Tải bản đầy đủ - 0 (trang)
VI. A Basic Ideotype for All Annual Seed Crops

VI. A Basic Ideotype for All Annual Seed Crops

Tải bản đầy đủ - 0trang



ted higher densities, better plant arrangements, and higher yields (e.g., cotton,

maize, sorghum, soybeans; see earlier discussion). With increasing crop density,

optimizing canopy structure to maximize light fixation will be a potential avenue

to increased crop yields.

The theory behind canopy optimization is based on physical principles (Monsi

and Saeki, 1953; Davidson and Philip, 1956; Wilson, 1960; Donald, 1961, 1962;

Monteith, 1965a,b; de Wit, 1965; and many others). In a simplified model, three

aspects of crop canopy structure affect light penetration; the leaf angle to the

incident light and the vertical, and horizontal, distributions of the leaves. The

deeper that light penetrates into the canopy, the greater is the photosynthetic

capacity of the crop (Wilson, 1960; Blackman, 1961); penetration is increased if

leaves are evenly distributed both vertically and horizontally and have a high leaf

angle (assuming a high angle for the sun) (Wilson, 1960). Differences in cereal

canopy structure have been related to yield differences [see Tanaka et al., 1964,

1966; Jennings, 1964; Jennings and Beachell, 1965; Beachell and Jennings,

1965; and Matsushima et al., 1964 (for rice); Hamblin, 1971; Hamblin and

Donald, 1974; and Tanner et al., 1966 (for wheat, barley, and oats); Pendleton el

al., 1968; Pepper et al., 1977; and Williams et al., 1968 (for maize)]. However,

in many cases the lines used were not isogenic and results may be related to other

factors such as reduced disease incidence, improved water use (Trenbath and

Angus, 1975), or even slightly improved carbohydrate supply at critical times of

development (Fischer, 1981).

Blackman (1961) suggested that narrow, dissected leaves would be better than

round or cordate leaves in dicotyledonous crops. The use of the Okra leaf type in

cotton would appear to confirm the potential of this approach (Andries et al.,

1969; Constable, 1977). The most extreme case of altered canopy structure is

that of peas, in which the leaves have been dispensed with entirely, markedly

altering the pattern of light distribution down the profile; yields have been increased (Hedley and Ambrose, 1981).

Despite the criticisms of Trenbath and Angus (1975) concerning the comparisons of nonisogenic lines, it is probable that improved canopy morphology will

lead to improved yields in many grain crops. This should occur more rapidly in

short C , crops that are grown at high density than in tall C, crops grown at lower

densities (Evans and Wardlaw, 1976) and in environments where the solar incidence in the growing season is high (Trenbath and Angus, 1975). However, the

rate of change will also depend on other factors of crop production affecting

yield-density relationships.

When crops are grown at high levels of fertility, yields (at least of dry matter if

not of grain) are frequently increased but crops tend to lodge. Lodging resistance, primarily through reduced height, is a breeding objective of many

programs directed at high yield potential. Lodging resistance may also be increased if a plant has thick strong stems. These may allow a greater accumulation



of stored photosynthate during the vegetative phase, which if it can be retranslocated to the grain at a later date will increase the harvest index. If biological yield

is constant d u d height also will have a direct benefit in terms of an improved

harvest index (Hamblin and Rosielle, 1983).

Within a given cross, short plants tend to have short leaves (Chowdhry and

Allan, 1966; Hamblin, 1971). On the average, short leaves will be more upright

thanlong leaves because they have less bending momenL Therefore, short plants

may also have an advantage in terms of canopy structure at high densities.

In many agricultural situations the length of the growing season is clearly

defined. This may be because of drought, frost, the rotational needs of the

following crop, or other factors. Within that defined season, there will be an

optimum relationship between the vegetative and reproductive phases of crop

growth, in terms of both phenology and dry matter production. This problem has

recently been discussed by Fischer (1979, 1981) for dry-land Mediterranean

situations. He concludes that, within a given environment, there is an optimum

level of dry matter production at anthesis for maximum grain yield. If biological

yield at anthesis is above that optimum, then there is insufficient water to maximize grain yield; if biological yield is below the optimum, then there is insufficient sink for maximum grain yield (Fischer, 1979, 1981).

