Tải bản đầy đủ - 0 (trang)
IX. NH, Sorption by Soils and Vegetation

IX. NH, Sorption by Soils and Vegetation

Tải bản đầy đủ - 0trang

VOLATILIZATION LOSSES OF NITROGEN AS AMMONIA



219



bodies of water constitute tremendous sinks for atmospheric NH,. The various

results on NH,-N sorption by soils and vegetation indicate that this source of N

for crop growth is quite important under some conditions, such as near urban

areas (Malo and Purvis, 1964), near feedlots (Hutchinson and Wets, 1969), and

near power plants and other industrial plants. Contributions of atmospheric NH,

should be considered in N balance studies. However, Hoeft et al. (1972) and

Rodgers (1978) found dry deposition of NH3-N to contribute less than 5 kg of N

per hectare per year. Rodgers found that dry deposition of NH, was inversely

related to rainfall.



X. Conclusions



A large amount of research has been carried out to study NH,-N losses from

soils, organic residues and amendments, and water. Much of the research has

been done under laboratory conditions, for which numerous factors affecting

losses can be more closely controlled and separated. The results show that the

most severe loss problems are concerned with surface-applied urea on both acid

and alkaline soils and with surface-applied NH4-N sources on neutral to alkaline

soils. More loss tends to occur with NH4-N sources (such as AS or DAP), which

tend to react with CaCO, to form reaction products of low solubility, than from

sources (such as AN) that form soluble salts. Losses of NH,-N are essentially

eliminated in acid soils by covering urea 5 cm or more deep, as are losses from

urea placed deeply in flooded rice soils. Losses are reduced by covering in

alkaline soils but may not be reduced to zero.

Research results almost invariably show that NH,-N losses from fertilizers

surface-applied to moist soils increase with intensity of drying conditions (higher

temperatures, lower humidity) and with decrease in soil sorption capacity for

NH4-N (coarser texture, lower CEC, higher pH, lower water content). Results

from laboratory, greenhouse pot, and field plot experiments agree in general

concerning the various factors contributing to NH,-N losses.

Results from field experiments tend to be highly variable among seasons,

crops, soils, years, and various weather conditions. The major need in further

research on NH3-N losses seems to be for field experiments in which more

loss-contributing factors are quantified. Apparently only then can we hope to

predict accurately a given loss result from a surface-applied N fertilizer or organic amendment.

Part of the variability in results from laboratory, greenhouse pot, and field

studies is also due to variation in application patterns for solid granules and liquid

droplets. This should be made uniform for comparable results.



220



G. L. TERMAN



REFERENCES

Allen, S.E., Terman, G.L., and Hunt, C.M. 1971.J . Agric. Sci. 77, 397-404.

Allison, F.E. 1955.Adv. Agron. 7,213-250.

Allison. F.E. 1964.In “Soil and Fertilizer Nitrogen Research.”,TVA, Muscle Shoals, Alabama, pp.



1-17.



Andrews, W.B., Edwards, F.E., and Hammons, J.G. 1948.Miss. Agric. Exp. Stu. Bull. 451.

Avnimelech, Y.,and Laher, M. 1977.Soil Sci. SOC.Am. J . 41, 1080-1084.

Baker, J.H., Peech, M., and Musgrave, R.B. 1959.Agron. J . 51, 361-362.

Beauchamp. E.G., Kidd, G.E., and Thurtell, G. 1978.J . Environ. Qual. 7, 141-146.

Bengtson, G.W. 1976. Presented to working group on forest fertilization. IUFRO World Congr.

16th. Oslo.

Bock, B. 1978.Ph.D. Thesis, Univ. of Nebraska, Lincoln.

Bouldin. D.R.. Johnson, R.L., Burda, C., and Kao, C.W. 1974.J. Environ. Qual. 3, 107-114.

Bremner, J.W., and Bundy, L.G. 1976. Soil Biol. Biochem. 8, 131-133.

Bremner, J.W., and Douglas, L.A. 1-971a.Soil Sci. SOC.Am. Proc. 35, 575-578.

Bremner, J.W., and Douglas, L.A. 1971b.Soil Biol. Biochem. 3, 297-307.

