Tải bản đầy đủ - 0 (trang)
VII. Appendix: List of Symbols

VII. Appendix: List of Symbols

Tải bản đầy đủ - 0trang

KEITH W.T. GOULDING

Uncorrected Vanselow selectivity coefficient

Amount of K+ adsorbed at time t (Section V)

Amount of K+ adsorbed at zero time (Section V)

Amount of K+ adsorbed at equilibrium (Section V)

Apparent adsoption rate coefficient (Section V)

Apparent desorption rate coefficient (Section V)

Mean ionic molality [Eq. (30)]

Molarity of cation A

Mole fraction of cation A

Number of moles of water sorbed by the exchanger [Eq.(1 l)]

“quantity” of K+ in the soil (Section IV,F)

Gas constant

Anhydrous radius of an ion

Equivalent anionic radius of a clay (Section IV,E,2)

Absolute temperature



Time

Valency of cation A

Valency of cation B

Fractional K saturation of exchange capacity

Ion charge (Section IV,B,l)

Activity coefficient of cation A in solution

Free energy term defined by Karamanos and Turner (1977) (Section IV,F)

Potassium potential with reference to calcium

Excess free energy of exchange

Standard Gibbs free energy of exchange

Activation energy

Excess enthalpy of exchange

Standard enthalpy of exchange

Integral enthalpy of exchange

Activation enthalpy

Standard enthalpy of exchange for liquid or solution phase

Standard enthalpy of exchange for solid phase

Change in adsorbed (exchangeable) K+ (Section IV,F)

Excess entropy of exchange

Standard entropy of exchange

Activation entropy

Chemical potential

Chemical potential in standard or reference state

Osmotic coefficient [Eq.(30)]

+



ACKNOWLEDGMENT

The critical assessment of this article by Dr.0.Talibudeen is gratefully acknowledged.



REFERENCES

Addiscott, T. M., and Johnston, A. E. 1975. J . Agric. Sci. 84,513-524.

Addiscott, T. M., and Talibudeen, 0. 1%9. Potush Rev. (Berm) Subj. 4, 45th Suite, pp. 1-24.



THERMODYNAMICS AND POTASSIUM EXCHANGE



26 1



Argersinger, W. J., Davidson, A. W., and Bonner, 0. D. 1950. Truns. Kuns. Acad. Sci. 53,

404-410.

Arnold, P. W. 1962. Proc. Fert. SOC.72, 25-43.

Assa, A. D. 1976a. Cuh. ORSTOM Ser. Pedol. 14, 219-226.

Assa, A. D. 1976b. Cuh. ORSTOM Ser. Pedol. 14, 279-286.

Babcock, K. L. (1963). Hilgurdiu 34, 417-542.

Bansal, 0. P. 1982. J. Soil Sci. 33, 63-71.

Barrer, R. M., and Klinowski, J. 1974. J. Chem. SOC.Furuduy Truns. I 70, 2080-2091.

Barrer, R. M., and Klinowski, J. 1979. J. Chem. Soc. Furuday Truns. I 75, 247-251.

Barrer, R. M., Rees, L. V. C.,and Ward, D. J. 1%3. Proc. R. Soc.London Ser. A 273, 180-197.

Barrer, R. M., Klinowski, J., and Sherry, H. S. 1973. J . Chem. SOC. Furaduy Tram. 2 69,

1669- 1676.

Beckett, P. H. T. 1971. Potash Rev. (Berne) Subj. 5 , 30th Suite, pp. 1-41.

Beckett, P. H. T. 1972. Adv. Agron. 24, 379-412.

Beckett, P. H. T., and Nafady, M. H. M. 1968. J. Soil Sci. 19, 216-236.

Bolt, G. H. 1967. Nerh. J. Agric. Sci. 15, 81-103.

Bolt, G. H., Sumner, M. E., and Kamphorst, A. 1963. Soil Sci. SOC. Am. Proc. 27, 294-299.

Calvet, R., and Pratt, H. 1956. “Microcalorimetrie,” Masson, Paris.

Chu, S.-Y., and Sposito, G. 1981. Soil Sci. SOC. Am. J . 45, 1084-1089.

Clearfield, A., and Kullberg, L. H. 1974. J. Phys. Chem. 78, 1812-1817.

Coleman, N. T. 1952. Soil Sci. 74, 115-125.

Cooke, G. W. 1979. J. Soil Sci. 30, 187-213.

