Tải bản đầy đủ - 0 (trang)
VIII. Water Management in Marginal Soils

VIII. Water Management in Marginal Soils

Tải bản đầy đủ - 0trang

388



ESHEL BRESLER



zones of the world (see, e.g., Gile, 1961; Litchfield and Mabbutt, 1962; Ives,

1959; Marbut, 1935; Burvill, 1956; Pennefather, 1951). In addition, in many

areas of the humid tropics, soils are leached and become very acidic. Soil acidity

is generally associated with aluminum toxicity, which limits the rooting depth,

especially of those crops which are sensitive to aluminum (Charreau, 1974; Wolf

and Drosdoff, 1974; Wolf, 1975).

Most of the above-mentioned marginal soils are characterized by low values of

“available water” and/or “water-holding capacity,” properties often associated

with limited rooting systems. Moreover, in many parts of the humid tropics

and of semiarid zones, rains are either inadequate in total amount or irregular in

annual distribution. This unfavorable climate-soil combination tends to produce

soil-water deficits which in turn cause water management to be a critical factor

for successful agriculture. This is so because of the unfavorable soil-water

properties of these marginal soils in combination with the occurrence of long dry

periods and the limited root growth owing to hardpans, desert pavement,

salinity, aLkalinity or acidity, and aluminum toxicity. Obviously, a crop yield can

not be obtained without irrigation during the dry seasion, in any kind of soil.

It appears that, since irrigation must be applied in these areas, a trickle

irrigation system may be the preferred one in these marginal soils, for the

following reasons. The method is capable of delivering water into the soil in

small quantities as often as desired, so as to maximize irrigation frequency

without any additional costs. As irrigation frequency increases, the infiltration

period becomes the most important part of the irrigation cycle. When irrigation

frequency is sufficiently high, so that the irrigation cycle is dominated by

infiltration rather than by the extraction stage, the water-holding capacity or

water-availability properties of any marginal soil become relatively unimportant.

This is so because the soil-water regime is continuously maintained at a relatively

high water-content level so that water is supplied to the crop as it is needed and

there is no need to store water within the limited soil-root zone (Rawlins, 1973).

Not having to bring water from storage to the limited root zone also eliminates

the possible negative effect of fluctuations in soil-water content. The effect is

probably more severe as the soil becomes more marginal with respect to its

water-holding properties. Water management under high-frequency trickle irrigation therefore renders the unfavorable water-storage properties of many marginal

soils essentially unimportant. Irrigation management therefore involves optimization in the design of spacing between emitters and the lateral system (Section

VII), as well as control of the quantities of water to be applied in order to meet

the crop requirements and to supply the amount of water needed t o pass

through the effective root zone to avoid salinity buildup (see Section VI).

The quantity of water to be applied by an emitter in each single irrigation for

any day after planting may be calculated from



TRICKLE-DRIP IRRIGATION



389



4 '(t)= R '(r)&(t)I(t)m$



(40)



where 4' is the quantity of water to be applied by an emitter at the day t after

irrigation, E, is the class A pan evaporation between the preceding and the

present irrigation, Z is the irrigation interval, r , is the radius of area wetted by an

emitter, and R'(t) = ET(t)/E,(t) is the ratio between evapotranspiration (ET)

and E, for the period t. This ratio as a function of number of days after

irrigation, must be obtained experimentally. Note that this calculation does not

take into account the quantity that must pass the effective root zone to avoid

the hazard of salinity, which was discussed in Section VI.

An additional management problem common to many marginal soils is that

they may have a low fertility status-as in sands or sand dunes, or a high capacity

to fuc phosphorus so as to make it unavailable to crops [e.g., marginal soils in the

humid tropics (Wolf, 1975)l. The combination of low fertility status, high

aluminum concentration, and phosphorus fixation may create an additional

serious soil limitation to agricultural development. These soil fertility problems

may be controlled by applying fertilizers simultaneously with irrigation through

the trickling system (Shani, 1973). By using the proper management practice,

one is able to optimize this system with respect to the nutritional balance and

water status.