Bremner, J.M., and Douglas, L.A. 1973. Soil Sci SOC.Am. Proc. 37, 225-226.

Bremner, J.W., and Zantua, M.I. 1975. Soil Biol. Biochem. 7, 383-387.

Broadbent, F.E., Hill,G.N., and Tyler, K.B. 1958.Soil Sci. SOC.Am. Proc. 22, 303-307.

Bkndy, L.G., and Bremner, J.M. 1973.Soil Biol. Biochem. 5, 847-853.

Bundy, L.G., and Bremner, J.M. 1974.Soil Biol. Biochem. 6, 369-376.

Burton, G.W., and DeVane, E.H. 1952.Agron. J . 44, 128-132.

Burton, G.W., and Jackson, J.E. 1962. Agron. J . 54,40-43.

Carter, J.N., and Allison, F.E. 1961. Soil Sci. SOC.Am. Proc. 25, 484-486.

Chao, T.T.,and Kroontje, W. 1964.Soil Sci. SOC.Am. Proc. 28, 393-395.

Chin. W., and Kroontje, W. 1963. Soil Sci. SOC.Am. Proc. 27,316-318.

Coffee, R.C., and Bartholomew, W.V. 1964a. Soil Sci. SOC.Am. Proc. 28,482-485.

Coffee, R.C., and Bartholomew, W.V. 1964b.Soil Sci. SOC.Am. Proc. 28,485-490.

Conrad, J.P. 1942. Soil Sci. 54,367-380.

Cooke, G.W. 1964. Ferr. SOC.(London) Proc. 80.

Court, M.N., Stephen, R.C., and Waid, J.S. 1962. Nature (London) 194, 1263-1265.

Crowther, F. 1941. Emp. J . Exp. Agric. 9, 125-136.

Dalal, R.C. 1975.Soil Biol. Biochem. 7,s-8.

Denmead, O.T., Simpson. J.R., and Freney. J.R. 1974.Science 185, 609-610.

Denmead, O.T.,Simpson, J.R., and Freney, J.R. 1976.Soil Biol. Biochem. 8, 161-164.

Denmead, O.T., Simpson, J.R., and Freney, J.R. 1977. Soil Sci. SOC. Am. J. 41, 1001-1004.

Devine, J.R., and Holmes, M.R.J. 1963. J . Agric. Sci. 60, 297-304.

Devine, J.R., and Holmes, M.R.J. 1964.J. Agric. Sci. 62, 377-379.

Devine, J.R., and Holjes, M.R.J. 1965.J . Agric. Sci. 64, 101-107.

Douglas, L.A.. and Bremner, J.M. 1971.Soil Biol. Biochem. 3, 309-315.

DuPlessis, M.C.F., and Kroontje, W. 1964. Soil Sci. SOC.Am. Proc. 28, 751-754.

DuPlessis, M.C.F., and Kroontje, W. 1966. Soil Sci. SOC.Am. Pruc. 30, 693-696.

Elliott. L.F.. Schuman, G.E., and Viets, F.G., Jr. 1971. Soil Sci. SOC.Am. Proc. 35, 752-755.

Engelstad, O.P., Hunt, C.M., and Terman, G.L. 1964.Agron. 1. 56, 579-582.

Ernst, J.W., and Massey, H.F. 1960.Soil Sci. SOC.Am. Proc. 24, 87-90.

Feagley, S.E., and Hossner, L.R. 1978. Soil Sci. Soc.Am. J . 42, 364-467.

Fenn, L.B. 1975.Soil Sci. Soc.Am. Proc. 38,366-369.

Fenn, L.B., and Escarzaga, R. 1976. Soil Sci. SOC.Am. J . 40, 537-541.

Fenn, L.B., and Escarzaga, R. 1977.Soil Sci. SOC.Am. J . 41, 358-363.



VOLATILIZATION LOSSES OF NITROGEN AS AMMONIA



22 1



Fenn, L.B., and Kissel, D.E. 1973. Soil Sci. SOC. Am. Proc. 37 855-859.

Fenn, L.B., and Kissel, D.E. 1974. Soil Sci. SOC. Am. Proc. 38,606-610.

Fenn, L.B., and Kissel, D.E. 1975. Soil Sci. SOC.Am. Proc. 39,631-633.