Cooke, G. W., and Gething, P. A. 1978. In “Potassium ResearcLReview and Trends,” pp.

361-405. Int. Potash Inst., Beme.

Cotton, F. A., and Wilkinson, G. 1972. “Advanced Inorganic Chemistry.” Wiley (Interscience),

London.

Coulter, B. S. 1969. J . Soil Sci. 20, 72-83.

Coulter, B. S . , and Talibudeen, 0. 1968. J. Soil Sci. 19, 237-250.

Cremers, A., and Laudelout, H. 1966. Soil Sci. SOC. Am. Proc. 30, 570-576.

Cruickshank, E. H., and Meares, P. 1957. Trans. Furaduy SOC. 53, 1289-1298.

Deist, J., and Talibudeen, 0. 1967a. J . Soil Sci. 18, 125-137.

Deist, J., and Talibudeen, 0. 1967b. J. Soil Sci. 18, 138-148.

Drake, M. 1964. In “Chemistry of the Soil” (F. E. Bear, ed.), pp. 395-444. Reinhold, New York.

Eberl, D. D. 1980. Clays Clay Miner. 28, 161-172.

Eisenmann, G. 1961. In “Symposium on Membrane Transport and Metabolism” (A. Kleinzeller

and A. Kotyk, eds.), pp. 163-179. Academic Press, New York.

Eisenmann, G. 1962. Biophys. J . 2 (Suppl.), 259-323.

Ekedahl, E., Hogfeldt, E., and Sillen, L. G. 1950. Actu Chem. Scund. 4, 556-558.

El-Prince, A., and Babcock, K. L. 1975. Soil Sci. 120, 332-338.

El-Prince, A., and Sposito, G. 1981. Soil Sci. SOC. Am. J . 45, 277-282.

El-Prince, A., Vanselow, A. P., and Sposito, G. 1980. Soil Sci. SOC.Am. J. 44, 964-969.

Eriksson, E. 1952. Soil Sci. 74, 103-113.

Faucher, J. A., and Thomas, H. C. 1954. J. Chem. Phys. 22, 258-261.

Gaines, G. L., and Thomas, H. C. 1953. J. Chem. Phys. 21, 714-718.

Gaines, G. L., and Thomas, H. C. 1955. J. Chem. Phys. 23, 2322-2326.

Galindo, G. G., and Bingham, F. T. 1977. Soil Sci. SOC. Am. J . 41, 883-886.

Gapon, Y. N. 1933. J. Gen. Chem. USSR (Engl. Transl. of Zh. Obshch. Khim.) 3, 144-160.

Gast, R. G. 1968. Truns. Int. Congr. Soil Sci. 9th. 1, 587-596.

Gast, R. G. 1969. SoilSci. SOC.Am. Proc. 33, 37-41.

Gast, R. G. 1972. Soil Sci. SOC. Am. Proc. 36, 14-19.

Gast, R. G., van Blade], R., and Deshpande, K. B. 1969. Soil Sci. SOC.Am. Proc. 33, 661-664.



262



KEITH W. T. GOULDING



Gessa, C. 1970. Agrochimica 14, 188-197.

Glasstone, S.,Laidler, K. J., and Eyring, H.1941. “The Theory of Rate Processes.” McGraw-Hill,

New York.

Goedert, W. J., Corey, R. B., and Syers, J. K. 1975. Soil Sci. lu), 107-1 11.

Goulding, K. W. T. 1980. Ph.D.Thesis, UNv. of London.

Goulding, K. W. T. 1981. J. Sci. FoodAgric. 32, 667-670.

Gouldmg, K. W. T. 1983. J. Soil Sci. 34, 69-74.

Gouldmg, K. W. T., andTalibudeen, 0. 1979. J. SoilSci. 30, 291-302.

Goulding, K. W. T., and Talibudeen, 0. 1980. J . Colloid Interface Sci. 78, 15-24.

Gouldmg, K. W. T., and Talibudeen, 0. 1984a. J . Soil Sci. 35, in press.

Gouldmg,K. W. T., and Talibudeen, 0. 1984b. J. Soil Sci. 35, in press.

Grim,R. E. 1953. “Clay Mineralogy.” McGraw-Hill, New York.

Guggenheim, E. A. 1%7. “Thermodynamics.” North-Holland, Amsterdam.

Harter, R. D., and Kilcullen, B. M. 1976. Soil Sci. SOC. Am. J . 40,612-614.

