology” (A. Burges and F. Raw, eds.), pp. 15-49. Academic Press,

New York and London.

Clark, F. E., and Paul, E. A. 1970. Adv. Agron. 22, 375-435.

Cox, D. J. 1978. J . Appl. Bactetiol. 45, 259-266.

Cullimore, D., and Ball, L. 1978. Appl. Environ. Microbiol. 36, 959-961.

Cunningham, L. 1%5. Compr. Biochem. 16, 85-188.

Dangerfield, J. A., Westlake, D. W. S., andcook, F. D. 1978. Can.J . Microbiol. 24, 1520-1525.

Das, A., Chatterjee, M., and Roy, A. 1979. Mycologia 71, 530-536.

Davies, R. I., Coulson, C. B., and Lewis, D. A. 1964. J. Soil Sci. 15, 299-309.

Dertinger, H., and Jung, H. 1970. “Molecular Radiation Biology.” Springer-Verlag, New York.

Dunican, L. K., and Rosswall, T. 1974. I n “Soil Organisms and Decomposition in Tundra” (A. J.

Holding et al.. eds.),pp. 79-92. IBP Tundra Biome Steering Comm., Stockholm.

Eklund, E., Backman, T., and Gyllenberg, H. G. 1971. Zentralbl. Bokteriol. Parusitenkde. Abt. 2

126, 725-734.

Ensminger, L. E. 1942. Soil Sci. 54, 191-197.

Ensminger, L. E., and Gieseking, J. E. 1939. Soil Sci. 48, 467-473.

Ensminger, L. E., and Gieseking, J. E. 1941. Soil Sci. 51, 125-132.

Ensminger, L. E., and Gieseking, J. E. 1942. Soil Sci. 53, 205-209.

Estemann, E. F., and McLaren, A. D. 1959. J. Soil Sci. 10,-78.



Estermann, E. F., and McLaren, A. D. 1961. Plant Soil 15, 243-260.

Estermann, E. F., Peterson, G. H., and McLaren, A. D. 1959. Soil Sci. Soc.Am. Proc. 23,31-36.

Felbeck, G . T. 1971. Soil Sci. 111, 42-48.

Fergus, C. L. 1964. Mycologia 56, 267-284.

Flaig, W., Beutelspacher, H., and Rietz, E. 1975. In “Soil Components” (J. E. Gieseking, ed.),

Vol. 1, pp. 1-211. Springer-Verlag, New York.

Ghinea, L. 1964. Trans. In?. Congr. Soil Sci. 8th 3, 857-869.

Gill, P. P., and Modi, V. V. 1981. Foliu Microbiol. 26, 78-82.

Goldstein, J. L., and Swain, T. 1965. Phytochemistry 4, 185-192.

Goulden, J. D. S., and Jenkinson, D. S . 1959. J. Soil Sci. 10, 264-270.

Gray, K. R., and Biddlestone, A. J. 1974. In “Biology of Plant Litter Decomposition” (C. H.

Dickinson and G. J. F. Pugh, eds.), Vol. 2, pp. 743-775. Academic Press, New York.

Gray, T. R. G., and Williams, S. T. 1971. “Soil Micro-Organisms.” Hafher, New York.

Greenland, D. J. 1965. Soils Fen. 28, 521-532.

Griffin, D. M. 1960. Trans. Br. Mycol. SOC. 43, 583-5%.

Griffin, D. M. 1972. “Ecology of Soil Fungi.” Syracuse Univ. Press, Syracuse.

Griffith, S. M., and Thomas R. L. 1979. Soil Sci. SOC.Am. J . 43, 1138-1140.

Hankin, L., and Hill, D. E. 1978. Soil Sci. 126, 40-43.

Hankin, L., Sands, D. C., and Hill, D. E. 1974. Soil Sci. 118, 38-44.

Harter, R. D. 1975. Soil Sci. 120, 174-181.

Harter, R. D., and Stotzky, G. 1971. Soil Sci. SOC. Am. Proc. 35, 383-389.

Harter, R. D., and Stotzky, G. 1973. Soil Sci. SOC.Am. Proc. 37, 116-123.

Haworth, R. D. 1971. SoilSci. 111,71-79.

Hobson, P. N. 1973. Proc. Biochem. 8(1), 19-25.

Hobson, P. N., Bousefield, S., and Summers, R. 1974. CRC Crit. Rev. Environ. Control 4,


Holding, A. J., Franklin, D. A., and Watling, R. 1965. J. Soil Sci. 16, 44-59.