In many situations, early flowering allows a longer period of grain filling and

higher yields (Thorne, 1966). Early flowering may also put grain development

into a more favorable season (Fischer, 1981); however, it may reduce the biological yield at flowering to suboptimal levels. This can be countered by selecting

types with vigorous early growth, by growing crops at high levels of nutrition,

and by using higher seeding rates (Fischer, 1981). Uniculm cereals would have

an advantage here; seeding at high rates would give rapid development of leaf

area without the presence of tillers. In many situations the development of

photoperiod insensitivity allows wide adaptation for a variety.

A major problem for agronomists aiming at optimum levels of dry matter

production at flowering is to manipulate the cropping strategy to maximize the

probability of achieving that optimum. This is particularly difficult in branching

and indeterminate crops in which there is little control over the amount of

vegetative dry matter likely to be developed. The tendency to determin:ncy,

which will allow some control of the relationship between vegetative and reproductive growth, is apparent in several species (beans, cotton, soya). There is

a similar tendency toward reduced branching (tillering) in many species (cotton,

cereals). The logical development is to nonbranching (uniculm cereals) so that it

is possible to manipulate the relationship between vegetative and reproductive

growth by adjusting density. This option is already available in the uniculm

species, that is, in maize and sunflowers. Workers on these crops, in contrast to

people working on other grain crops do not consider the uniculm habit unusual.

In species such as sorghum and rice, selection for the strictly annual habit will

probably increase yield potential slightly as no resources would be diverted to



perennating organs.

Many of the characteristics considered in this section will automatically lead to

a high harvest index; these include reduced height, earlier flowering, and nontillering. To date, however, the critical experiments on the use of harvest index

per se as a selection criterion either have not been carried out or have produced

inconclusive results (Hamblin and Rosielle, 1983). As a long-term objective,

however, selection for harvest index alone must eventually lead to diminishing

returns if biological yield remains constant. There is widespread acceptance of

the value of reduced stature, reduced tiller number, and early flowering in many

circumstances, but there is little interest in the uniculm (or nonbranching) habit;

shorter, narrower, and more erect leaves, higher harvest index, increased plant

populations, and narrower rows than the present 18- to 20-cm spacing. Yet these

features, it is proposed, provide notable opportunities to increase yields in all


It was proposed that there is much to gain in the breeding of crop plants by

designing ideotypes, “biological model which is expected to perform or behave

in a predictable manner within a defined environment and . . . to yield a greater

quantity or quality of grain, oil or other useful product when developed as a

cultivar” (Donald, 1968a, p. 389). It is here proposed that the ideotypes of all

annual crops grown for their seed will have major features in common, even to

the extent that a basic ideotype can be conceived for cereal crops, cotton, peas,

beans, soybeans, linseed, sunflower, or any other annual seed crop. One may

observe that breeding toward many of these features is already in progress in

many annual seed species, and further that there are trends toward like, though

often independently conceived, agronomic practices. There may be much to gain

by recognizing and systematizing those trends in plant breeding and agronomy.

Most of the features of this common ideotype arise directly from the proposed

need for communal plants sown at high density. Various other useful features

and practices for annual seed crops which can be postulated are set out in Table

11. It will be seen that despite some conflict in the plant features needed to meet

particular criteria of crop performance, a clear picture emerges. The principal

characteristics of the ideotype proposed for all annual seed crops and their culture


1. Strictly annual habit

2. Erect growth form

3. Dwarf stature

4. Strong stems

5. Unbranches or nontillered habit

6. Reduced foliage (smaller, shorter, narrower, or fewer leaves)

7. Erect leaf disposition

8. Determinate habit

9. High harvest index



10. Nonphotoperiodic for most but not all situations

11. Early flowering for most but not all situations

12. High population density

13. Narrow rows or square planted

Table II

The Features of a Common Ideotype for All Seed-Producing Annual Crops, Together with