Hoagland, D. R., and Martin, J. C. 1933. Soil Sci. 36, 1-32.

Hogfeldt, E., Ekedahl, E., and Sillen, L. G. 1950. Acra Chem. S c u d . 4, 828-829.

Hutcheon, A. T. 1966. J. Soil Sci. 17, 339-355.

Jackson, M. L. 1963. Ckzys Clay Miner. 11, 29-46.

Jensen, H. E. 1972, Arsskr. K . Vet. Landbokjsk (Copenhagen) 1972, pp. 88-103.

Jensen, H. E. 1973a. Agrochimicu 17, 181-190.

Jensen, H. E. 1973b. Agrochimicu 17, 191-201.

Jensen, H. E. 1975. Agrochimicu 19, 257-261.

Jensen, H.E., and Babcock, K. L. 1973. Hilgardiu 41, 475-488.

Johnston, A. E., and Addiscott, T. M. 1971. J. Agric. Sci. 76, 539-552.

Karamanos, R. E., and Turner, R. C. 1977. Geodermu 17, 209-218.

Keay, J., and Wild, A. 1961. Soil Sci. 92, 54-60.

Kerr, H.W. 1928. J. Am. SOC. Agron. 20, 309-335.

Laidler, K. J. 1965. “Chemical Kinetics,” 2nd ed. McGraw-Hill, New York.

Laudelout, H., and Thomas, H. C. 1965. J. Phys. Chem. 69, 339-340.

Laudelout, H., van Bladel, R., Bolt, G. H., and Page, A. L. 1%8a. Trans. Faruduy Soc. @4,

1477- 1488.

Laudelout, H., van Bladel, R., Gilbert, M., and Cremers, A. 1%8b. Truns. Int. Congr. Soil Sci. 9th

1, 565-575.

Laudelout, H., van Bladel, R., and Robeyns, J. 1972. Soil Sci. Soc.Am. Proc. 36, 30-34.

Lee, R., and Rowell, D. L. 1973. N.Z. J. Sci. 16, 839-846.

Lee, R.,and Rowell, D. L. 1975. J. Soil Sci. 26,418-425.

Lee, S . Y.,Jackson, M. L., and Brown, J. L. 1975. Clays Clay Miner. 23, 125-129.

Lim, C. H., Jackson, M. L., Koons, R. D., and Helmke, P. A. 1980. Clays Clay Miner. 28,

223-229.

Maes, A., and Cremers, A. 1977. 1. Chem. SOC. Faruduy Trans. 1 , 73, 1807-1814.

Maes, A., and Cremers, A. 1978. J. Chem. SOC.Faruday Trans. I , 74, 1234-1241.

Maes, A., Peigneur, P., and Cremers, A. 1976. Proc. Inr. Clay Con$. Mexico City, 1975. pp.

3 19-329.

Marques, I. M. 1968. Potash Rev. (Berne) Subj. 5 , Suite 29, 1-5.

Martin, H., and Laudelout, H. 1963. J. Chim. Phys. 60, 1086-1099.

Mathews, B. C., and Beckett, P. H. T. 1%2. J. Agric. Sci. 58, 59-64.

Mengel, K.,and K d b y , E. A. 1980. A h . Agron. 33, 59-110.

Memam, C. N., andmomas, H. C. 1956. J. Chem. Phys. 24,993-995.

Minter, B. A., and Talibudeen, 0. 1982. Lab. Pruct. 31, 1094-1096.

Munns, D. N. 1976. Soil Sci. SOC.Am. J. 40, 841-845.



THERMODYNAMICS AND POTASSIUM EXCHANGE



263



Norrish, K. 1954. Discuss. Faraday SOC. 18, 120-134.

Nye, P. H. 1968. J. Soil Sci. 19, 205-215.

Oster, J. D., and Sposito, G. 1980. Soil Sci. SOC. Am. J . 44, 258-260.

Page, M. B., and Talibudeen, 0. 1982a. J. Soil Sci. 33, 329-347.

Page, M. B., and Talibudeen, 0. 1982b. J . Soil Sci. 33, 771-778.

Perrott, K. W. 1981. Geoderma 26, 311-322.

Plancon, A., Besson, G., Gaultier, J. P., Mamy, J., and Tchoubar, C. 1979. Proc. Int. Clay Conf.

6th. pp. 45-54.

Poonia, S. R., and Talibudeen, 0. 1977. J . Soil Sci. 28, 276-288.