Hunt, S. 1970. “Polysaccharide-Protein Complexes in Invertebrates.” Academic Press, New York.

Ilyaletdinov, A. N., Mamilov, Sh. Z., and Adiev, A. 1972. Symp. Biol. Hung. 11, 117-120.

Ishizawa, S., Araragi, M., and Suzuki, T. 1969. Soil Sci. Plant Nutr. (Tokyo) 15, 104-112.

Jenkinson, D. S., and Tinsley, J. 1959. J. Soil Sci. 10, 245-263.

Katznelson, H., and Rouatt, J. W. 1957. Can. J . Microbiol. 3, 265-269.

Katznel’son, R. S., and Ershov, V. V. 1958. Microbiology (Engl. Transl. of Mikrobiologiya,

Washington, D.C.) 27, 81-88.

Keay, L. 1971. Proc. Biochem. 6(8), 17-21.

Keeney, D. R., and Bremner, J. M. 1964. Soil Sci. Soc.Am. Proc. 28, 653-656.

Khaziyev, F. Kh. 1977. Sov. Soil Sci. (Engl. Transl.) 9, 552-563.

Klein, D. A. 1977. Ecology 58, 184-190.

Knosel, D. 1974. Z. Pfanzenernaehr. Bodenkd. 81, 602-605.

Knowles, J. R., and Gutfreund, H. 1974. In “Chemistry of Macromolecules” (H. Gutfreund, ed.),

pp. 376-397. Univ. Park Press, Baltimore, Maryland.

Kobayashi, M., Takahashi, E., and Kawaguchi, K. 1967. Soil Sci. 104, 113-118.

Kolesnikova, I. G., Khokhlova, Yu. M., Sergeeva, L. N., and Shabanova, E. M. 1972. Microbiology (Engl. Transl. of Mikrobiologiya, Washington, D.C.) 41, 784-788.

Kononova, M. M. 1966. “Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil

Fertility,” 2nd Engl. ed. Pergamon, New York.

Kuo, M. J., and Alexander, M. 1967. J. Bacteriol. p4, 624-629.

Kuprevich, V. F., and Shcherbakova, T. A. 1971. “Soil Enzymes.” Indian Natl. Documentation

Centre, New Delhi.

Ladd, J. N. 1964. Aust. J . Biol. Sci. 17, 153-169.



Ladd, J. N. 1972. Soil Biol. Biochem. 4, 227-237.

Ladd, J. N., and Brisbane, P. G. 1967. Ausf. J . Soil Res. 5, 161-171.

Ladd, J. N., and Butler, J. H. A. 1966. Ausf. J. Soil Res. 4, 41-54.

Ladd, J. N., and Butler, J. H. A. 1%9a. Ausr. J. Soil Res. 7, 241-251.

Ladd, J. N., and Butler, J. H. A. 1969b. Ausr. J. Soil Res. 7, 253-261.

Ladd, 1. N., and Butler, J. H. A. 1971. Soil Biol. Biochem. 3, 157-160.

Ladd, J. N., and Butler, J. H. A. 1972. Soil Biol. Biochem. 4, 19-30.

Ladd, J. N., and Butler, J. H. A. 1975. In “Soil Biochemistry” (E. A. Paul and A. D. McLaren,

eds.), Vol. 4, pp. 143-194. Dekker, New York.

Lajudie, J., and Chalvignac, M. 1950. Ann. Insr. Pusreur (Paris) 90, 359-361.

Lewis, J. A., and Starkey, R. L. 1968. Soil Sci. 106, 241-247.

Loomis, W. D., and Battaile, J. 1966. Phytochemisrry 5, 423-438.

Lynch, D. L., and Cotnoir, L. J., Jr. 1956. Soil Sci. Soc. Am. Proc. 20, 367-370.

Lynch, D. L., and Lynch, C. C. 1958. Nurure (London) 181, 1478-1479.

Lytle, C. R., and Perdue, E. M. 1981. Environ. Sci. Technol. 15, 224-228.

Marshman, N. A., and Marshall, K. C. 1981. Soil Biol. Biochem. 13, 127-134.

Martin, J. P., and Haider, K. 1979. Appl. Environ. Microbiol. 38, 283-289.

Martin, J. P., Parsa, A. A., and Haider, K. 1978. Soil Biol. Biochem. 10, 483-486.

Mason, H. S. 1955. Nature (London) 175, 771-772.

