Tải bản đầy đủ - 0 (trang)
IX. Molybdenum Toxicity and Molybdenum-Copper-Sulfur Interrelationships in Animals

IX. Molybdenum Toxicity and Molybdenum-Copper-Sulfur Interrelationships in Animals

Tải bản đầy đủ - 0trang



reported to be toxic to sheep but not to poultry, swine, or laboratory animals

(Corbett and Leach, 1976). The Cu levels in the blood in the mature cattle

suffering from molybdenosis were in the range 0.28-0.38 ppm compared with

normal levels of 0.75-1.5 (Hornick et al., 1977). Exactly how Mo and Cu affect

each other is not known, but it is certain that an imbalance in these two elements

means trouble (Kubota, 1975). Whereas too much Mo induces Cu deficiency,

too little Mo induces Cu toxicity, if Cu levels are high.

Under naturally occumng conditions, a true Mo deficiency has never been

reported in man or farm animals, and nutritional interest in Mo for animals is

overwhelmingly concerned with its toxic effects and its interactions with Cu and

S (Underwood, 1976). The dietary concentration of Mo required to produce Mo

toxicity varies according not only to the Cu but also to the SO*'- concentrations

in the diet. Swayback in lambs born of ewes that are Cu deficient during pregnancy was found on pastures not deficient in Cu and the incidence was due to an

imbalance of Cu, Mo, and S (Todd, 1976).

Various methods have been used to alleviate the scouring or Mo toxicity

problem in cattle. Scouring has been found to be cured by feeding or drenching

with CuSO, (Ferguson et al., 1943), by the acidification of soil by applying

acidic fertilizers or by regular applications of S (Lewis, 1943), and by the

addition of CuSO, to the feed or a subcutaneous injection of copper glycinate to

the calves and adult cattle (Hornick et al., 1977). In Pennsylvania, the current

practice includes supplemental feeding of ground corn mixed with CuS04 5 H20

(at 2.27 kg/ton) and fed at a rate of 0.9-1.35 kg/cow/day (Hornick et al., 1977).

The oxidation in vivo of methionine- and cystine-S to SO;2- allows these

S-containing compounds to be as effective as Cu in alleviating Mo toxicity; the

resulting action is probably like that of inorganic SO;'-, namely reduced retention of Mo in the tissues and increased excretion in the urine (Underwood, 1976).

Mills and Fell (1960) found that ewes receiving high levels of both SO;2- and Mo

in the diet retained rather more Cu in their livers than the ewes of the group

receiving SO;2- only. However, their results showed that the transfer of Cu from

the ewe to the lamb was diminished by feeding Mo.

An increment of 4 mg Mo/kg feed was sufficient to reduce the availability of

dietary Cu by 50%, whereas an increment of 1 g S/kg feed had a similar effect

(Suttle, 1975). Ovine hypocuprosis has been found in New South Wales, Australia, on pastures containing 3-10 pprn Cu, 3-9 ppm Mo, and 0.1-0.7%

(Wynne and McClymont, 1955). These workers have suggested that it is not so

much the absolute intake of Cu, Mo, and So,'- that is important, but rather the

ratios in the diet. Studies by Scott (1972) indicated that neither Mo nor SO;;?alone interfered with Cu retention and that the effectiveness of either one increased to a maximum as the intake of the other was increased.

Inorganic Soil- and organic S used as sources of S to inhibit Cu depletion and

decrease plasma Mo concentrations were found to be similar (Suttle, 1975).



Suttle (1975) proposed that the Cu X Mo X S antagonism involved a lowering of

the availability of both Cu and Mo in the rumen and that inorganic and organic S

could potentiate the process. Ruminants differ from nonruminants in having the

ability to reduce Soil- to S2-, which may either be absorbed and detoxified in the

liver or incorporated into S amino acids (Huisingh and Matrone, 1976). High

levels of Mo and Soil- restrict Cu utilization in animals by depressing Cu

solubility in the digestive tract through the precipitation of insoluble CuS.

Molybdenum has been found to interact with organic S, as well as inorganic S, in

limiting the utilization of dietary Cu by sheep (Suttle, 1974).

The effect of dietary Mo is dependent on dietary levels of Soil-,particularly

in ruminants (Huisingh and Matrone, 1976). It should be noted that Mo plus

S04z- can either increase or decrease the Cu status of an animal, depending on

their intakes relative to that of Cu (Underwood, 1976). Chronic Cu poisoning can

occur in sheep with moderate Cu intakes and very low levels of Mo and SOi2-. In

Northern Ireland, the incidence of Cu poisoning during the 1960s increased

sometimes in calves, but mostly in sheep, and was found to be due to the use of

CuS04 as a growth promoter in pig meal-this meal on occasions was being fed

to sheep or calves (Todd, 1976). Dick (1954), on the other hand, discovered that

Mo limits Cu retention only in the presence of adequate dietary or endogenous

SOP-. Depletion of the animal’s Cu reserves to the extent of clinical symptoms

of Cu deficiency can arise on normal Cu and high Mo plus SOL2- intakes (Wynne

and McClymont, 1955).


This review discusses the place now occupied by Mo in the agronomy that

services the agriculture on which the world depends for food. The detailed results

from a number of disciplines are shown to be integrated into a mature body of

knowledge concerning Mo in agricultural practice. In addition, it indicates some

of the likely biological effects in the biosphere, and hence broader applications of

scientific effort.