LIST OF SYMBOLS

The following symbols are used in this chapter:

a = ap,/2 = parameter proportional to the length scale, dimensionless

b = constant, Lz T-'

c = solute concentration in the soil solution,

C = Hazen-Williams roughness coefficient, dimensionless

C, = solute concentration of the irrigation water, I W L - ~

D = inside diameter of the lateral pipe, L



d = distance between emitters, L

= soil diffusion coefficient, L 2 T-I

= hydrodynamic dispersion tensor, L 2 T-'

E = evaporation flux, LT-'

E , = class A pan evaporation rate, LT-'

ET = evapotranspiration rate, LT-'

F = reduction coefficient for dividing flow, dimensionless

(? = average vertical pressure head gradient over the ponded area at the soil surface,

dim ensionless

H = hydraulic head, L

Hi = inlet head, L

Hd = downstream head, L

HL = head loss in lateral, L

I = irrigation interval, T



D,

Dq



390



ESHEL BRESLER



K$ = saturated hydraulic conductivity tensor, LT-'

K,.(e) = relative hydraulic conductivity, dimensionless

K = K ( 0 ) = K @ ) = Kr(e)KS= capillary conductivity in isotropic media, LT-'

L = lateral length, L

N = number of emitters per lateral, dimensionless

p = pore-water pressure head, L

pa = air entry value of p , L

Q = rate of discharge from emitter, L 3 T-'

Qi = inlet discharge, L 3 T-'

Q d = downstream discharge, L 3 T '

q = specific solution flux (Darcy's velocity), LT-'

q' = quantity of water to be applied by an emitter, L 3

r = radial coordinate, L

R = radial boundary of flow region, L

R' = ratio between evapotransipration and class A pan evaporation, dimensionless

rw = radius of the wetted area, L

S = S(0) = S@) = transform water content, transform pore-water pressure head, L z T-'

r = time, T

T = end time of infiltration, T

x i = Cartesian coordinate, L

x, = vertical coordinate, L

x,y = horizontal coordinates, L

Y = crop yield per unit land area,

V = average solution flow velocity, LT-'

z = vertical coordinate, L

Z = vertical boundary of flow region, L

01 = constant, L-'

p = constant, dimensionless

y = horizontal or radial coordinate, L

f = relative vertical coordinate, dimensionless

0 = volumetric water content, dimensionless

@ = soil-water regime index, dimensionless

5 = average value of 0,dimensionless

@ = deviation of 0 from &, dimensionless

E = discharge difference fraction, dimensionless

uz = variance of @(t), dimensionless

h~ = longitudinal dispersivity, L

AT = transversal dispersivity, L

5 = relative radial coordinate, dimensionless

p = radius of the ponded-water entry zone, L

Subscrzp rs



o = reference value usually air-dry water content

N =



initial value



s = value at saturation

u = ultimate value, limiting value

c = selected critical midway value



TRICKLE-DRIP IRRIGATION



39 1



REFERENCES

Ayers, A. D., Wadleigh, C. H., and Magistad, C. C. 1943. J. A m . SOC.Agron. 35, 796-810.

Bear, J. 1972. “Dynamics of Fluids in Porous Media,” pp. 5 7 9 6 6 2 . Am. Elsevier, New

York.

Bernstein, L., and Francois, L. E. 1973. Soil Sci. 115, 73-86.

Bernstein, L., and Francois, L. E. 1975. Agron. J. 67, 185-190.

Black, J. D. F., and West, D. W. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 4 3 2 4 3 6 .

Boaz, M. 1973. “Trickle Irrigation in Israel.” Isr. Minist. Agric., Ext. Serv., Tel Aviv.

Braester, C. 1973. Water Resour. Res. 9,687-694.

Brandt, A., Bresler, E., Diner, N., Ben-Asher, I., Heller, J., and Goldberg, D. 1971. Soil Sci.

SOC.Am., Proc. 3 5 , 6 7 5 4 8 2 .

Bresler, E. 1973. Water Resour. Res. 9, 975-986.

Bresler, E. 1975. Soil Sci SOC.Am., Proc. 3 9 , 6 0 4 4 13.

Bresler, E. 1977. Irrigation Sci. 1 (in press).

Bresler, E., and Russo, D. 1975. Soil Sci. SOC.A m . , Proc. 39, 585-586.

Bresler, E., and Yaron, D. 1972. Water Resour. Res. 8, 791-800.

Bresler, E., Heller, J., Diner, N., Ben-Asher, I., Brandt, A., and Goldberg, D. 1971. Soil Sci.

Soc. Amer., Proc. 3 5 , 6 8 3 4 8 9 .

Burvill, G. H. 1956. J. Dep. Agric., West. Aust., Salt Land Sum. 5 , 113-1 19.

Charreau, C. 1974. “Soils of Tropical Dry and Dry-Wet Climatic Areas of West Africa and

their Use and Management,” Agron. Mimeo. 74-26. Dep. Agron., Cornell Univ., Ithaca,

New York.

Childs, S. W., and Hanks, R. J. 1975. Soil Sci. SOC.Am., Proc. 39, 617-622.