Associated Cultural Practices

Feature of crop

Pure culture sown at high density

Features of ideotype

Good plant performance among like neighbors sown at

high density, hence communal plants needed; plant

yield in isolation or in competition with other genotypes of no relevance

Strictly annual habit

Determinate growth; plant death at seed ripeness; loss of

residual features of perenniality (i.e., of vegetative

branching, tillering, or vegetative storage organs)

Crop must not lodge or collapse

Plants of sound physical structure; short stature, strong or

flexible stems, nonbranching, nontillering, nonleafy

Effective form and disposition of foli- Deep light penetration within the leafy canopy; small,

age for light utilization

narrow or divided, erect leaves

High seed yield sought

High biological yield, attainable through high sowing

rate, rapid emergence, rapid attainment of optimum

LAI, high net assimilation rate

High harvest index, involving annual habit, no excessive

use of resources on plant framework, short stature,

light stems, nonbranching, nonleafy

Large sink for photosynthates, many seeds per unit of

biological yield, long interval flowering to maturity,

no sterility at high plant density

Absence of those features associated with strong comMinimal competition between plants

petitive ability (i.e., absence of tallness, large or

horizontally disposed Leaves, branching, or widely

ramifying root system)

Plant density and plant arrangement to High plant density to compensate for lack of branching

and lack of leafiness; close approach to uniform spacbe appropriate to the communal

plant form

ing through use of narrow rows

Effective response to high nutrient

Limited increase in competition between plants as fertillevels

ity is raised; absence of plant responses giving increased competitive ability, especially minimal

increase in height, leafhess, or branching

As appropriate to the climatic region but commonly

Wide climatic adaptation

including nonphotoperiodicity; earliness of flowering

to avoid early or late frosts, cold soil or cold irrigation

water early in the season, drought, or wet or wintry

conditions at harvest; wide temperature tolerance




We would like to thank Drs. W. J. Collins, R. A. Fischer, R. Knight, A. J. Rathjen, A. A.

Rosielle, and W. R. Stem, and Mr. N. J. Halse, for comments and criticisms of the manuscript. Dr.

Hamblin was supported by a Wheat Industry Research Council Grant and this is gratefully



Adair, C. R., and Jones, J. W. 1946. J. Am. SOC. Agron.38, 708-716.

Adams, M. W. 1973. Semin. Ser. No. 2E, pp. 266-278. CIAT, Cali, Columbia.

Akihama, T. 1968. Ikushugaku Zusshi (Jpn. J . Breed) 18, 213-216.

Allard, R. W., and Adams, J. 1969. Am. Nut. 103, 621-645.

Allard, R. W., and Jain, S . K. 1962. Evolurion 16, 90-191.

Andries, J. A,, Jones, J. E., Sloane, L. W., and Marshall, J. G. 1969. Crop Sci. 9, 705-710.

Andries, J. A., Jones, J. E., Sloane, L. W., and Marshall, J. G. 1970. Crop Sci. 10, 403-407.

Athwal, D. S. 1971. Q. Rev. Biol. 46, 1-34.

Atsmon, D., and Jacobs, E. 1977. Crop Sci. 17, 31-35.

Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., Ford, M. A., Morgan, C. L., and

Taylor, M. 1980. J . Agric. Sci. 94, 675-689.

Beachell, H. M., and Jennings, P. E. 1965. In “The Mineral Nutrition of the Rice Plant,” pp.

29-75. John Hopkins Press, Baltimore, Maryland.

Bell, G. D. H. 1963. Barley Genet. 1, 285-306.

Bell, G. D. H. 1965. In “Essays on Crop Plant Evolution” (J. B. Hutchinson, ed.), pp. 70-102.

Cambridge, Univ. Press, London.

Bhardwaj, S. W., Nath, V., and Mehra, R. B. (1971). Indian J. Agric. Sci. 41, 519-523.

Bingham, J. 1972. Eucarpia Congr. Eur. Assoc. Res. Plant Breed. 6, 15-29.

Blackman, G. E. 1961. Amos Mem. Lecture E. Malling Res. Srn. 5th.

Blijenburg, J. G., and Sneep, J. 1975. Euphyrica 24, 305-315.

Brashears, A. D., Kirk, I. W., and Hudspeth, E. B. 1968. Texas Agric. Exp. Srn. Misc. Publ. No.