Raju, A. S., and Raman, K. V. 1978. Indian J. Agric. Chem. 11, 21-25.

Ravina, I., and de Bock, J. 1974. Soil Sci. Soc.Am. Proc. 38, 45-49.

Rich, C. I. 1972. In “Potassium in the Soil,” pp. 15-31. Int. Potash Inst., Berne.

Sawhney, B. L. 1972. Clays Clay Miner. 20, 93-100.

Schofield, R. K. 1955. Soils Fert. 18, 373-375.

Schroeder, D. 1972. In “Potassium in the Soil,” pp. 203-204. Int. Potash Inst., Berne.

Schuffelen, A. C. 1972. In “Potassium in the Soil,” pp. 75-88. Int. Potash Inst., Beme.

Singh, D., Pal, R., and Poonia, S . R. 1981. Geoderma 25, 55-62.

Singh, M., Singh, A. P., and Mittal, S . B. 1982. Plant Soil 65, 375-382.

Singh, M. M.,and Talibudeen, 0. 1969. J. Rubber Res. Insr. Malay. 21, 240-249.

Singh, M. M., and Talibudeen, 0. 1971. Proc. Int. Symp. Soil Ferr. Eval. New Delhi 1, 85-95.

Sivasubramaniam, S., and Talibudeen, 0. 1972. J. Soil Sci. 23, 163-176.

Sparks, D. L., and Jardine, P. M. 1981. Soil Sci. SOC.Am. J . 45, 1094-1099.

Sparks, D. L., and Liebhardt, W . C. 1981. Soil Sci. SOC.Am. J . 45, 786-790.

Sposito, G. 1977. Soil Sci. Soc. Am. J . 41, 1205-1206.

Sposito, G. 1981a. In “Chemistry in the Soil Environment,” (M. Stelly, ed.-in-chief), pp. 13-29.

Am. Soc. Agron., Madison, Wisconsin (Am. SOC. Agron. Spec. Publ. No. 40).

Sposito, G. 1981b. “The Thermodynamics of Soil Solutions.” Oxford Univ. Press (Clarendon),

Oxford.

Sposito, G., and Mattigod, S . V. 1979. Clays Clay Miner. 27, 125-128.

Talibudeen, 0. 1971. Proc. Int. Symp. Soil Fert. Eval. New Delhi 1, 97-103.

Talibudeen, 0. 1972. In “Potassium in the Soil,” pp. 97-112. Int. Potash Inst., Berne.

Talibudeen, 0. 1973. Rep. Prog. Appl. Chem. 58, 402-408.

Talibudeen, 0. 1974. Soils Fen. 37, 41-45.

Talibudeen, 0. 1981. In “The Chemistry of Soil Processes” (D. J. Greenland and M.H. B. Hayes,

eds.), pp. 115-1 17. Wiley, Chichester.

Talibudeen, O., and Goulding, K. W. T. 1983a. Clays Clay Miner. 31, 37-42.

Talibudeen, O., and Goulding, K. W. T. 1983b. Clays Clay Miner. 31, 137-142.

Talibudeen, O., and Page, M. B. 1978. F A 0 Soils Bull. 37, 88-99.

Talibudeen, 0..and Weir, A. H. 1972. J. Soil Sci. 23,456-474.

Talibudeen, O., Goulding, K. W.T., Edwards, B. S., and Minter, B. S . 1977. Lab. Pracr. 26,

952-955.

Thomas, G. W. 1977. Soil Sci. Soc.Am. J. 41, 230-238.

Thomas, H. C. 1965. In “Plant Nutrient Supply and Movement,” pp. 4-19. IAEA, Vienna. (IAEA

Tech. Rep. Ser. No. 48).

Thompson, H. S . 1850. J . R . Agric. SOC.Engl. 11, 68-74.

Tinker, P. B. 1964a. J . Soil Sci. 15, 24-34.

Tinker, P. B. 1964b. J. Soil Sci. 15, 35-41.

Udo, E. J. 1976. J. WestAfr. Sci. Assoc. 21, 241-248.

Udo, E . J. 1978. Soil Sci. Soc.Am. J . 42, 556-560.

van Bladel, R. 1967. Potash Rev. (Berne). Subj. 4, 38th Suite, pp. 1-12.