Fenn, L.B., and Kissel, D.E. 1976. Soil Sci. SOC. Am. Proc. 40, 394-398.

Fenn, L.B., Taylor, R.M., and Matocha, J.E. 1979. Soil Sci. SOC. Am. J . 43,(in press).

Fisher, W.B.. Jr., and Parks, W.L. 1958. Soil Sci. SOC. Am. Proc. 22, 247-248.

Forster, I., and Lippold, H. 1975. Arch. Acker Pfanzenbau Bodenkd. 19,619-630.

Gandhi, A.P., and Paliwal, K.V. 1976. Plant Soil 45, 247-255.

Gasser, J.K.R. 1964a. Soils Fert. 27, 175-180.

Gasser, J.K.R. 1964b. World Crops March, 25-32.

Gasser, J.K.R. 1 9 6 4 ~ 1.

. Soil Sci. 15, 258-272.

Gasser, J.K.R., and Penny, A. 1967. J . Agric. Sci. 69, 139-148.

Could, W.D., Cook, F.D., and Bulat, J.A. 1978. Soil Sci. SOC. Am. J . 42, 66-72.

Hanawalt, R.B. 1969. Soil Sci. SOC. Am. Proc. 33, 231-234.

Harding, R.B., Embleton, T.W.. Jones, W.W.. and Ryan, T.M. 1963. Agron. J. 55, 515-518.

Hargrove. W.L., Kissel, D.E., and Fenn, L.B. 1977. Agron. 1. 69,473-476.

Hauck, R.D., and Stephenson, H.F. 1965. J. Agric. F w d C h m . 13,486-492.

Heck, A.F. 1931. Soil Sci. 31,467-481.

Henderson, D.W., Bianchi. W.C., and Doneen, L.D. 1955. Agric. Eng. 36 398-399.

Hoeft, R.G., Keeney, D.R., and Walsh. L.M. 1972. J . Environ. Quuf. 1, 203-208.

Hooker, M.L., Peterson, G.A.. and Sander, D.H. 1973. Soil Sci. SOC. Am. Proc. 37,247-249.

Humbert, R.P., and Ayres, A.S. 1957. Soil Sci. SOC. Am. Proc. 21, 312-316.

Hutchinson, G.L., and Viets, F.G., Jr. 1969. Science 166, 514-515.

Ingram, G.J. 1950. Soil Sci. 70, 205-212.

International Rice Research Institute 1977. Ann. Rep. 1976 236-237, Los Ba~ios,Philippines.

Jackson, J.E., and Burton, G.W. 1962. Agron. J. 54,4749.

Jackson, M.L., and Chang, S.C. 1947. J . Am. SOC. Agron. 39, 623-633.

Jewitt, T.N. 1942. Soil Sci. 54, 401-409.

Johansson, O., and Jonson, L. 1964. Vuxt. Nar. Myrt. 20(3), 23-25.

Johnsson, S. 1977. Inst. For. Improv. Fen. lnf. I.

Khan, D.H., and Haque, M.Z. 1965. J. Sci. Food Agric. 16,725-729.

Kissel, D.E.. Brewer, H.L., and Arkin, G.F. 1977. Soil Sci. SOC.Am. Proc. 41, 1133-1138.

Kresge, C.B., and Satchel], D.P. 1960. Agron. J. 52, 104-107.

Larsen, S.,and Gunary, D. 1962. J . Sci. Food Agric. 13, 566-572.

Lauer, D.A., Bouldin, D.R., and Klausner, S.D. 1976. J. Environ. Qual. 5 , 134-141.

Laughlin, W.M. 1963. Agron. J . 55,60-62.

Lehr, J.J., and van Wesemael, J.C. 1961. Landbowk. Tydschr. 73, 1156-1168.

Low, A.J., and Piper, F.J. 1961. J . Agric. Sci. 57, 249-255.

Luebs, R.E., Davis, K.R., and Laag, A.E. 1973. 1. Environ. Qual. 2, 137-141.

Luebs, R.E., Davis, K.R., and Laag, A.E. 1974. J. Environ. Qual. 3, 265-269.

MacRae, I.C., and Ancajas, R. 1970. Plant Soil 33.97-103.