The earliest studies, some 50 years ago, established Mo as an essential nutrient, first for bacteria in fixing N, and later for higher plants in reducing NO3-.

Deficiencies were soon found in many species and in several countries, and

symptoms became well known. The research that followed has established detailed information about sources, supply, and uptake of Mo, on the one hand, and

function in the plant, on the other.

Sodium and ammonium molybdates are common Mo fertilizers, but other

compounds are being investigated to counter costs and shortages. Application to

the seed is cheaper and more uniform than soil application but may unduly raise



levels of Mo in the plant. Foliar application is effective and fast-acting. The

practice of adding solid Mo compounds to another fertilizer as carrier for application to the soil can lead to uneven distribution. The residual value of Mo applications to the soil is not clear, and this topic will become more important as the cost

of Mo rises.

The main physiological role of Mo in plants appears to be its participation in

two important enzyme systems, namely nitrogenase and nitrate reductase, but

others may also be involved. (Both systems affect higher plants since the nitrogenase of Rhizobium is the basis of the nitrogen economy of nodulated

legumes.) Hence protein synthesis depends on Mo. Surprisingly, there is little

recent work on the role of Mo.

The Mo concentration of plants is an important index of the supply from the

soil, since some of the total Mo usually is not available. Chemical measures of

availability are of varying quality, so attempts to improve such methods continue. Resin extraction and a microbiological assay based on nitrogenase (which

also catalyzes the reduction of acetylene) have recently been suggested. The

dithiol method is the best of the wet methods of analysis, and atomic absorption

coupled with a graphite furnace is the best of the physical methods. Any method

must be extremely sensitive to cope with the low amounts of Mo in deficient

plant material.

The reported instances of responses to Mo in agricultural practice, beginning

with clover, for a number of species were consolidated within the first 20 years.

Since then the main development has concerned cereals, particularly in Australia, and Cole crops in Great Britain and Canada. Maize evidently is quite

susceptible to Mo deficiency, particularly on acid soils and if seed reserves of Mo

are low. The response to Mo may take the form of an alleviation of damage to

seedlings due to excess NO,-.

Changes in nitrate reductase activity and overall content of Mo are associated

with yield responses. Geographically, most of the responses have been reported

from lightly acid soils in temperate countries. However, there are reports of

deficiencies from the wetter parts of tropical Australia, and leached soils in other

parts of the tropics are fairly clearly at risk.

The geochemistry and factors that influence supply and uptake of Mo are

discussed. Molybdenum is a metallic transition element and is widespread in the

Earth's crust, usually in low concentrations (<3 ppm). The predominant primary

mineral is the disulfide molybdenite (MoS,), which forms readily and is highly

insoluble but also weathers readily under oxidizing conditions, typically to

molybdate (Mo0i2-). Molybdenum is relatively mobile in the soil and follows a

sedimentary cycle. Increasing industrial use-in fertilizers, alloys, catalysts, and

lubricants-has led to increasing contamination.

The anionic form and direct correlation of solubility with pH distinguish Mo

from the other trace metals in plant nutrition. Plants take up Mo0i2- readily,

except at low pH and in some highly organic soils. Other organic soils may



supply excessive amounts, particularly if wet. Sulfate reduces uptake of Mo and

PO,3- usually increases it.

Different species and cultivars within species may differ in their uptake of Mo

from the same soil. Most of the Mo is probably to be found in vegetative parts,

but seeds carry highly variable amounts as reserves.

Deficiency of Mo may result from low overall amounts in the soil or from

unavailability, usually associated with low pH. The latter is related primarily to

adsorption reactions with active oxides of Fe and possibly Al, which are positively charged at the levels of pH involved. Manganese, which was formerly

implicated in the loss of availability because Mo is commonly found occluded in

deposits or nodules along with Mn, is probably involved only incidentally in

soils. Whatever the precise mechanism, liming to shift the pH is well established

as a corrective measure.

Deficiency levels and symptoms are of more concern than Mo toxicity, which

is rare and virtually confined to germinating seeds. However, even moderate

amounts of Mo in forage can harm ruminants. Sufficiency and deficiency levels

of Mo are reported for a number of species. The visual symptoms of deficiency

are related to nitrogen status. In cereals and grasses the symptoms may be

essentially those of NO,- accumulation, which can be reduced by supplying Mo.

Many crop plants are consumed by animals, and the Mo status of the plant can

affect the animal that eats it. Deficiencies of Mo in livestock have not been

reported, but toxicity (molybdenosis) does occur and is associated with disturbance of Cu metabolism. Ruminants are mainly at risk. Toxicity of any level of

dietary Mo is affected by the ratio of the dietary Mo to dietary Cu and by the S

status. High Mo relative to Cu can induce symptoms of Cu deficiency, and Mo

can protect against Cu toxicity. Sulfate affects the balance, both indirectly

through reduction in the uptake of Mo and directly through being present in the

diet. In the latter case, S2- is probably formed in the rumen from SO,‘- or

organic S, and Mo and Cu then coprecipitate.