872, 1-7.

Bremner, P. M. J. 1969. J. Agric. Sci. 72, 273-280.

Cannell, R. Q. 1968. J. Univ. Newcasrle-upon-Tyne Agric. SOC. 22, 3.

Chandler, R. F., Jr. 1969. I n “Physiological Aspects of Crop Yield” (I. D. Eastin, F. A. Hoskins,

C. Y. Sullivan, and C. M. H. Van Bavel, eds.), pp. 265-285. Amer. Soc. Agron., Madison,


Chang, T. 1976. Euphyrica 25, 425-441.

Chapman, G. P., and Peat, W. E. 1978. Outlook Agric. 9, 267-272.

Chowdhry, A. R., and Allan, R. E. 1966. Crop Sci. 6, 28-31.

Christian, C. S., and Grey, S. G. 1941. CSIR J. 14, 59-68.

CIMMYT 1979. CIMMYTRev. Maize Sect. Spec. Res. Proj. Mexico, pp. 35-37.

Clegg, M. D. 1972. In “Sorghum in the Seventies” (G. P. Rao and L. R. House, eds.), pp.

279-301. IBH Publ. Co., New DeIhi.

Clements, F. E., Weaver, J. E., and Hanson, H. C. 1929. Carnegie Inst. Washington Publ. No. 398.

Constable, G. A. 1977. Aust. J. Exp. Agric. Anim. H u b . 17, 135-142.

Costa, J. A., Oplinger, E. S., and Pendleton, J. W. 1980. Agron. J. 72, 153-156.

Darlington, C. D. 1969. In “The Domestication of Plants and Animals’’ (P. J. Ucko and G. W.

Dimbleby, eds.), pp. 67-72. Duckworth, London.



Darwin, C. 1868. “The Variation of Animals and Plants under Domestication.” Murray, London.

Davidson, J. L., and Philip, J. R. 1956. I n “Climatology and Mimlimatology.” UNESCO, Paris.

Davies, D. R. 1977a. Appl. Biol. 2, 87-127.

Davies, D. R. 1977b. Sci. Prog. (Oxjord)64, 201-214.

de Wet, J. M. J., and Harlan, J. R. 1971. Ewlwion 25, 128-135.

de Wet, J. M. J., and Huckabay, J. P. 1%7. Evolution 21, 787-802.

de Wet, J. M. J., and Schechter, Y. 1977. I n “Crop Resources” (D. J. Seigler), pp. 179-191.

Academic Press, New Yo&.

de Wit, C. T. I. 1%5. Centre for Agricultural Publications and Documentation. Agric. Res. Rep.


Doggett, H. 1%5. In “Essays on Crop Plant Evaluation” (J. B. Hutchinson, ed.), pp. 50-69.

Cambridge Univ. Press, London.


EX^. BWl. 15,283-313.

Donald, C. M. 1961. S y m ~ SOC.

Donald, C. M. 1962. J. Aust. Inst. Agric. Sci. 28, 171-178.

Donald, C. M. 1%3. Adv. Agron. 15, 1-118.

Donald, C. M. 1%8a. Euphyrica 17, 385-403.

Donald, C. M. 1968b. Proc. Int. Wheat Genet. Symp. 3rd, pp. 359-369.

Donald, C. M. 1979. J. Agric. Sci. 93, 261-269.

Donald, C. M. 1981. I n “Wheat Science-Today and Tomomw” (L.T. Evans and W. J. Peacock,

eds.), pp. 361-405. Cambridge Univ. Press, London.

Donald, C. M., and Hamblin, J. 1976. Adv. Agron. 28, 361-405.

Engledow, F. L. 1925. J. Agric. Sci. 15, 125-146.

Evans, A. M. 1973. Semin. Ser. No. 2E, pp. 279-286. CIAT, Cali Columbia.

Evans, A. M. 1980.In“‘Advances in Legume Science” (R. J. Summefield and A. H. Bunting), pp.

337-347. Stationery Office, London.

Evans, L. E., and Bhatt,G. M. 1977: Can.J . Planr Sci. 57,45-47.