264



KEITH W. T. GOULDING



van Bladel, R. 1972. I n “Potassium in the Soil,” pp. 89-%. Int. Potash Inst., Beme.

van Bladel, R., and Laudelout, H. 1%7. Soil Sci. 104, 134-137.

van Schouwenberg, J. Ch., and SchufTelen, A. C. 1%3. Neth. J. Agric. Sci. 11, 13-22.

Vanselow, A. P. 1932. Soil Sci. 33,95-113.

Walsh, T. 1972. I n “Potassium in the Soil,” pp. 141-144. Int. Potash Inst., Beme.

Way, J. T. 1850. J. R. Agric. Soc. Engl. 11, 313-379.

Way, J. T. 1952. J. R. Agric. Soc. Engl. 13, 123-143.

Weast, R. C. 1971. “Handbook of Chemistry and Physics.” Chemical Rubber Co., Cleveland,

Ohio.

Weir, A. H. 1965. Clay Miner. 6, 17-22.

Wiedenfeld, R. P., and Hossner, L. R. 1978. Soil Sci. Soc. Am. J . 42,709-712.

Wild, A., and Keay, J. 1964. J . Soil Sci. 15, 135-144.

Wilson, G. M. 1964. J. Am. Chem. Soc. 86,127-130.

Woodruff, C. M. 1955a. Soil Sci. Soc. Am. Proc. 19, 36-40.

Woodruff, C. M. 195%. Soil Sci. Soc. Am. Proc. 19, 167-171.



ADVANCES IN AGRONOMY, VOL. 36



HERBICIDE ANTIDOTES:

DEVELOPMENT, CHEMISTRY, AND

MODE OF ACTION

Kriton K. Hatzios

Department of Plant Pathology and Physiology

Virginia Polytechnic Institute and State University

Blacksburg, Virginia



I. Introduction

...................................................

11. Development of Herbicide Antidotes ............

.....................

A. History .............................

B. Search for Herbicide Antidotes ......................................

111. Chemistry of Herbicide Antidotes. ...........



.................................................



al, and Toxicological Properties

C. Analytical Procedures.. ............................................

IV. Field Performance of Herbicide Antidotes ........

..................

A. Applications of Herbicide Antidotes ..................................

B. Factors Affecting Field Performance of Herbicide Antidotes ..............

C. Adverse Effects of Herbicide Antidotes .............

V. Mode of Action of Herbicide Antidotes.. ..................................

A. Mode of Antidotal Action of 1$-Naphthalic Anhydride. .................

B. Mode of Antidotal Action of R-25788 ................................

C. Mode of Antidotal Action of CGA-43089 ....

....................

VI. Degradation of Herbicide Antidotes in Plants ...............................

VII. summary ............................................................

References .................

...........................

.....



265

270

270

273

292

292

294

296

296

2%

299

300

30 1

302

304

308

309

310



310



1. INTRODUCTION

Organic herbicides represent the most effective weapon available to farmers

worldwide in their war against weeds. A fundamental reason for the widespread

use of these chemicals in modern agriculture is their ability to control selectively

a wide spectrum of weeds in a variety of crops. Generally, however, the differential response of plant species to a given herbicide applied at normal field rates is a

relative rather than an absolute characteristic. Any herbicide is selective to a

particular crop only within certain limits imposed by the complex interactions

265



Copyright 8 by Academic F’ress, Inc.

All rights of reprodunion in any form reserved.

ISBN 0-12-000736-3



266



W O N K. HATZIOS



between plants (crops and weeds competing with them), their environment, and

the herbicide (Ashton and Harvey, 1971). Many of the currently available herbicides that are useful in managing difficult-to-control weeds are not sufficiently

selective. In addition, the selective control of weeds that are botanically related

to crops has always been a problem. To overcome these problems several approaches have been tried, with varying degrees of success.

One approach, of course, is to develop new herbicides that are more selective

than those currently available. Although this approach has been quite successful

in the past, in recent years the high cost of developing new herbicides has

imposed limits. It is encouraging, however, that some new compounds with

strong activities and excellent selectivities have been introduced (Sanders,

1981). A second approach to overcoming the problem of the limited selectivity

of some currently available herbicides is to confer crop tolerance on these herbicides, which can be achieved mechanically, genetically, or chemically. The

mechanical approach of conferring crop tolerance on nonselective herbicides

requires applying these chemicals in such a way as to avoid or minimize their

contact with susceptible crops. Successful techniques to achieve this include

directed sprays or critical timing of herbicide application to weeds prior to crop

emergence. The success of this technique is reflected in the fact that for the past

10-15 years almost 70% of the area treated with herbicides in the United States

employed preemergence rather than postemergenceherbicide applications (Adler

et al., 1977).