The topic shows a consistency and breadth of approach that have effectively

consolidated knowledge of Mo as an essential element. The recent advances have

furthered this synthesis and established the position of agricultural uses relative

to other industrial uses. Future research on Mo in agriculture should be about

interaction effects with a range of other elements rather than gross deficiency. In

some parts of the world where Mo has been substituted for lime the soils have

become more acidic, thus making it difficult to crop on such soils. Liming in

these areas will become a major topic and it might be suggested that the “safe”

soils and crops may be less safe than hitherto believed.


Agafonova, A. F., Danilova, T. A , , and Kayurova, L. V. 1975. Khim. Selsk. Khoz. 13, 826-833 (in

Chem. Abstr. 84, 42383s).



Agarwala, S. C. 1952. Nature (London) 169, 1099.

Agarwala, S . C., and Hewitt, E. J . 1955. J. Hortic. Sci. 30, 163-180.

Agarwala, S. C., and Sharma, C. P. 1979. “Recognizing Micronutrient Disorders of Crop Plants on

the Basis of Visible Symptoms and Plant Analysis,” p. 72. Prem, Lucknow, India.

Aganvala, S. C., Sharma, C. P., Farooq, S., andchatterjee, C. 1978. C a n . J. Bot. 56, 1905-1908.

Ahlrichs, L. E., Hanson, R . G . , and MacGregor, J . 54. 1963. Agron. J. 55, 484-486.

Allaway, W. H. 1968. A h . Agron. 20, 235-274.

Allaway, W. H. 1977. /ti “Molybdenum in the Environment” (W. R. Chappell and K . K . Petersen,

eds.), Vol. 2, pp. 317-339. Dekker, New York.

Alloway, B. J . 1973. J. Agric. Sci. 80, 521-524.

Amin, J . V., and Joham, H. E. 1958. Soil Sci. 85, 156-160.

Anderson, A . J . 1942. J. Aust. Inst. Agric. Sci. 8 , 73-75.

Anderson, A. J. 1956. Adv. Agroiz. 8, 163-202.

Anderson, A. J . . and Spencer, D. 1950. Ausr. J. Sci. Res. 3, 414-430.

Arnon, D. I., and Stout, P. R. 1939. Plant Physiol. 14, 599-602.

Barber, S. A,, Halstead, E. H . , and Follett, R. F. 1966. Trans. Comm. I I , IV, Inr. Soc. Soil Sci..

Aherrleen pp. 299-304.

Barrow, N . J . , and Spencer, K . 1971. Aust. J. Exp. Agric. Anim. Hush. 11, 670-676.

Barshad, I . 1951. Soil Sci. 71, 387-398.

Bergeaux, P. J . 1976. “The Need for Micronutrients in Georgia Agriculture.” Bull. No. 784, pp.

1-18. Univ. Georgia, Coil. Agric. Coop. Ext. Service.

Berger, K . C. 1962. Agric. Food Chern. 10, 178-181.

Berger, K . C., and Pratt, P. F. 1965. I n “Fertilizer Technology and Usage” (M. H. McVickar, G.

L. Bridger. and L. B. Nelson, eds.), pp. 313-317. Soil Sci. SOC. Am., Madison, Wisconsin.

Bergmann, W. 1976. “Emahrungsstorungen bei Kulturpflanzen in Farbhildem,” pp. 164-172.

Fischer, Jena.

Bhella, H. S . , and Dawson, M. D. 1972. Proc. Soil Sci. Soc. Am. 36, 177-179.

Bingley, J. B. 1963. Agric. Food Cheni. 11, 130-131.

Bishop, H. G. 1974. Queens/. J. Agric. Anim. Sci. 31, 329-335.

Bloomfield, C., and Kelso, W .I . 1973. J. Soil Sci. 24, 368-379.

Bortels, H. 1930. Arch. Mikrobiol. 1, 333-342.

Bortels, H. 1936. Zenrralhl. Bakteriol. Parasitenkd. 95, 193-218.

Boswell, F. C., Anderson, 0. E., and Welch, L. F. 1967. “Molybdenum Studies with Peanuts in

Georgia.” Bull. No. 9, pp. 5-23. Univ. Georgia, College Agric. Exp. Sta. Res.

Britton, J . W., and Goss, H. 1946. J. Am. V r f . M e d . Assoc. 108, 176-178.

Brogan, J . C., Fleming, G. A,, and Byrne, J . E. 1973. I r . J. Agric. Res. 12, 71-81.

Brown, J . C., and Clark, R. B. 1974. Proc. Soil Sci. Soc. A m . 38, 331-333.

Bussler, W. 1970. Z . Pjlanzenernaehr. Boderzkd. 125, 36-50.

Chatt, J. 1974. J. Less Common Merals 36, 429-435.

Chesnin, L. 1972. I n “The Fertilizer Handbook” (W. C. White and D. N . Collins, eds.), pp. 65-84.

Fertilizer Institute, Washington, D.C.

Childs. C. W., and Leslie, D. M. 1977. Soil Sci. 123, 369-376.

Chipman, E. W., MacKay, D. C., Gupta, U . C., and Cannon, H. B. 1970. C a n . J. Planr Sci. 50,

I 63- 167.

Clark, L. J., and Axley, J . H. 1955. A d . Chem. 27, 2000-2003.