Matsubara, H., and Feder, J. 1971. In “The Enzymes” (P. D. Boyer, ed.), Vol. 3, pp. 721-795.

Academic Press, New York.

Mayaudon, J., and Sarkar, J. M. 1974. Soil Biol. Biochem. 6, 275-285.

Mayaudon, J., Batistic, L., and Sarkar, J. M. 1975. Soil Biol. Biochem. 7, 281-286.

McLaren, A. D. 1954a. J. Phys. Chem. 58, 129-137.

McLaren, A. D. 1954b. Soil Sci. SOC. Am. Proc. 18, 170-174.

McLaren, A. D., and Estemann, E. F. 1956. Arch. Biochem. Biophys. 61, 158-173.

McLaren, A. D., Reshetko, L., and Huber, W. 1957. Soil Sci, 83,497-502.

McLaren, A. D., Peterson, G. H., and Barshad, I. 1958. Soil Sci. Soc.Am. Proc. 22, 239-244.

McLaren, A. D., Jensen, W. A., and Jacobson, L. 1960. Plant Physwl. 35, 549-556.

Miller, A. 1978. In “Characterization of Protein Conformation and Function” (F. Franks, ed.),pp.

62-69. Symposium Press, London.

Mizusawa, K., Ichishima, E., and Yoshida, F. 1966. Agric. Biol. Chem. 30, 35-41.

Murakami, M., Fukunaga, K., Hatsuhahi, M., and Ono, M. 1969. Biochim. Biophys. Acra 192,


Namdeo, K. N., and Dube,J. N. 1973. Soil Biol. Biochem. 5, 855-859.

Neuberger, A. 1978. In “Characterization of Protein Conformation and Function” (F. Franks, ed.),

pp. 144-156. Symposium Press, London.

O’Brien, R. T. 1978. In “Nitrogen in Desert Ecosystems” (N. E. West and J. J. Skujins, eds.), pp.

50-59. Dowden, Hutchinson, & Ross, Stroudsburg, Pennsylvania.

Okafor, N. 1966. Plant Soil 25, 211-237.

Ong, P. S . , and Gaucher, G. M. 1973. Can. J. Microbiol. 19, 129-133.

Parsons, J. W., and Tinsley, J. 1975. In “Soil Components” (J. E. Gieseking, ed.), pp. 263-304,

Springer-Verlag, New York.

Pmck, L., and Allison, F. 1951. Science (Wushingron, D.C.) 114, 130-131.

Pmck, L., Dyal, R., and Allison, F. E. 1954. Soil Sci. 78, 109-118.

Piper, T. J., and Posner, A. M. 1968. Soil Sci. 106, 188-192.

Pochon, J., and Chalvignac, M. 1952. Ann. Imr. Pusreur (Paris) 82, 690-695.

Pochon, J., and Tchan, Y. 1947. Ann. Inst. Pusfeur (Paris) 73,696-700.

Priest, F. G. 1977. Bacreriol. Rev. 41, 711-753.

Prudlov, B., Ushakova, V. I., and Egorov, N. S. 1973. Microbiology (Engl. Trunsl. of

Mikrobiologiyu, Washington, D.C.) 42, 18 1-185.


38 1

Pugh, G. J. F., and Mathison, G. E. 1962. Trans. Br. Mycol. SOC. 45, 567-572.

Putyatina, T. N. 1966. Sel‘khoz. Biol. 1, 770-774.

Reid, K. B. M. 1978. In “Characterization of Protein Conformation and Function” (F. Franks, ed.),

pp. 70-83. Symposium Press, London.

Robert-Gero, M., Hardisson, C., LeBorgne, L., and Vidal, G. 1967. Ann. Insr. Pusteur (Paris)113,


Rodriguez-Kabana, R., Kelley, W. D., and Curl, E. A. 1978. Can. J. Microbiol. 24, 487-490.

Romeiko, I. N. 1969. Pochvovedenie 10, 87-90.

Ross, D. J., and Cairns, A. 1978. N.Z.J. Sci. 21, 481-486.

Rowell, M. J., Ladd, J. N., and Paul, E. A. 1973. Soil Biol. Biochem. 5, 699-703.

Rupley, J. A. 1978. In “Characterization of Protein Conformation and Function” (F. Franks, ed.),

pp. 54-61. Symposium Press, London.

Ruthenberg, H. 1976. “Farming Systems in the Tropics.” Oxford Univ. Press (Clarendon), Oxford.