Conferring crop tolerance on nonselective herbicides genetically has challenged plant breeders for many years. To date, however, the success of this

approach has been limited, although the discovery and study of weed biotypes

resistant to triazine and bipyridylium herbicides has generated new interest in this

field (LeBaron and Gressel, 1982). The potential use of plant breeding techniques for conferring crop tolerance on herbicides has been reviewed by Gressel

et al. (1978), Gressel (1980), and LeBaron and Gressel (1982). Finally, an

approach that has attracted considerable interest is based on the concept of

enhancing crop tolerance to nonselective herbicides chemically with the use of

herbicide antidotes.. According to Hoffman (1962), who introduced the idea of

chemical enhancement of crop tolerance to herbicides, the appropriate use of

herbicide antidotes could permit (1) the use of higher rates of herbicides with

marginal selectivities resulting in more effective weed control; (2) the use of

nonselective herbicides for selectiveweed control; (3) the use of herbicides under

conditions where crop damage is liable to occur, such as with susceptible crop

varieties or adverse weather or soil conditions; and (4) the protection of valuable

crops that have been accidentally treated with a nonselective herbicide. In addition, herbicide antidotes could also be used as potential tools for elucidating sites

and mechanisms of herbicide action.



HERBICIDE ANTIDOTES



267



The term antidote is used routinely in pharmacology to describe a remedy that

counteracts the effects of a poison. The term herbicide antidote, as used by

agronomists and weed scientists, refers to a chemical agent that selectively

protects crop plants from herbicide injury without protecting weeds. In general, a

drug antidote counteracts the action of a drug on humans at an internal site. In

contrast, the site of the protective action of herbicide antidotes could be external

or internal. Because of this, other terms, such as herbicide safener, herbicide

antagonist, or crop protectant, have also been introduced and are used interchangeably to describe those chemical agents that enhance crop tolerance to

herbicides. Crop protectants that wsrk outside the plant interfere mainly with

herbicide absorption by acting as physical barriers or by competing for the sites

of herbicide entry. The most successful of the externally acting crop protectants

is activated carbon (charcoal), which has been used as a crop protectant against

injury from soil-applied herbicides for a long time [for reviews, see Blair et al.

(1976), Clapp (1974, 1975), and Gupta (1976)l. Activated carbon exhibits a

great adsorptive capacity and acts as a physical barrier to herbicide uptake. In

many publications, activated carbon has been referred to as a herbicide adsorbent rather than as a herbicide antidote because of its physical external action.

Other examples of crop protectants that act externally by adsorbing herbicides

include PC-671 (a formulated lignin by-product) and humic acids. Both of these

polymeric substances have been partially successful in protecting soybeans

against injury from metribuzin (Baumley et al., 1981; Mahoney and Penner,

1981) and atrazine (Dell’Agnola et al., 1981), respectively.

The majority of chemical herbicide antidotes, however, counteract herbicide

injury by working inside the plant rather than interfering with herbicide entry into

the plant. To date, five compounds are marketed commercially as herbicide

antidotes: naphthalic anhydride (NA), R-25788, CGA-43089, CGA-92194, and

MON-4606. Chemical herbicide antidotes have been the subject of several earlier reviews (Blair et al., 1976; Gupta, 1976; Hoffman, 1978a,b; Gressel et al.,

1982; Parker, 1983). In addition, specific aspects of herbicide antidotes have

been the subject of two symposia organized by the American Chemical Society

(173rd National Meeting, New Orleans, Louisiana, March 24, 1977) and the

International Congress of Pesticide Chemistry (5th Meeting, Kyoto, Japan, August 29-September 4, 1982). The first of these two symposia resulted in the

publication of the first book on herbicide antidotes (Pallos and Casida, 1978).