Corbett, W. S., and Leach, R. M., Jr. 1976. Sci. Agric. (Penn. Stare U n i v . ) 23(3), 2.

Cunningham, I. J. 1950. I n “A Symposium on Copper Metabolism” (W. D. McElroy and B. Goss,

eds.), pp. 246-273. Johns Hopkins Press, Baltimore, Maryland.

Cyanamid of Canada Limited. 1970. Tech. Bull. I, 41.

Dann, P. D. 1969. Aust. J. Exp. Agric. Anim. Hush. 9, 625-629.

Das Gupta, D. K . , and Basuchaudhuri, P. 1977. Plant Soil 46, 681-685.



Date, R . A., and Hillier, G . R. 1968. J . Ausr. Inst. Agric. Sci. 34, 171-172.

Davies, E. B. 1945. Nature (London) 156, 392-393.

Davies, E. B. 1956. Soil Sci. 81, 209-221.

Dekhkankhodzhayeva, S. Kh., and Kruglova, YE. K. 1972. Agrukhimiyu 4, 109-1 13. (Soviet Soil

Sci. 1972, 247-251.)

de Mooy, C . J. 1970. Agron. J. 62, 195-197.

Dick, A . T. 1954. Aust. J . Agric. Res. 5, 51 1-544.

Dick, A . T. 1956. In “A Symposium on Organic Nitrogen Metabolism” (W. D. McElroy and B.

Glass, eds.), pp. 445-473. Johns Hopkins Press, Baltimore, Maryland.

Dios, R. V . , and Broyer. T . V. 1965. Agrochimicu 9, 273-284.

Donald, C . , Passey, B . I., and Swaby, R. J. 1952. Aust. J. Agric. Res. 3, 305-325.

Donald, C . M., and Williams, C. H. 1954. Aust. 1. Agric. Res. 5, 661-687.

Doyle, R. J., Parkin, R. J . , Smith, J. A. C . , and Gartrell, J. W . 1965. J. D e p . Agric. West. Aust. 6,


Dye, W . B., and O’Harra, J. L. 1959. “Molybdenosis.” U n i v . Nevada Agric. Exp. Sta. Bull. No.

208, p. 32.

Evans, H. J . 1956. Soil Sci. 81, 199-208.

Evans, H. J . , and Purvis, E. R. 1951. Agron. J. 43, 70-71.

Everist, S. L. 1974. “Poisonous Plants of Australia,” p. 684. Angus & Robertson, Sydney.

Ferguson, W. S . , Lewis, A . H . , and Watson, S. J. 1943. J. Agric. Sci. 33, 44-51.

Fernandez, J. M. L . , Perez-Bendito, D., and Valcarcel, M. 1978. Anul.yst 103, 1210-1214.

Franco, A. A , , Peres, J. R. R., and Nery, M. 1978. Plant Soil 50, 1-1 1 .

Freney, J. R., and Lipsett, J. 1965. Nurure (Londun) 205, 616-617.

Fricke, E. F. 1947. J. Aust. Inst. Agric. Sci. 13, 75-76.

Fuge, R. 1970. Analyst 95, 171-176.

Gammon, N . , Jr., Volk, G. M., McCubbin, E. N., and Eddins, A. H. 1954. Proc. Soil Sci. Soc.

A m . 18, 302-305.

Gartrell, J. W . 1966. Nature (Londun) 209, 1050.

Gartrell, J. W. 1969. Ausr. J. Ex,. Agric. Anim. Husb. 9, 432-436.

Giddens, J. 1964a. Agron. J . 56, 362-363.

Giddens, J. 1964b. F e r t . Sulutions 7(5), 18-19, 21.

Giddens, J . , and Perkins, H. F. 1972. Agron. J. 64, 819-820.

Golov, V. I . , and Kazakhkov, YU. N. 1973. Agrokhimiyu 10, 103-109. (Soviet Soil Sci. 1973,


Grigg, J . L. 1953a. Analyst 78, 470-473.

Grigg, J . L. 1953b. N. Z . J. Sci. Techno/. See. A . 34, 405-414.

Gupta, U. C . 1969. Proc. Soil Sci. Soc. Am. 33, 929-932.

Gupta, U. C. 1970. Soil Sci. 110, 280-282.

Gupta, U. C. 1971a. C a n . J. Soil Sci. 51, 415-422.

Gupta, U. C. 1971b. Plant Soil 34, 249-253.

Gupta, U. C . 1979. C a n . J. Soil Sci. 59, 183-189.

Gupta, U. C., and Cutcliffe. J. A. 1968. C a n . J. Soil Sci. 48, 117-123.

Gupta, U. C., and Kunelius, H. T. 1980. C a n . J. Plant Sci. 59, 113-120.

Gupta, U. C . , and MacKay, D. C. 1965a. Soil Sci. 99, 414-415.

Gupta, U. C., and MacKay, D. C. 1965b. Proc. Soil Sci. Soc. Am. 29, 323.

Gupta, U. C . , and MacKay, D. C. 1968. Can. J. SoilSci. 48, 235-242.

Gupta, U. C . , and MacLeod, L. B. 1975. SuilSci. 119, 441-447.

Gupta, U. C . , and Munro, D . C . 1969. SoilSci. 107, 114-118.