Evans, L. T. 1980. J. Aust. Inst. Agric. Sci. 46, 3-13.

Evans, L. T., and Dunstone, R. L. 1970. AW. J . Biol. Sci. 23,725-741.

Evans, L.T., and Wardlaw, I. F. 1976. Adv. Agron. 28, 301-359.

Fick, G. N. 1978. I n “Sunflower Science andTechnology” (J. F. Carter, ed.), pp. 279-315. Amer.

Soc. Agron., Madison. Wisconsin.

Fick, G. N., and Swders, C. M. 1975. Crop Sci. 67, 743-745.

Fischer, R. A. 1978. Proc. Int. Wheat Genet. Symp. 5th, pp. 767-777.

Fischer, R. A. 1979. J. Aust. Inst. Agric. Sci. 45, 83-94.

Fiiher, R. A. 1981. P h Soil 58, 249-278.

FRY. K. J. 1971. ASA Spec. Publ. No. 20. 15-58.

Galinat, W. C. 1%5. Econ. Bot. 19, 350-357.

Gardner, C. 0. 1961. CropSci. 1, 241-215.

Gardner,C. 0. 1%8. Proc. Int. Congr. Genet. 12th, pp. 57-77.

Gardner, C. 0. 1%9. I n “Induced Mutations in Plants,” pp. 469-477. Atomic Energy Agency,


Goldsworthy, P. R. 1970. J. Agric. Sci. 75, 109-122.

W u s , J. E., Thomas, R. L.,and B a m d , J. 1976. Crop Sci. 16,673-677.

Hamblii, J. 1971. Ph.D. Thesis, Univ. ofA&kzide, Australia.

Hamblin, J. 1975. Euphytica 24,435-445.

Hamblin, J., and Donald, C. M. 1974. Euphytica 23, 535-542.

Hamblii, J., and Morton, J. R. 1977. Euphyrica 26, 75-83.

Hamblii, J., and Rosielle, A. A. 1983. The contribution of genetics to plant breeding. Raeger (in


Hamblin, J., and Rowell, J. G. 1975. Euphyrica 24, 221-228.



Hamblin, J., Knight, R., and Atkinson, M. J. 1978. Euphyrica 27, 497-505.

Harlan, J. R. 1971. Science (Washington, D.C.) 174,46-474.

Harlan, J. R., deWet, J. M. J., and Price, E. G. 1973. Evolution 27, 311-325.

Harlan, M.V., and Martini, M.L. 1938. J . Agric. Res. (Washington, D.C.) 57, 189-199.

Hayes, J. D. 1970. Rep. Welsh P h r Breed. Srn. (Aberysrwyrh, Wales).

Hedley, C. L., and Ambrose, M. J. 1981. Adv. Agron. 34, 225-277.

Heiser, C. B. 1978. I n “Sunflower Science and Technology” (J. F. Carter, ed.),pp. 31-53. h e r .

Soc. Agron., Madison, Wisconsin.

Hicks, D. R., Pendleton, J. W., Bernard, R. L., and Johnson, T. J. 1969. Agron. J . 61, 290-293.

Hiebsch, C. K., Kanemasu, E. T.,and Nickell, C. D. 1976. Can. J. Plant Sci. 56, 455-458.

Hinson, K.,and Hanson, D. 1962. Crop Sci. 2, 117-123.

Hiroi, T., and M o d , M. 1966. J. Fac. Sci. Univ. Tokyo 9 Sect. 3, 241-285.

Hwd, E. A. 1969. Euphytica 18, 217-226.

Hutchinson, J. B. 1965. I n “Essays on Crop Plant Evolution” (J. B. Hutchinson, ed.), pp. 166-181.

Cambridge Univ. Press, London.

Hymowitz, T., and Newell, C. A. 1977. I n “Crop Resources”(D. S.Siegler, ed.), p. 209. Academic Press, New York.

Hymowitz, T., and Newell, C. A. 1980. I n “Advances in Legume Science” (R. J. Summerfieldand

A. H. Bunting, eds.), pp. 251-264. HM Stationery Office, London.

Islam, T.M. T., and Sedgley, R. H. 1981. Euphyrica 30, 277-282.