Christiansen, J. E. 1942. C a l q , Agric. Exp. Sm., Bull. 670.

Dan, H. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 491-496.

Dasberg, S., and Steinhardt, R. 1974. In: “Isotopes and Radiation Techniques in Soil

Physics and Irrigation Studies. Proc. Series: 4 6 7 4 7 4 . I.A.E.A., Vienna.

Frith, G. J. T., and Nichols, D. G. 1974. Proc. In?. Drip. Irrig. Congr., 2nd pp. 4 3 4 4 3 6 .

Gardner, W. R. 1958. Soil Sci. 85, 228-232.

Gerard, C. J. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 329-331.

Gile, L. H. 1961. Soil Sci. SOC.A m . , Proc. 25, 5 2 4 1 .

Goldberg, D., and Shmueli, M. 1970. Trans. Am. SOC.Agric. Eng. 13, 38-41.

Goldberg, S. D., Rinot, M., and Karu, N. 1971. Soil Sci. SOC.Am., Proc. 35,127-130.

Gornat, B., Goldberg, D., Rimon, D., and Ben-Asher, J. 1973. J. Am. SOC. Hortic. Sci.

98(2), 202-205.

Grobbelaar, H. L., and Lourens, F. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 41 1-415.

GUStdfSon, C. D., Marsh, A. W., Branson, R. L., and Davis, S. 1974. Proc. Inr. Drip Irrig.

Congr., 2nd pp. 17-22.

Haise, H. R., and Hagen, R. M. 1967. In “Irrigation of Agricultural Land” (R. M. Hagen, H.

R. Haise, and T. W. Edminster, eds.), Agronomy, Vol. 11, pp. 577-597. A.S.A. Publ.,

Madison, Wisconsin.

Halevy, I., Boaz, M., Zohar, Y., Shani, M., and Dan, H. 1973. In “Trickle Irrigation,” F A 0

Irrig. Drainage Pap. No. 14, pp. 75-1 17. F A 0 UN, Rome.

Hanks, R. J., Klute, A., and Bresler, E. 1969. Water Resour. Res. 5, 1064-1069.

Hart, W. E. 1961. Agric. Eng. 42(7), 354-355.

Heller, J., and Bresler, E. 1973. In “Arid Zone Irrigation” (B. Yaron, E. Danfors, and Y.

Vaadia, eds,), pp. 339-351. Springer-Verlag, Berlin and New York.

Hiler, E. A., and Howell, T. A. 1973. Trans. A m . SOC.Agric. Eng. 16(4), 799-803.



392



ESHEL BRESLER



Hillel, D. 1972. In “Optimizing the Soil Physical Environment Toward Greater Crop Yields”

(D. Hillel, ed.), pp. 79-100. Academic Press, New York.

Howell, T. A., and Hiler, E. A. 1974. Trans. Am. Soc. Agric. Eng. 17,902-908.

Isob, M 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 4 0 5 4 0 8 .

Ives, R. L. 1959. A m . J. Sci 257(6), 4 4 9 4 5 7 .

Kameli, D. 1971. Proc, Znt. Drip Irrig. Congr., l s t , Tel Aviv pp. 1-15.

Kemper, W. D., and Noonan, L 1970. Soil Sci Soc. Am., Proc. 34, 126-130.

Lange, A., Aljibury, F., and Fischer, B. 1974. Proc. Znt. Drip Irrig. Congr., 2nd pp.

422-424.

Lemon, E. R. 1956. SoilSci. Soc. Am., Proc. 20,120-125.

Lemos, P., and Lutz, J. F. 1957. Soil Sci Soc. Am., Proc. 21,485-491.

Lindsey, K . E., and New, L. 1974. Proc. Znt. Drip Zrrig. Congr., 2nd pp. 40ft404.

Litchfield, W. H., and Mabbutt, J. A. 1962. J. Soil Sci. 13, 148-159.

Lomen, D. O., and Warrick, A. W. 1974. Soil Sci. Soc. A m . , Proc. 38, 568-576.

Lunin, J., and Gallatin, M. H. 1965. Soil Sci. Soc. Am., Proc. 29,608-612.

McElhoe, B. A., and Hilton, H. W. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 215-220.

Marbut, C. F. 1935. In “Atlas of American Agriculture,” Vol. 3, Advanced Sheet No. 8.

U.S. Dep. Agric., Washington, D.C.

Neuman, S. P. 1973.J. Hydrol. Div., Proc, A m . Sac. CivilEng. 99(HYl2), 2233-2250.

Ogata, A. 1970. US. Geol. Sum, Prof. Pap. 411-1.