Gupta, U . C . , Chipman, E. W . , and MacKay, D. C . 1978. Can. J. Plant Sci. 58, 983-992.

Gurley, W. H., and Giddens, J. 1969. Agron. J. 61, 7-9.

Hagstrom, G. R., and Berger, K. C. 1965. Soil Sci. 100, 52-56.



Hanway, J . J., and Englehorn, A. J. 1958. Agron. J . 50, 331-334.

Hawes, R. L., Sims, J . L., and Wells, K . L. 1976. Agron. J . 68, 217-218.

Henkens, C. H., and Smilde, K. W. 1966. Neth. J . Agric. Sci. 14, 165-177.

Henning, S . , and Jackson, T. L. 1973. Atom. Absorpr. Newsl. 12, 100-101.

Hewitt, E. J. 1951. Annu. Rev. Plant Physiol. 2, 25-52.

Hewitt, E. J . 1956. Soil Sci. 81, 159-171.

Hewitt, E. J., and Jones, E. W. 1948. Annu. Rep. Long Ashton, Brisrol Res. Sta. pp. 81-90,

Hornick, S. B., Baker, D. E., and Guss, S. B. 1977. In “Molybdenum in the Environment”(W. R.

Chappell and K . K . Petersen, eds.), Vol. 2, pp. 665-684. Dekker, New York.

Huang, P. M., and Jackson, M. L. 1965. Proc. Soil Sci. SOC. Am. 29, 661-665.

Huisingh, J., and Matrone, G. 1976. In “Molybdenum in the Environment” (W. R. Chappell and K .

K . Petersen, eds.), Vol. I , pp. 125-148. Dekker, New York.

Inden, T. 1975. Ext. Bull. No. 5 5 , ASPAC Food Fert. Technol. Cent. (Asian Pac. Council), pp.


Jackson, D. R., Lindsay, W. L., and Heil, R. D. 1975. J . Environ. Quai. 4, 223-229.

James, D. W., Jackson, T. L., and Harward, M. E. 1968. Soil Sci. 105, 397-402.

Jarrell, W. M., and Dawson, M. D. 1978. Soil Sci. SOC. Am. J . 42, 412-415.

Johansen, C. 1978a. Aust. J . Exp. Agric. Anim. Hush. 18, 732-736.

Johansen, C. 1978b. Commun. Soil Sci. Planr Anal. 9, 1009-1017.

Johnson, C. B., Whittington, W. J., and Blackwood, G. C. 1976. Nature (London) 262, 133-134.

Johnson, C. M. 1966. In “Diagnostic Criteria for Plants and Soils” (H. D. Chapman, ed.), pp.

286-301. Univ. of Calif. Press, Riverside.

Johnson, C. M., Pearson, G. A,, and Stout, P. R. 1952. Planr Soil 4, 178-196.

Jones, J. B., Jr. 1967. “Soil Testing and Plant Analyses,” Spec. Publ. No. 2, pp. 49-58. Plant

Analyses, Part 11. SSSA.

Jones, J . B . , Jr. 1972. In “Micronutrients in Agriculture” (J. J. Mortvedt, P. M. Giordano, and W.

L. Lindsay, ‘eds.), pp. 319-346. Soil Sci. SOC.Am., Madison, Wisconsin.

Jones, L. H. P. 1956. Science 123, I 1 16.

Jones, L. H. P. 1957. 1.SoilSci. 8, 313-327.

Jones, R. K., and Crack, B. J. 1970. Aust. J . Exp. Agric. Anirn. Hush. 10, 342-349.

Kannan, S., and Ramani, S. 1978. Plant Physiol. 62, 179-181.

Karimian, N . , and Cox, F. R. 1978. Soil Sci. SOC. Am. J. 42, 757-761.

Karimian, N . , and Cox, F. R . 1979. Agron. J . 71, 63-65.

Kemdge, P. C., Cook, B. G . , and Everett, M. L. 1973. Trop. Grassl. 7, 229-232.

Khan, S . U . , Cloutier, R. O., and Hidiroglou, M. 1979. J . Assoc. Off.

Anal. Chem. 62, 1062-1064.

Koch, B . , Evans, H. J., and Russell, S. 1967. Plant Physiol. 42, 466-468.

Koval’skiy, V. V . , and Yarovaya, G.A. 1966. Agrokhimiya 8, 68-91.

Krauskopf, K. B. 1972. I n “Micronutrients in Agriculture” (J. J. Mortvedt, P. M. Giordano, and

W. L. Lindsay, eds.), pp. 7-40. Soil Sci. SOC.Am., Madison, Wisconsin.

Kubota, J. 1972. In “Geochemical Environment in Relation to Health and Disease” (H. C. Hopps

and H. L. Cannon. eds.), pp. 105-1 15. Geological SOC.Am., Boulder, Colorado.

Kubota, J. 1975. Soil Conservation 40(9), 18-21.

Kubota, J., and Allaway, W. H. 1972. In “Micronutrients in Agriculture” (J. J . Mortvedt, P. M.

Giordano, and W. L. Lindsay, eds.), pp. 525-554. Soil Sci. SOC.Am., Madison, Wisconsin.