McDowell, L., and Smith, G.E. 1958. Soil Sci. Soc.Am. Proc. 22,38-42.

hlcGarity, J.W., and Myers, M.G. 1967. Plant Soil 27, 217-238.

McGarity, J.W., and Rajaramam, J.A. 1973. Soil Biol. Biochem. 5, 121-131.

Malo, B.A., and Purvis, E.R. 1964. Soil Sci. 97 242-247.

Martin, J.P., and Chapman, H.D. 1951. Soil Sci. 71, 25-34.

Matocha, J.E. 1976. Soil Sci. Soc.Am. J . 40, 597-601.

Mayland, H.F. 1968. Agron. J . 60, 658-659.

Mays, D.A., and Terman, G.L. 1969. Sulphur Insf. J . 5 (Autumn), 7-10.

Meyer, R.D., Olson, R.A., and Rhoades, H.F. 1961. Agron. 1. 53, 241-244.



222



G. L. TERMAN



Midgley, A.R., and Weiser, V.L. 1937. Vermont Agric. Exp. Sta. Bull. 419.

Mikkelsen, D.S., and DeDatta. S.K. 1968. Paper presented at Symposium of Nitrogen and Rice,

IRRI, Los Baiios. Philippines, September.

Mikkelsen, D.S., DeDatta S.K., and Obcemea, W.N. 1978. Soil Sci. SOC. Am. J . 42, 725-730.

Mitsui, S., Ozaki, K., and Moriyama, M. 1954. J. Soil Sci. (Tokyo) 25, 17-19. (Chem. Absrr. 48,

11702.)

Miyamoto, S., Ryan, J.. and Stroehiin, J.L. 1975. Soil Sci. SOC.Am. Proc. 39, 544-548.

Moller. G. 1974. Phosphore Agr. No. 68, 33-48.

Mosier, A.R., Andre, C.E., and Viets, F.G.. Jr. 1973. Environ. Sci. Technol. 7, 642-644.

Nommik, H. 1973a. Plant Soil 38, 589-603.

Nommik, H. 1973b. Plant Soil 39, 309-318.

Okuda, A., Takahashi. E., and Yoshida, M. 1960. Nippon Dojo Hiryogaku Zasshi 31, 273-278.

Overrein, L.N. 1968. Soil Sci. 106, 280-290.

Overrein, L.N. 1969. Soil Sci. 107, 149-159.

Overrein, L.N., and Moe, P.G. 1967. Soil Sci. SOC. Am. Proc. 31, 57-61.

Paulson, K.N., and Kurtz, L.T. 1969. Soil Sci. SOC.Am. Proc. 33, 973.

Phipps. R.L. 1964. M.S. Thesis, Univ. of Nebraska, Lincoln.

Pugh, K.B., and Waid, J.S. 1%9a. Soil Biol. Biochern. 1, 195-206.

Pugh, K.B., and Waid, J.S. 1969b. Soil Biol. Biochem. 1, 207-217.

Raison, R.J., and McGarity, J.W. 1978. Soil Sci. Soc. Am. J . 42, 140-143.

Rashid, G.H. 1977. Plant Soil 48, 549-556.

Robertson, L.S., and Hansen, C.M. 1959. Mich. Agric. Exp. Sta. Q.Bull. 42(1), 47-51.

Rodgers, G.A. 1978. 1. Agric. Sci. 90, 537-542.

Sahrawat, K.L. 1978. Inr. Rice Res. Newslett. 32). 16.

Salter, R.M., and Schollenberger, C.J. 1938. In “Soils and Men,” pp. 445-461. Yearbook of

Agric., U.S. Govt. Printing Ofice, Washington, D.C.

Stangel, P.J. 1977. Resented at Int. Rice Res. Conf., IRRI, Los Batios, Philippines. April.

Steenbjerg, F. 1944. Tids. Planreavl. 48, 516-543. (Chem. Absrr. 41,4878-9).

Stewart, B.A. 1970. Environ. Sci. Technol. 4, 579-582.

Tabatabai, M.A. 1977. Soil Biol. Biochem. 9, 9-13.

Tabatabai, M.A., and Bremner, J.M. 1972. Soil Biol. Biochem. 4,479-487.