Jennings, P. R. 1964. Crop Sci. 4, 13-15.

Jennings, P. R., and Aquino, R. C. 1968. Evolution 22, 529-542.

Jennings, P. R., and Beachell, H. M. 1965. I n “Mineral Nutrition of the Rice Plant,” pp. 449-457.

John Hopkins Press, Baltimore, Maryland.

Jennings, P. R., and de Jesus,+J., Jr. 1968. Evolution 22, 119-124.

Jennings, P. R., and Herrera, R . M. 1968. Evolurion 22, 332-336.

Jensen, N. F., and Federer, W. T. 1964. Crop Sci. 4, 641-645.

Johnston, P. R. 1972. W.D. Thesis, Univ. of Adelaide, Australia.

Jones, H. G., and Kirby, E. J. M. 1977. J . Agric. Sci. 88, 391-397.

Kaplan, L., and McNeish, R. S. 1960. Bor. Mus. Led. Harv. Univ. 19, 33.

Kaplan, L.,Lynch, T. F., and Smith, C. E. 1973. Science (Washington,D.C.) 179, 76.

Kern, J. J., and Atkins, R. E. 1970. Agron. J . 62, 183-186.

Khalifa, M. A., and Qualset, C. 0. 1974. Crop Sci. 14, 795-799.

Khalifa, M. A., and Qualset, C. 0. 1975. Crop Sci. 15, 640-644.

Khan, M. A., and Tsunoda, S. 1970. Ikushuguku Zusshi (Jpn. J . Breed.) 20, 133-140.

Kirk, I. W., Brasheam, A. D., and Hudspeth, E. B. 1969. Texas Agric. Exp. Srn. Misc. Publ. No.


Klages, K. H. W. 1936. J . Am. Soc. Agron. 28, 935-940.

Kranz, A. R. 1966. Biol. Zentralbl. 85, 681-734.

Kulshrestha, V. P., and Jain, H. K. 1982. Z. Pflanzenzuecht. 89, 19-30.

Laude, H. H., and Swanson, A. F. 1942. J. Am. SOC.Agron. 3, 270-274.

Lonnquist, J. H., Cota, A., and Gardner, C. 0. 1966. Crop Sci. 6, 330-332.

Low, A., and McMahon, J. P. 1973. Corron Grow. Rev. 50, 130-149.

MacKey; J. 1966. Yugoslav Symp. Res. Whear Srh, pp. 37-48.

Mangelsdorf, P. C. 1965. I n “Essays on Crop Plant Evolution” (J. B. Hutchinson, ed.), pp. 23-49,

Cambridge Univ. Press, London.

Matsushima, S., Tanaka, T.,and Hoshino, H. 1964. Nippon Sakumorsu Gakkui Kiji (Proc. Crop

Sci. SOC. Jpn.) 33, 44-48.

McGinnis, R. G . , and Shebeski, L. H. 1968. Proc. Inr. Whear Genet. Symp. 3rd, pp. 109-114.

Mock, J. J., and Pearce, R. B. 1975. Euphyrica 24, 613-623.



Monsi, M., and Saeki, T. 1953. Jpn. J. Bor. 14, 22-52.

Monteith, J. L. 1965a. Field Crop Abstr. 18, 213-219.

Monteith, J. L. 1%5b. Ann. Bot. (London) 29, 17-37.

Montgomery, E. G. 1912. Bull. Nebraska Agric. Exp. Stn. 127, 3-22.

Mom-Val, C. A., and Miller, P. A. 1975. Crop Sci. 15, 479-482.

Mumaw, C. R., and Weber, C. R. 1957. Agron. J. 49, 154-160.

Nicholson, A. J. 1962. I n “The Evolution of Living Organisms” (G. W. Leeper, ed.), pp. 62-73.

Melbourne Univ. Press, Australia.

OBrien, L. 1979. Ausr. J . Agric. Res. 30, 587-595.

Pal, B. P., Upadhyaya, Y. M., Khan, H. R., and Ramanujam, S. 1960. Indian J . Gener. Plant

Breed. 20, 102-112.