The purpose of this article is to consolidate more recent contributions to our

knowledge and understanding of the chemistry and development of herbicide

antidotes, their practical applications, and the theories proposed about their mode

of antidotal action with particular reference to the five chemicals mentioned. The

herbicides and herbicide antidotes, designated by common names approved by

the Weed Science Society of American or the British Standards Institution, are



KRITON K. HATZIOS



268



Table I

Chemical Names of Herbicide Antidotes and Herbiades

Mentioned by Common Name in the Text

Common name

or code name



AD-67

CDAA

CGA-43089

CGA-92194

MON-4606

NA

R-25788

R-28725 (AD-2)

R-29148

s 4 9



Chemical name

Herbicide antidotes

N-Dichloroacetyl-1-oxa4aza-spiro-4,5decane

N,N-Diallyl-2-chlolXm%mnl

‘&

a-[(C yanomethoxy)imino]benzeneacetonitrile

a-( 1,3-Dioxolan-2-yl-methoxy)iminobenzeneacetonitrile

Benzyl-2-chloro-4-(trifluommethyl)-5-thiazole

carboxylate

1,8-Naphthalic anhydride

N,N-Diallyl-2,2-dichl~ceichloroacetamide

3-@ichloroacetyl)-2,2-dimethyl- 1,3-oxazolidine



2,2-Dmethyl-6-methyldichlomacetyloxaz~lidhe

4-Chloro-2-hydmxyiminoacetanilide

Herbicides



Acetochlor

Alachlor

Amitrole

Asulam

Atrazine

Barban

Bensulide



Butachlor

Butam

Buthihle

Butylate

CDEC

Chl-uat

(CCC)

Chlomitrofen

Chlorsulfuron

Cisanilide

Cycloate

DCPA

Diallate

Diclofop methyl

Diethatyl

Dimefuron

Diphenamid

Diuron

Dowco 221

Eprom



2-Chloro-N-(ethoxymethyl)-6’-ethyl-~~totoluidide

2-Chloro-2‘ ,6’-diethyl-N-(methoxymethyl)acetanilide

3-Amino-s-triazole

Methyl sulfanilylcarbamate



2-Chloro-4-(ethylamino)-6-(

isopropylamino)-s-triazine

4-Chloro-2-butynyl-m-chlomarbanilate

0,O-Diisopropyl phosphomdithioate S-ester with N-(2-mercaptoethyl)benzenesulfonamide

N-(Butoxymethyl)-2thlm-2‘,6’-diethylacetanilide

2,2-Dimethyl-N-(1-methylethyl)-N-(phenylmethy 1)propanamide

3-[5-( 1,l-Dimethylethyl)-l,3,4-thiadiazol-2-yl]-4-hydroxy-l-methyl-2-imidazolidmone

S-Ethyl diisobutylthiocarbamate

2-Chlomallyl diethyldithiocarbamate

2-Chloroethyltrimethylammoniumchloride

4-Nitrophenyl 2,4,6-trichlorophenyl ether

2-Chloro-N-[ [(4-methoxy-6-methyl- 1,3,5-triazin-2-yl)ano]carbonyI]benzenesulfonamide

cis-2,5-Dimethyl-N-phenyl1-pyrrolidinecarboxamide

S-Ethyl N-ethylthiocyclohexanecarbamate

Dimethyl tetrachlomtemphthalate

S-(2,3-Dichloroallyl)diisopropylthiocarbamate

2-[4-(2,4-Dichlomphenoxy)phenoxy]pmpanoic acid methyl ester

N-(Chloroacetyl)-N-(2,6-diethylphenyl)glycine

4-[2-Chloro-4-(3,3dimethylureido)phenyl]-2-rert-butyl-l,3,4-oxadiazolin5-one

N,N-Dimethyl-2,2-diphenylacetamide

3-(3,4-Dichlomphenyl)-l,1-dimethylurea

a-(2,2,2-Trichlomethyl)styrene

N-Ethyl-N-propyl-3-propylsulfonyl1,2,4-triazole-1-carboxamide



HERBICIDE ANTIDOTES



269



Table I Continued

Common name

or code name

EPTC

Ethofumesate

Fluazifop-butyl

Glyphosate

H-26910

Linuron

MBR- 18337

MCPA

Mefluidide

Metolachlor

Metribuzin

Molinate

Nitrofen

NP 55

Paraquat

Pebulate

Pendimethalin

Perfluidone

Propachlor

Propanil

SD-58525

SD-91779

Sethoxydim

Swep

Terbutol

Thiobencab

Triallate

Trifluralin

UBI-S734

Vemolate

Xylachlor

2,4-D

2,4,6-T



Chemical name

S-Ethyl dipropylthiocarbamate

(~)-2-Ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofl

methane sulfonate

Butyl 2-[4-[5-(trifluoromethyl-2-pyridyloxy)]phenoxy]-proprionate

N-(Phosphonomethy1)glycine

N-Chloroacetyl-N-(2-methyl-6-ethylphenyl)glycine isopropyl ester

3-(3,CDichloropheny1)- 1-methoxy-1-methylurea

N-[4-(Ethylthio)-2-(trifluoromethyl)pheny~]me~anesu~fonamide

[(4-Chloro-o-tolyl)oxy]acetic acid

N-[2,4-Dimethyl-5-[[(trifluoromethyl)sulfonyllamino]phenyl]-ace~ide

2-Chlbro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy1-methylethyl)acetamide