Kubota, J., Lazar, V. A., Langan, L. N., and Beeson, K. C. 1961. Proc. Soil Sci. SOC. A m . 25,


Kubota, J., Lemon, E. R., and Allaway, W. H. 1963. Proc. Soil Sci. SOC. Am. 27, 679-683.

Lavy, T. L., and Barber, S. A. 1964. Proc. Soil Sci. SOC. Am. 28, 93-97.

Lehr, J . R. 1972. In “Micronutrients in Agriculture” (J. J. Mortvedt, P. M. Giordano, and W. L.

Lindsay, eds.), pp. 459-503. Soil Sci. SOC.Am., Madison, Wisconsin.



Lewis, A. H. 1943. J . Agric. Sci. 33, 58-63.

Lindsay, W. L. 1972. I n “Micronutrients in Agriculture” (J. J. Mortvedt, P. M . Giordano, and W.

L. Lindsay, eds.), pp. 41-57. Soil Sci. SOC.Am., Madison, Wisconsin.

Lipsett, J. 1975. Ausf. J . Exp. Agric. Anim. Husb. 15, 227-230.

Lipsett, J., and David, D. J . 1977. J . Aust. Inst. Agric. Sci. 43, 149-151.

Lipsett, J., and Simpson, J. R. 1971. J . Aust. Inst. Agric. Sci. 37, 348-351.

Lipsett, J. and Simpson, J . R. 1973. Ausi. J. Exp. Agric. Anbn. Husb. 13, 563-566.

Little, I. P., and Kenidge, P. C. 1978, Soil Sci. 125, 102-106.

Lobb, W. R. 1953. N . Z . J . Agric. 87, 3-11.

Lowe, R. H., and Massey, H. F. 1965. Soil Sci. 100, 238-243.

Lucas. R. E., and Knezek, B. D. 1972. I n “Micronutrients in Agriculture” (J. J. Mortvedt, P. M.

Giordano, and W. L. Lindsay, eds.), pp. 265-288. Soil Sci. SOC.Am., Madison, Wisconsin.

McLachlan, K . D. 1955. Aust. J . Agric. Res. 6 , 673-684.

MacLean, K . S., and Langille, W. M. 1973. Commun. Soil Sci. Planr Anal. 4, 495-505.

McLeod, C.C. 1976. N . Z . J . Agric. 133(2), 65-69.

Malonosova, 1. A. 1968. Agrokhimiya 10, 144-147.

Manheirn, F. T.. and Landergren. S. 1978. I n “Handbook of Geochemistry” (K. H. Wedepohl,

ed.), Vol. 11-4, pp. 42-B-1-42-0-2. Springer-Verlag, Berlin and New York.

Martinez, J . F., Robertson, W. K., and Martin, F. G. 1977. Proc. Soil Crop Sci. Soc. Fla. 36,


Meagher, W. R., Johnson, C. M., and Stout, P. R. 1952. Plani Physiol. 27, 223-230.

Melsted, S. W.. Motto, H. L., and Peck, T. R. 1969. Agron. J . 61, 17-20.

Menary, R. C., and Jones, R. H. 1972. Aust. J . Biol. Sci. 25, 531-542.

Merkel, D., Witt, H. H., and Jungk, A. 1975. Plant Soil 42, 131-143.

Millikan, C. R. 1947. J . Ausr. Inst. Agric. Sci. 13, 180-186.

Millikan, C. R. 1949. Proc. R. Soc. Victoria 61, 25-42.

Mills, C. F., and Fell, B. F. 1960. Nature (London) 185, 20-22.

Miltimore. J. E., and Mason, J. L. 1971. Can. J . Anim. Sci. 51, 193-200.

Mitchell, K . J. 1945. N.Z. J . Sci. Technol. A-27, 287-293.

Mitchell, R. L. 1964. In ”Chemistry of the Soil” (F. E. Bear, ed.), 2nd Ed., pp. 320-368. Van

Nostrand-Reinhold, Princeton, New Jersey.

Mitchell, R. L. 1974. Nerh. J . Agric. Sci. 22, 295-304.

Moore, R. M., and Hutchings, R. J. 1967. Aust. J . Exp. Agric. Anim. Husb. 7, 17-21.

Mulder, E. G. 1948. Plant Soil 1, 94-1 19.

Mulder, E. G. 1954. Plan1 Soil 5, 368-415.

Murphy, L. S., and Walsh, L. M. 1972. In “Micronutrients in Agriculture” (J. J. Mortvedt, P. M.

Giordano, and W. L. Lindsay, eds.), pp. 347-387. Soil Sci. SOC.Am., Madison, Wisconsin.

Neenan, M., Walsh, T., and O‘Moore, L. B. 1956. Proc. Inf. Crassl. Congr. 7rh. N . N . Z . Paper


Neubert, P., Wrazidlo, W., Vielemeyer, H. P., Hundt, I . , Gollmick, Fr., and Bergmann, W. 1970.

Tabellen zur Pflanzenanalyse-Erste orientierende Ubersicht,” pp. 1-40. Inst. fur Pflanzenernahrung, Jena, der Deutschen Akademie der Landwirtschaftswissenschaften zu Berlin. Jena,

Naumburger Strasse 98.

Nicholas, D. J. D. 1975. In “Trace Elements in Soil-Plant-Animal System’’ (D. J. D. Nicholas and

A. R. Egan, eds.), pp. 181-198. Academic Press, New York.

Noonan, J. B. 1953. Agric. C a z . N.S.W. 64, 422-424.