Passioura, J. B. 1972. Aust. J. Agric. Res. 23, 745-752.

Pegelow, E. J., Buxton, D. R., Briggs, R. E., Murramoto, H., and Gensler, W. G. 1977. Crop Sci.

17, 1-4.

Pendleton, J. W., and Seif, R. D. 1962. Crop Sci. 2, 154-156.

Pendleton, J. W., Smith, G. E., Winter, S. R., and Johnston, R. J. 1968. Agron. J. 60,422-424.

Pepper, G. E., Pearce, R. B., and Mock, J. J. 1977. Crop Sci. 17, 883-886.

Percival, J. 1921. “The Wheat Plant.” Duckworth, London.

Perry, M. W., and Reeves, J. T. 1980. “Farmnote.” Western Australian Dept. Agric., Avondale

Project 1979.

Peters, D. B., and Johnson, L. C. 1960. Agron. J. 52, 687-699.

Fhillips, L. L. 1976. In “The Evolution of Crop Plants” (N. W. Simmonds, ed.), pp. 198-200.

Longmans, London.

Philipschenko, J. 1972. “Variabilitat und Variation.” Berlin.

Poulson, M. H. 1977. J . Agric. Sci. 89, 643-654.

Puckridge, D. W., and Donald, C. M. 1%7. Aust. J. Agric. Res. 18, 193-211.

Purseglove, J. W. 1%8. “Tropical Crops,” Vol. 1. Longmans, London.

Putt, E. D. 1978. In “Sunflower Science and Technology” (J. F. Carter, ed.),pp. 3-29. Amer. Soc.

Agron., Madison, Wisconsin.

Queensland Department of Agriculture 1970. Advisory Leaflet No. 1082.

Quinby, J. R. 1963. CropSci. 3, 283-291.

Quinby, J. R., and Karper, R. E. 1945. J. Am. SOC. Agron. 37, 916-936.

Quinby, J. R., and Martin, J. H. 1954. A h . Agron. 6, 305-359.

Quisenberry, J. E., Roark, B., Bilbro, I. D., and Ray, L. L. 1978. Crop Sci. 18,799-801.

Ray, L. L., and Hudspeth, E. B. 1966. S w t h Plains Res. Exr. Cenr. Curr. Res. Rep. No. 66-5,


Reid, D. A,, and Wiebe, G. A. 1968. In “Barley,” pp. 61-84. USDA, Agric. Handbook No. 338.

Rosielle, A. A., and Frey, K. J. 1975. Crop Sci. 15, 544-547.

Ross, W. W., and Eastin, J. D. 1972. Field Crop Absrr. 25, 169-174.

Sakai, K. 1955. Cold Spring Harbor Symp. Quanr. Biol. 20, 137-157.

Schutz, W. M., and Brim, C. A. 1967. Crop Sci. 7, 371-376.

Schwanitz, F. 1966. “The Origin of Cultivated Plants.” Harvard Univ. Press, Cambridge,


Shaw, R. H., and Weber, C. R . , 1967. Agron. J . 59, 155-159.

Shibles, R. 1980. In “Advances in Legume Science” (R. J. Summerfield and A. H. Bunting), pp.

279-286. HM Stationery Office. London.

Smartt, J. 1%9. In “The Domestication and Exploitation of Plants and Animals” (P. J. Ucko and G.

W. Dimbleby, eds.), pp. 451-462. Duckworth, London.

Smith, 0. D., Kleese, R. A., and Stuthman, D. D. 1970. Crop Sci. 10, 381-384.

Soetono, and Donald, C. M. 1980. Aust. J. Agric. Res. 31, 455-470.



Sowell, W. F. 1960. Diss. Abstr. 20, 2476.

Stebbins, G. L. 1974. “Flowering Plants: Evolution above the Species Level.” Harvard Univ. Press,

Cambridge, Massachusetts.

Stringfield, G. H. 1964. Adv. Agron. 16, 101.

Suneson, C. A. 1949. Agron. J. 41,459-461.

Suneson, C. A., and Wiebe, G. A. 1942. J . Am. Soc. Agron. 34, 1052-1056.