4-Amino-6-fert-butyl-3-(methylthio)-as-triazin-5(4~)-one

S-Ethyl hexahydro-1H-azepine-1-carbothioate

2,4-Dichlorophenyl p-nitrophenyl ether

2-[N-Ethoxyamino)butyylidene]-5-(ethylthiopropy~~yclohexan1,3-dione

ion

1,l ‘-Dimethyl4,4’-bipyridiurn

S-Propyl butylethylthiocarbamate



N-(l-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzamine

I , 1,I-Trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl]methanesulfonamide

2-Chloro-N-isoprop ylacetanilide

3’ ,4’-Dichloropropionalide

Experimental herbicide; chemistry has not been released

Experimental herbicide; chemistry has not been released

2 4 l-(Ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexene-1one

Methyl N-(3,4-dichlorophenyl)carbamate

2,6-Di-rert-butyl-p-tolylmethylcabamate

S- [(4-Chlorophenyl)methyl]diethylcarbamothioate



S-(2,3,3-Trichloroallyl)diisopropy1thiocarbamate

u,a,a-Tnfluoro-2,6-dinitro-N,N-dipropyl-p-toluidine

2 4 [ 1-(2,5-Dimethylphenyl)ethyl]sulfonyl]pyridine N-oxide

S-Propyl dipropylthiocarbamate

2-Chloro-N-(2,3-dimethylphenyl)-N-(

1-methylethy1)acetamide

2,4-Dichlorophenoxyacetic acid

2,4,6-Trichlorophenoxyaceticacid



identified by chemical names in Table I. Botanical names of crops or weeds

used, those of the Terminology Committee of the Weed Science Society of

America, are given in Table 11.



270



IUtITON K. HATZIOS

Table II

Scientifk Names of Plants Mentioned by Common Name in Text

Common name



Botanical name



Alexandergrass

Alfalfa

Barley

Barnyardgrass

Bean (field)

Beet (sugar or red)

Bluegrass (Kentucky)

carrot

Corn (maize)

Cotton

Flax

Foxtail (green)

Itchgrass

Johnsongrass

Lambsquarters (common)

Millet (pmso)

Oats

Oats (wild)

Onion

Pigweed (redroot)

Potato

Purslane (common)

Rice (cultivated and wild)

Rye (common)

Ryegrass (perennial)

Shattercane

Sorghum (grain)

soybean

Spinach

sudangrass

Timothy

Tobacco

Tomato

Wheat



Brachiaria plantaginea (Link) A. Hitch.

Medicago sativa L.

Hordeum vulgare L.

Echinochloa crus-gali (L.) Beauv.

Phaseolus vulgaris L.

Beta vulgaris L.

Poa prafensis L.

Daucus carota L.

&a mays L.

Gossypium hirsutum L.

Linum usitarissimum L.

Setaria viridis (L.) Beauv.

Roettboelia enoltata L.

Sorghum halepense (L.) Pen.

Chenopodium album L.

Panicum milliaceum L.

Avena sativa L.

Avena farua L.

Allium cepa L.

Amaranthus retroflexus L.

Solanum tuberosum L.

Portulaca oleracea L.

Oryza sativa L.

Secale cereale L.

Lolium perenne L.

Sorghum bicolor (L.)Moench

Sorghum bicolor (L.) Moench

Clycine mar (L.)Men.

Spinacea oleracea L.

Sorghum sudanense (piper) Stapf.

Phlewn pratense L.

Nicotiana tabacum L.

Lycopersicon esculerum Mill.

Triticum aesrivurn L.



II. DEVELOPMENT OF HERBICIDE ANTIDOTES

A. HISTORY



The discovery and development of 2,4-Dduring World War II, and the subsequent introduction of a plethora of other organic herbicides, have revolutionized

our approach to weed management in crop production. Quite early in the devel-



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VII. Appendix: List of Symbols

Tải bản đầy đủ ngay(0 tr)

×