Sarkar, J. M., Batistic, L., and Mayaudon, J. 1980. Soil Biol. Biochem. 12, 325-328.

Schnitzer, M., Kodama, H., and Ivarson, K. C. 1980. Z. Pflanzenernuehr. Bodenkd. 143,334-343.

Seidler, R. J., Allen, D. A,, Colwell, R.R., Joseph, S. W., and Daily, 0. P. 1980. Appl. Environ.

Microbiol. 40,715-720.

Siebert, M. L., and Toerien, D. F. 1969. Water Res. 3, 241-245.

Simonart, P., Batistic, L., and Mayaudon, J. 1967. Plant Soil 27, 153-161.

Sizemore, R. K., and Stevenson, L. H. 1974. Life Sci. 15, 1425-1432.

Sowden, F. J. 1966. Soil Sci. 102, 264-271.

Sowden, F. J. 1970. Can. J . Soil Sci. 50, 233-241.

Speir, T. W., and Ross, D. J. 1981. Soil Biol. Biochem. 13, 225-229.

Stanlake, G. J., and Clark, J. B. 1975. Appl. Environ. Microbiol. 30, 335-336.

Stefani, A., and Sequi, P. 1978. Z. Pflanzenernuehr. Bodenkd. 141, 3-10.

Stefaniak, 0. 1968. Plant Soil 29, 193-204.

Stefaniak, 0. 1972. Symp. Biol. Hung. 11, 121-124.

Stevenson, F. J. 1956. Soil Sci. SOC. Am. Proc. 20, 201-204.

Stevenson, F. J., and Goh, K. M. 1971. Geochim. Cosmochim. Acra 35, 471-483.

St&kli, A. 1946. Schweiz. Z. Forstwes. 97, 356-378.

Sugahara, I., Sugiyama, M., and Kawai, A. 1974. In “Effect of the Ocean Environment on

Microbial Activities” (R. R. Colwell and R. Y. Morita, eds.), pp. 327-340. Univ. Park Press,

Baltimore, Maryland.

Swaby, R. J., and Ladd, J. N. 1962. Trans. Inr. Soil Sci. SOC., Commissions IV & V, pp. 197-202.

Talibudeen, 0. 1950. Nature (London) 166, 236.

Taylor, W. I., and Battersby, A. R. (eds.) 1967. “Oxidative Coupling of Phenols.” Dekker, New


Theis, E. R. 1945. J . Biol. Chem. 157, 23-33.

Tinsley, J., and Zin, M. K. 1954. Congr. Int. Sci. Sol 5th 2, 342-347.

Torstensson, L. 1974. Swed. J . Agric. Res. 4, 151-160.

Torstensson, L. 1975. Swed. J . Agric. Res. 5, 177-183.

Ueda, S., and Earle, R. C. 1972. J. Gen. Appl. Microbiol. 18, 239-248.

Vagnerova, K., and Macura, J. 1974a. Folia Microbiol. 19, 322-328.

Vagnerova, K., and Macura, J. 1974b. Folia Microbiol. 19, 329-339.

Vagnerova, K., and Macura, J. 1974c. Folia Microbiol. 19, 525-535.

van Schreven, D. A. 1972. Plant Soil. 36, 561-569.

van Schreven, D. A., and Harmsen, G. W. 1968. In “The Ecology of Soil Bacteria” (T. R. G. Gray

and D. Parkinson, eds.), pp. 474-499. Univ. of Toronto Press, Toronto.

Varanka, M. W., Zablocki, Z. M., and Hinesly, T. D. 1976. J. Water Pollur. Conrrol Fed. 48,

1728- 1740.

Venna, L., and Martin, J. P. 1976. Soil Biol. Biochem. 8, 85-90.



Verma, L., Martin,J. P., and Haider, K . 1975. Soil Sci. Soc. Am. Proc. 39, 279-284.

Visser, S. A., and Banage, W. B. 1973. Rev. Ecol. Biol. Sol 10, 55-70.

Voets, J. P., Dedeken, M., and Bessems, E. 1%5. Naturwissemchajlen 52, 476.

Vogel, R., Trautschold, I., and Werle, E. 1%8. “Natural Proteinase Inhibitors.” Academic Press,

New York and London.

Wagner, G. H., and Mutatker, U. K. 1%8. Soil Sci. SOC.Am. Proc. 32, 683-686.