Tanaka, A., Kawana, S . A., Garcia, C. V., Parao, F. T., and Ramirz, E. 1964. IRRI Tech. Bull. No.


Tanaka, A., Kawana, S. A., and Yamaguchi, J. 1966. IRRI Res. Bull. No. 3.

Tanner, J. W.,Gardener, C. J., Stoskopf, N. C., and Reinbergs, E. 1966. Cun. J . Plant Sci. 46,


Thome, G . N. 1966. In “The Growth of Cereals and Grasses” (F. L. Mlthorpe and J. D. Ivins,

eds.), pp. 88-120. Butterworth, London.

Timmons, D. R., Holt, R. F., and Thompson, R. L. 1%7. Agron. J . 59, 262-265.

Trenbath, B. R., and Angus, J. F. 1975. FieM Crop Absrr. 28, 231-244.

Turesson, G. 1922. Hereditus, 3, 100-113.

Vidovic, J. 1974. B i d . Plant. (Prague) 16, 174-183.

Walker, J. T. 1969. Biol. Rev. 44, 207-242.

Wiebe, G. A., Petr, F. C., and Stevens, W. 1963. In “Statistical Genetics and Plant Breeding,” pp.

546-557. NAS, NRC Publ. 982.

Wilcox, J. R., and Schapaugh, W. T. 1980. Crop Sci. 20, 809-811.

Wilkes, G. 1977. In “Crop Resources“ ( 0 . S . Seigler, ed.), p p . 211-223. Academic Press, New


Williams, W. A., Loomis, R. S.,Duncan, W. G . , Dovrat, A,, and F. Nunez, A. 1968. Crop Sci. 8,


Wilson, J. W. 1960. Proc. IN. Grussl. Congr. 8th, pp. 275-279.

Winter, S . R., and Ohlrogge, A. J. 1973. Agron. J . 65, 395-397.

This Page Intentionally Left Blank





S. S. Virmanil and Ian B. Edwards2

1 International Rice

Research Institute, Manila, Philippines

‘Pioneer Hi-Bred International, Inc., Glyndon, Minnesota






11. Heterosis in










B. Heterosis for Other Plant Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


C. Combining Ability . . . . . . . . . . . . . . . . . . . . .

Advantages of Hybrids over Conventionally Bred

Cytoplasmic-Genetic Male Sterility Systems in Rice and Wheat . . . .

A. Early Research ........................................

B. Major Sources of Cytoplasmic Male Sterility. . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Additional Sources of Cytoplasmic Male Sterilit

D. Techniques for Cytoplasmic Differentiation. . . .

E. Cytoplasmic Effects on Other Plant Characters . . . . . . . . . . . . . . . . . . . . . . . . .

F. Cytoplasmic Effects on Disease Resistance


Fertility Restoration. . . . . . . . . .

A. Sources of Restorer Genes


B. Inheritance of Restoration . . . . . . . . . . . . . . . . . . . . . . . . .

C. Environmental Effects on Male Fertility Restoration. . .

D. Influence of Female Genetic Background on Fertility R

Use of Chemical Pollen Suppressants in Hybrid Production..

Factors Affecting Cross-Fertilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


A. Flowering Behavior . . . . . . . . . . . . .

B. Floral Structure.. . . . . . . . . . . . . . . . . . . . . . . . .

C. Effect of Pollinator Distance . . .


D. Effect of Plant Height and Other Morphological Traits. . . . ..............


Seed Production ........................................

A. Multiplication of Cytoplasmic Male-Sterile and Maintainer ines . . . . . . . . . .


B. Hybrid Seed Production.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Disease Problems Associated with Seed Production . . . . . . .


D. Seed Quality in Hybrids and Their Inbred Lines . . . . . . . . . .


QualityofHybrids .......................................

Economic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..............

Problems .............................................................

A. Rice ............................................................

B. Wheat ..........................................................



















I 74



















Copyright 0 by Academic F’resr. Inc.

All rights of reproauction in any form reserved.

ISBN 0-12-000736-3

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VI. A Basic Ideotype for All Annual Seed Crops

Tải bản đầy đủ ngay(0 tr)