Nonish, K . 1975. In “Trace Elements in Soil-Plant-Animal Systems.” Proc. Jubilee Symp. Waite

Agric. Res. Inst. (D. 1. D. Nicholas and A. R. Egan, eds.), pp. 55-81. Academic Press, New


Pal, U . R., Gossett, D. R., Sims, J. L., and Leggett, J. E. 1976. Can. J . Bor. 54, 2014-2022.



Parker, M. B.. and Harris, H. B. 1977. Agron. J. 69, 551-554.

Pasricha, N. S., and Randhawa, N . S. 1972. Plant Soil 37, 215-220.

Pathak, A. N., Shankar, H., and Misra, R. V. 1969. J. Inclinn Soc. Soil Sci. 17, 151-153.

Perrin, D. D. 1946. N . Z. J. Sci. Technol. 28, 183-187.

Perrott, K. W., Smith, B. F. L., and Inkson, R . H. E. 1976. J. Soil Sci. 27, 58-67.

Peterson, N . K., and Purvis, E. R. 1961. Proc. SoilSci. Soc. Am. 25, 111-117.

Peyve, YA. V . 1969. Agrokhitniva 1, 61-74.

Piper, C. S., and Beckwith, R. S. 1948. J. Sac. Chern. Ind. (London) 67, 374-379.

Plant, W. 1951a. J. Horr. Sci. 26, 109-1 15.

Plant, W. 1951b. Long Ashton Res. Sra. Annu. Rep. pp. 113-1 15.

Plant, W. 1952. Trans. Int. Soc. Soil Sci., Comm. 11. I V 2 , 176-177.

Prasad, N. R., and Pagel, H. 1976. Beitr. Trop. Landwirtsch. Veterinarmed. 14, 79-87.

Price, C. A,, Clark, H. E., and Funkhouser, E. A. 1972. In “Micronutrients in Agriculture” ( J . J .

Mortvedt, P. M. Giordano, and W. L. Lindsay, eds.), pp. 231-242. Soil Sci. SOC.Am.,

Madison, Wisconsin.

Pringle, W. L., Dawley, W. K., and Miltimore, J. E. 1973. Can. J . Anim. Sci. 53, 497-502.

Purvis, E. R., and Peterson, N. K . 1956. Soil Sci. 81, 223-228.

Randall, P. J . 1969. Aust. J. Agric. Res. 20, 635-642.

Reddy, G. R. 1964. Indian J. Agric. Sci. 34, 219-233.

Reisenauer, H. M. 1956. Soil Sci. 81, 237-242.

Reisenauer, H. M. 1963. Agron. J. 55, 459-460.

Reisenauer, H. M. 1965. I n “Methods of Soil Analyses” (C. A. Black ed.), Part 2, Agronomy 9,

pp. 1050-1058. Soil Sci. SOC.Am., Madison, Wisconsin.

Reisenauer, H. M. 1967. “Soil Testing and Plant Analysis,” Part I , SSSA Spec. Publ. No. 2, pp.

7 1 - 102.

Reisenauer, H. M., Tabikh. A. A. , and Stout, P. R. 1962. Proc. Soil Sci. Soc. A m . 26, 23-27.

Reyes, E. D., and Jurinak, J . J. 1967. Proc. Soil Sci. Soc. Am. 31, 637-641.

Robinson, D. B., and Campbell, J . E. 1956. C a n . J. Agric. Sci. 36, 241-244.

Robinson, D. B., LeLacheur, K . E.. and Brossard, G . A. 1957. C a n . J. Plant Sci. 37, 193-195.

Robinson, W. 0..

and Alexander, L. T. 1953. Soil Sci. 75, 287-291.

Rolt, W. F. 1968. N . Z . J. Agric. Res. 11, 193-205.

Rubins, E. J. 1956. SoilSci. 81, 191-197.

Schrauzer, G. N . 1976. In “Molybdenum in the Environment” (W. R. Chappell and K . K. Petersen,

eds.), Vol. I , pp. 243-265. Dekker, New York.

Scott, M. L. 1972. I n “Micronutrients in Agriculture” (J. J. Mortvedt, P. M. Giordano, and W. L.

Lindsay, eds.), pp. 555-591. Soil Sci. SOC.Am., Madison, Wisconsin.

Sedberry, 1. E., Charmaputra, T. S., Brupacher. R. H.,Phillips, S. A,, Marshall, J . G., Sloane, L.

W., Melville, D. R., Rabb, J . L., and Davis, J. H. 1973. “Molybdenum Investigations with

Soybeans in Louisiana.” Bull. No. 670, La. State Univ. and A and M Coll.

Shukla, P., Singh, M. P., and Pathak, A. N . 1976. Indian J. Agron. 21, 177-179.

Sims, J. L., Leggett, J. E., and Pal, U. R. 1979. Agron. J. 71, 75-78.

Singh. M., and Kumar, V . 1979. Soil Sci. 127, 307-312.

Sisodia, A. K., Sawarkar, N. J., and Rai, M. M. 1975. J. Indian SOC. Soil Sci. 23, 96-102.