Olsen, S. R., and Kemper, W. D. 1968. Adv. Agron. 20, 81-151.

Patterson, T. C., and Wierenga, P. J. 1974. Proc. Int. Drip. Irrig. Congr., 2nd pp. 376-381.

Peleg, D., Lahav, N., and Goldberg, D. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 203-208.

Pennefather, R. R. 1951. West. Mail 6 6 , 5 9 6 1 .

Perkins, T. K., and Johnston, 0. C. 1963. SOC.Pet. Eng. J. 3, 70-84.

Philip, J. R. 1968. Water Resour. Res. 4(5), 1039-1047.

Philip, J. R. 1971. Soil Sci Soc. Am., Proc. 35, 867-871.

Raats, P. A. C. 1971. Soil Sci Soc. Am., Proc. 35,689-694.

Raats, P. A. C. 1972. Soil Sci. Sac. Am.. Proc. 36, 399-401.

Rawitz, E. 1970. Soil Sci. 110131, 172-182.

Rawlins, S. L. 1973. Soil Sci. Soc. Am., Proc. 37(4), 626-629.

Rawlins, S. L. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 209-211.

Rawlins, S. L., and Raats, P. A. C. 1975. Science 18,604-610.

Rawlins, S. L., Hoffman, G. J., and Merrill, S. D. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp.

184-1 87.

Rolland, L. 1973. In “Trickle Irrigation,” F A 0 Irrig. Drainage Pap. No. 14, pp. 3-73. F A 0

UN, Rome.

Rose, C. W. 1961. Soil Sci. 9 1 , 4 9 4 4 .

Safran, B., and Panes, B. 1975. “Nitrogen Fertilization Trials in Trickle Irrigated Vineyards.” Isr. Minist. Agric., Ext. Serv., Rehovot. (In Hebrew.)

Seginer, I. 1967. Agric. Meteorol. 4, 281-291.

Seginer, I. 1969. J. Irrig. Drainage Div., Proc. Am. Soc. Civil Eng. 95(IR2), 261-274.

Shalhevet, J., and Bernstein, L. 1968. Soil Sci. 106, 85-93.

Shani, M. 1973. “Techniques for Coupling Fertilization and Irrigation.” Isr. Minist. Agric.,

Ext. Serv., Rehovot. (In Hebrew.)

Talsma, T. 1963. Meded. Landbouwhogesch. Wageningen 63(10), 1-68.

Taylor, S. A. 1952. Soil Sci. 74,217-226.

Tranter, C. J. 1951. ‘‘Integral Transformations in Mathematical Physics.” Methuen, London.

Tscheschke, P., Alfaro, J. F., Keller, J., and Hanks, R. J. 1974. Soil Sci. 117,226-231.

Wadleigh, C. H., and Ayers, A. D. 1945. Plant Physiol. 20, 106-132.



TRICKLE-DRIP IRRIGATION



393



Wadleigh, C. H., Gandi, H. G., and Kolisch, M. 1951. SoilSci. 72, 275-282.

Warrick, A. W. 1974. SoilSci. SOC.Am., Proc. 39,383-386.

Warrick, A. W., and Lomen, D. 0. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 228-233.

Warrick, A. W., and Lomen, D. 0. 1976. Soil Sci. Soc. Am., J. 41,639-643.

Waterfield, A. E. 1973. In “Trickle Irrigation,” F A 0 Irrig. Drainage Pap. No. 14, pp.

147-153. F A 0 UN, Rome.

Wilke, 0. C. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 188-192.

Willens, A. F., and Willens, G. A. 1974. Proc. Int. Drip Irrig, Congr., 2nd pp. 388-393.

Willoughby, P., and Cockroft, B. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 439-445.

Wolf, J. M. 1975. Ph.D. Thesis, Cornell Univ., Ithaca, New York.

Wolf, .I.

M., and Drosdoff, M. 1974. “Soil-water Studies on Oxisols and Ultisols of Puerto

Rico,” Agron. Mimeo. 74-22. Dep. Agron. Agric. Eng., Cornell Univ., Ithaca, New York.

Wooding, R. A. 1968. Water Resour. Res. 4(6), 1259-1273.

Yagev, E., and Choresh, Y. 1974. Proc. Int. Drip Irrig. Congr., 2nd pp. 456-461.

Yaron, B., Shalhevet, J., and Shimshi, D. 1973. I n “Physical Aspects of Soil Water and Salts

in Ecosystems” (A. Hadas, D. Swartzendruber, P. E. Rijtema, M. Fuchs, and B. Yarou,

eds.), pp. 389-394. Springer-Verlag, Berlin and New York.