Templeman, W.G. 1961. J . Agric. Sci. 57, 237-240.

Terman, G.L. 1965. Agrichem. West 8(12), 8-9 and 13-14.

Terman, G.L., and Fleming. J.D. 1968. In “New Fertilizers Materials,” pp. 320-326. Noyes Data

Coy. Park Ridge, N.J.

Terman, G.L., and Hunt, C.M. 1964. Soil Sci. SOC.Am. Proc. 28, 667-672.

Terman. G.L., Pan,J.F., and Allen, S.E. 1%8. J. Agric. Food Chem. 16, 685-690.

Trickey , N.G., and Smith, G.E. 1955. Soil Sci. SOC. Am. Proc. 19, 222-224.

Van Schreven, D.A. 1950. Trans. Inr. Congr. Soil Sci., 4th. Amsterdam 1, 259-261.

Van Schreven, D.A. 1956. Trans. Int. Congr. Soil Sci. 6th D, 65-73.

Ventura, W.B., and Yoshida, T. 1977. Plant Soil 46,521-523.

Vlek, P.L.G., and Stumpe,J.M. 1978. Soil Sci. Soc. Am. J . 42,416-421.

Volk, G.M. 1959. Agron. J. 51, 746-749.

Volk, G.M. 1961. J. Agric. FoodChem. 9, 280-283.

Volk, G.M. 1966. Agron. J. 58, 249-252.

Volk, G.M. 1970. Soil Sci. SOC. Am. Proc. 34,513-516.

Wagner, G.H., and Smith, G.E. 1958. Soil Sci. 85, 125-129.

Wahab, A., Randhawa, M.S.,and Alam, S.Q. 1957. Soil Sci. 84, 249-255.

Waid, J.S., and Pugh, K.B. 1%7. Chem. I d . (London) No. 2 , 71-73.



VOLATILIZATION LOSSES OF NITROGEN AS AMMONIA



223



Watkins, S.H., Strand, R.F., DeBell, D.S., and Esch, J . , Jr. 1972. Soil Sci. SOC. A m . Proc. 36,

354-357.

Watson, G.A., Tsoy, C.T., and Weng, W.P. 1962. J . Rubber Res. Inst. Malaya 17, 77-90.

Wetselaar, R . , Shaw, T., Firth, P., Oupathum, J . , and Thitipoca, H . 1977. Proc. IN. Seminar

SEFMIA. SOC.Sci. Soil Manure, Tokyo pp. 282-288.

Willis, W.H., and Sturgis, M.B. 1944. Soil Sci. SOC.A m . Proc. 9, 106-1 13.

Zantua, M.I., and Bremner, J.M. 1976. Soil Biol. Biochem. 8, 369-374.

Zantua. M.I., and Bremner, J.M. 1977. Soil Biol. Biochem. 9, 135-140.

Zantua, M.I., Dumenil, L.C., and Bremner, J.M. 1977. Soil Sci. SOC.Am. J . 41, 350-352.



This Page Intentionally Left Blank



ADVANCES IN AGRONOMY, VOL. 31



DIFFUSION OF IONS AND UNCHARGED SOLUTES IN SOILS

AND SOIL CLAYS

P.H. Nye

Soil Science Laboratory, Department of Agricultural and Forest Sciences,

University of Oxford, Oxford, England



I. The Diffusion Process and Its Range . . . .

11. The Mechanism of Ion Movement . . . . . .

111. Diffusion of Adsorbed Ions in, Soil Clays and Clay-Type Minerals

A. Self-Diffusion Coefficients and Activation Energies . . . . . , . . . . .

B. Factors Affecting the Diffusion Coefficients . . . .

..............

IV . Diffusion of Ions and Molecules in Soil . . . . . . , . . , , . . . . . . . . . , . . . , . , . . . . . , . , , .

A. The Components of the Diffusion Coefficient

B. Mobility of Adsorbed Solutes in Soil .

v. Prediction of Diffusion Coefficients in Soil . . . .

A. The Diffusion Coefficient in Solution Dr. . . .

B. The Impedance Factor fr. . . . . . . . . . .

C. The Derivative K J d C . . . . . . . . . . , .

VI . Volatile solutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VII . Methods of Measurement of Ion Diffusion Coefficients in Soil . . . . . . . . . . . . . . . . . . .