Smith, B. H., and Leeper, G. W. 1969. J. Soil Sci. 20, 246-254.

Steinberg, R. A. 1936. J. Agric. Res. 52, 439-448.

Stone, K. L., and Jencks, E. M. 1963. W. Virginia Univ.. Agric. Exp. Stn. Bull. No. 484, p. 10.

Stonier, R. 1965. Aust. J. Exp. Agric. Anim. Husb. 5 , 317-322.

Stout, P. R. 1972. I n “Micronutrients in Agriculture” (J. J. Mortvedt, P. M. Giordano, and W. L.

Lindsay, eds.), pp. 1-5. Soil Sci. SOC.Am., Madison, Wisconsin.

Stout, P. R., and Meagher, W. R. 1948. Science 108, 471-473.



Stout, P. R., Meagher, W. R.. Pearson, G . A., and Johnson, C. M. 1951. Plant Soil 3, 51-87.

Suttle, N. F. 1974. In “International Symposium on Trace Element Metabolism in Animals’’ (W. G.

Hoekstra, J. W. Suttle, H. E. Ganthier, and W. Mertz, eds.), 2nd Ed., pp. 612-614. Univ. Park

Press, Baltimore. Maryland.

Suttle, N . F. 1975. In “Trace Elements in Soils Plant-Animal Systems” (D. J. D. Nicholas and A.

R. Egan, eds.), pp. 271-289. Academic Press, New York.

Tanner, P. D. 1976. Rhod. J. Agric. Res. 14, 95-99.

Tanner, P. D. 1978. Plant Soil 49, 427-432.

Thornton, I . , and Webb, J. S. 1973. In “Environmental Geochemistry: Some Recent Studies in the

United Kingdom,” pp. 89-98. Proc. 7th Conf. on Trace Substances in Environmental Health.

Univ. of Missouri, Columbia.

Tiffin, L. 0. 1972. I n “Micronutrients in Agriculture” (J. J. Mortvedt, P. M. Giordano, and W. L.

Lindsay, eds.), pp. 199-229. Soil Sci. Soc. Am., Madison, Wisconsin.

Todd, J. R. 1976. I n “Molybdenum in the Environment” (W. R. Chappell and K . K. Petersen,

eds.), Vol. 1, pp. 33-49. Dekker, New York.

Ulrich, A., and Hills, F. J. 1973. I n “Soil Testing and Plant Analysis’’ (L. M. Walsh and J. D.

Beaton, eds.), 2nd ed., pp. 271-288. Soil Sci. SOC.Am., Madison, Wisconsin.

Underwood, E. J. 1976. I n “Molybdenum in the Environment” (W. R. Chappell and K. K.

Petersen, eds.), Vol. 1, pp. 9-31. Dekker, New York.

Valdek, E. 1974. T e d . Toode Kogumik Eesti Maaviljeluse Maaparanduse Tead. 32, 12-28 (in

Chem. Abstr. 84, 163495).

Vlek, P. L. G., and Lindsay, W. L. 1974. Agron. Abstr., p. 126. Am. Soc. Agron., Madison,


Vlek, P. L. G., and Lindsay, W. L. 1977. I n “Molybdenum in the Environment” (W. R. Chappell

and K . K. Petersen, eds.), Vol. 2, pp. 619-650. Dekker, New York.

Wallace, A,, and Romney, E. M. 1977. I n “Biological Implications of Metals in the Environment”

(A. Wallace and E. M. Romney, eds.), pp. 370-379. ERDA Symp. Series 42.

Wallace, T. 1951. “The Diagnosis of Mineral Deficiencies in Plants by Visual Symptoms,” p. 125,

plus plates. H.M.S.O., London.

Wardlaw, I. F. 1968. Bot. Rev. 34, 79-105.

Warington, K. 1937. Ann. Appl. Biol. 24, 475-493.

Warington, K. 1954. Ann. Appl. Biol. 41, 1-22.

Warren, H. V. 1973. I n “Environmental Medicine” (G. M. Howe and J. A. Loraine, eds.), Ch. 2,

pp. 9-24. Heinemann, London.

Weir, R. G., and Hudson, A., 1966. Aust. J. Exp. Agric. Anim. Husb. 6, 35-41.

Weir, R. G., Noonan, J. B., and Boyle, J. W. 1966. Agric. Gaz. N.S.W. 77, 578-582.

Weir, R. G., Nagle, R. K., Noonan, J. B., andTowner, A. G. W. 1976. Ausr. J. Exp. Agric. Anim.

Husb. 16, 761-764.

Widdowson, J. P. 1966. N . Z . J . Agric. Res. 9, 59-67.

Williams, C., and Thornton, I. 1972. Plant Soil 36, 395-406.

Williams, J. H.1971. “Trace Elementsin Soilsand Crops,”pp. 119-136. Minist. Agric. Fish. Food

(U.K.),Tech. Bull. No. 21.

Wilson, D. 0. 1979. Commun. Soil Sci. Plant Anal. 10, 1319-1330.

Wynne, K. N., and McClymont, G. L. 1955. Nature (London) 175, 471-472.

This Page Intentionally Left Blank

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

IX. Molybdenum Toxicity and Molybdenum-Copper-Sulfur Interrelationships in Animals

Tải bản đầy đủ ngay(0 tr)