Wainwright, M., and Pugh, G. J. F. 1973. Soil Biol. Biochem. 5, 577-584.

Wainwright, M., and Pugh, G. J. F. 1975. Soil Biol. Biochem. 7 , 1-4.

Waksman, S. A., and Iyer, K. R. N. 1932. Soil Sci. 34,43-69.

Walsh, K. A. 1975. I n “Roteases and Biological Control” (E. Reich, D. B. Rifkin, and E. Shaw,

eds.), pp 1-11. Cold Spring Harbor Lab., Cold Spring Harbor, New York.

Warren, G. B. 1978. I n “Characterization of Protein Conformation and Function” (F. Franks, ed.),

pp. 94-1 14. Symposium Press, London.





J. Neil Rutger

U.S. Department of Agriculture,

Agricultural Research Service

Agronomy and Range Science Department

University of California at Davis

Davis, California

I. Introduction ................................



U. Breding Applications of Semidwarf Mutants .....

A. In California ....


B. InJapan .........................


C. Other Localities



111. Breeding Applications of Early Maturity Mutants ............

IV. Breeding Applications of Other Types of Mutants ...........................





Disease Resistance . .


Genetic Male Steriles.. . . . . . . . . . .

Marker Genes.. ...........................













40 1









In the last decade, induced mutation has assumed its correct role as one of the

several tools available to progressive plant breeders. A striking example of this

role has been in rice breeding in California, where induced and spontaneous

mutants have not only been released directly as improved cultivars but more

importantly have been used as donor parents in standard cross-breeding procedures. Since 1976, two induced semidwarf mutants have been released directly


Copyright 8 by Academic Press, Inc.

All rights of reproduction in any form reserved.

ISBN 0-12000736-3




as rice cultivars (Rutger et al., 1977; Camahan et al., 1981b); six more semidwarf cultivars have been developed by crossing with an induced semidwarf

mutant or its derivatives (Carnahan et al., 1982; Rutger, 1982a). An induced

glutinous endosperm mutant was released directly as an improved cultivar during

the same period (Carnahan et al., 1979) and a spontaneous mutation for early

maturity was released previously (Camahan et al., 1975). Both of these cultivars

have also served as the donor parent of subsequent releases (Carnahan et al.,

1981a; Johnson et al., 1980, 1981).

Induced semidwarf mutants also are being used widely in breeding programs

in Japan (Sato, 1980). The increase in use of mutants in rice breeding worldwide

is further documented by Kawai (1982), who listed 45 rice cultivars derived

either directly from induced mutation or from crossbreeding with mutants; this

may be compared to a similar listing of 30 cultivars by Mikaelsen (1980) just 3

years earlier, and of 13 cultivars by Sigurbjomsson and Micke (1974) some 6

years before that.

Until the present time, the most useful types of mutants in rice have been

characters that were simply inherited and usually controlled by single recessive

genes: semidwarfism, early maturity, waxy endosperm, genetic male sterility,

and various phenotypic markers such as hull color. Such mutants have been used

in three general modes: for direct release as improved cultivars, for donor gene

sources in standard cross-breeding or hybridization programs, and for developing

near-isogenic comparisons for testing agronomic and physiologic hypotheses.

The second category, that is, as parents in hybridization programs, is becoming

the most important practical application of mutants. Thus, of the rice cultivars

released since 1975, 16 came from hybridization with an induced mutant donor

source and 9 were direct releases of induced mutants, as compared to 4 and 16

from hybridization and direct releases, respectively, of those released before

1975 (Kawai, 1982).

Mutants are very useful in situations where only one or two simple changes in

well-adapted local cultivars are needed, especially when the local cultivar carries

gene complexes adapted to modem agriculture (Micke, 1979). Such complexes

may include cold tolerance, grain quality, insect or pest resistance, and tolerance

to environmental stress. Under these circumstances it may prove easier and faster

to improve the local cultivar by inducing a needed mutation than by hybridizing

it with an unadapted donor from world collections, because in the latter case the

desired complex of characters may be difficult and more time-consuming to

recover (Rutger and Lehman, 1977).

As Nilan et al. (1977) have pointed out, induced mutation is best considered as

a supplement to natural genetic variability. The challenge to plant breeders is to

be alert for situations in which this supplementation can be used efficiently.

Some of the more successful applications of induced and spontaneous mutation

in rice improvement are reviewed in this article.

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VII. Ecological and Agronomic Importance of Protein Transformation

Tải bản đầy đủ ngay(0 tr)