.....

. . . . . .. .

. . .. . . . ..

A. Total Transfer Methods

B. Concentration-Distance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VIII . Diffusion in Practice . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A. Multiple Ion Diffusion . . . . . . . . .

B. Simultaneous Diffusion and Slow

......................

C. Simultaneous Diffusion and Mass

......................

References . . . . . . . . . . . . . . . . . . . . .



225

227

229

229

235

246

246

248

253

253

254

258

26 1

263

263

265

266

261

261

268

269



I. The Diffusion Process and Its Range



The rates of many important soil processes, such as release of ions by weathering of minerals, the exchange of cations on clay surfaces, the delivery of nutrient

ions to plant roots, and the spread of pesticides applied to the soil, depend wholly

or in part on the rates at which these solutes diffuse.

There has been no previous comprehensive review of diffusion of solutes in

soils and clays; this one concentrates on the process rather than its many applications. Diffusion processes in the inorganic nutrition of soil-grown plants have

been reviewed by Nye and Tinker (1977), Barley (1970), and Olsen and Kemper

(1968); in the movement of organic materials by Hamaker (1972), of pesticides

by Letey and Farmer (1974), and of herbicides by Hartley (1976); in the move225



Copyright @ 1979 by Academic Press, Inc.

All rights of rcpmduction in any form mxrved.

ISBN 0-12-000731-2



226



P.H.NYE



ment of nitrogen by Gardner (1965); and in the movement of gases in soil

respiration by Cume (1970).

Diffusion results from the random thermal motion of ions or molecules. If we

imagine a column of unit cross section enclosing a solution whose concentration

is greater at section A than it is at section B, a distance x away from it, then, on

balance, more molecules of solute will tend to move by random motion from A to

B than from B to A. The net amount crossing unit section in unit time, the flux, is

given by a relation known as Fick’s first law:

F = -D(dC/&)



(1)



where F is the flux, and dC/dx is the concentration gradient across a particular

section. The minus sign enters because net movement is from high to low

concentration. This equation defines D , the diffusion coefficient, which is thus a

proportionality coefficient between two terms, F and dC/&, that can be measured experimentally. So defined, it may be applied to ions as well as to

molecules. Although for molecules in simple systems like dilute solutions D may

be nearly constant over a range of concentrations, for ions in complex systems

like soils and clays D will usually depend on the concentration of the ion, and on

that of other ions present as well.

Fick’s first law may be derived from thermodynamic principles in ideal systems, but in such a complex medium as soil Eq. (1) may be regarded as giving an

operational definition of the diffusion coefficient.

The self-diffusion coefficient of an ion-its diffusion coefficient when it is

interchanging with its own isotope-is related to its mobility by the NemstEinstein equation (Jost, 1960), D = ukT, where the absolute mobility, u, is the

velocity attained under unit force, k is the Boltzman constant, and T is the

thermodynamic temperature. Because of this relation the diffusion coefficients of

ions in homoionic clays may be deduced from their conductivity, which is related

to the absolute mobility by the equation u = Nhi/ I z I F2 (Robinson and Stokes,

1959), where hi is the equivalent ionic conductivity, F is the Faraday, N is

Avogadro’s number, and z is the ionic charge. Values of D in systems of interest

range from about loT8m2/sec for H in water to

m2/sec for K in an illitic

clay. The physical significance of these values becomes more real if we imagine

one of the ions to be marked. Then, on the average, as a result of its thermal

motion it would have moved in a linear system, after time t . a distance ( 2 D t )

from its starting point (Jost, 1960, p.25). Thus, the H would move 1 mm iii 50

sec, and the K would move only 1 nm in 5 x lo8 sec (16 years).

Some examples of the orders of magnitude of diffusion coefficients in soil may

be given. The release of ions by gradual weathering of minerals over thousands

of years is marked by apparent diffusion coefficients of less than

mYsec.

The release of K from hydrous mica, fast enough to meet the needs of a crop,

involves diffusion coefficients of the order

m2/sec.The exchange of cations



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

IX. NH, Sorption by Soils and Vegetation

Tải bản đầy đủ ngay(0 tr)

×