Zaslavsky, D. 1972. In “Optimizing the Soil Physical Environment Toward Greater Crop

Yields” (D. Hillel, ed.), pp. 223-232. Academic Press, New York.

Zaslavsky, D., and Mokady, R. S. 1966. Soil Sci. 104, 1-6.

Zentmyer, G. A., Guillemet, F. G., and Johnson, E. L. V. 1974. Proc. Int. Drip Irrig.

Congr., 2nd pp. 512-514.



This Page Intentionally Left Blank



SUBJECT INDEX

A



white, 301

yellow, 301, 305-306

Brach iaria brachylopa, 7

mutica, 7, 8

ru&osa, 7

Brassica campestris, 45

napus, 57

oleracea, 4 3

Bromegrass, 57, 72

Bromus inermis, 57

tetorum, 131

Brown leaf spot, 217-278

narrow, 278

Buckwheat, 92

Bulbostylis aphylanthoides, 7



Agrobacterium tumefaciens, 66-69, 72

Aikiochi, 277

Alfalfa,43,60, 120, 121, 122, 124,127,

128,130,133

environment and growth, 183-227

Algae, blue-green, 9

AlIophane, physical properties, 229-264

Aluminum, 205,206

Ammonia, 29, 145, 147, 164

Ammophyla arenaria, 1 3

Andosol, 230

Andropogen gayanus, 7

SPP., 7 , 8

Asclepias syrica, 162, 163

Asparagus, 57

Asparagus offcinalis, 5 7

Astragalus cicer, 133

Atrazine, 162, 172-175

Azotobacter, 12

chroococcum, 1 3 , 2 2

paspali, 5 , 1 2 , 14-15,28, 32

spirillum, 15

vinelandii, 13, 14,20, 21, 72



C

Cajanus cajan, 8

Calcium, 205, 206, 216

Capsicum annuum, 62

frutescens, 348

Carrot, 42, 51, 57, 58, 72, 73

Cassave, 23,43

Cell culture, genetic manipulation, 39-81

Cercospora oryzae, 278

Cheatgrass, 131

Chernozem, 107

Chilo suppressalis, 301

Chiseling, 143, 147-150,155-156, 163,

173,177

Citrus sinensis, 57

Clostridium, 1 2

pasteurianum, 2 1

Clover, 93,94, 216

alsike, 124, 130, 133

crimson, 124, 130

cup, 123

red, 124, 127, 130, 133

strawberry, 133

subterranean, 97,98, 121, 122, 124, 133

white, 98, 130, 133

Cochliobolus miyabeanus, 277

Cocksfoot, 217



B

Bacillus maceranus, 11

megatherium var. phosphaticum, 108

polimyxa. 1 1 , 2 1

sp., 32

Bacterial blight, 280-286, 322, 323

leaf streak, 287

streak, 287

Barley, 4 3 , 4 5 , 5 8 , 6 3 , 126, 129

Bean, 119

Beijerinckia, 6, 10, 13-14, 22

fluminensis, 14

indica, 14

Black shank, 47

Blast disease, 267-275, 322, 323

Borer, pink, 301

striped, 301-305



395



396



SUBJECT INDEX



Coffee, 43

Corn, 92,108, 125,126, 216

see also maize

borer, European, 169

disease control, 169

leaf blight, southern, 52

tillage-planting systems and yield,

141-182



Flax, 51

Flooding-tolerance, 54

Flowering, 212

Foxtail, 131

Fulvic acid, 85, 86



Coronilla varia, 133

Corticum saskii, 215

Cowpea, 51

Crepis, 44

Crown gall, 61

rust, 331

Cucumber, 126

Cucumis sativus, 126

Culture, anther and haploids, 44-48

cell, 40-44

Cynoden dactilon, I

Cyperus obtusiflorus, I

rotundus, I

SP., 7



Gall midge, 318-322

Gene manipulation, 65-13

Genetics, bacterial blight resistance,

282-286

blast resistance, 265-215

disease resistance, 276-217,218, 219,

281,295,291

environment adaptation, 211-219

response, 185-1 86

insect resistance, 303-305, 309-313,

316-318,320-322

multiple resistance breeding, 322-333

somatic cell, 39-81

tungeo resistance, 292-294

Germination, 121-123,213

Gibbsite, 234

Glycine max, 5 1

Grass, nitrogen fixation, 1-38

salt marsh, 10

Grassy stunt, 294-296, 322, 323

Growth, leaf, 188-189

legume seedling, 119-1 39

root, 189-191

shoot, mathematical model, 186- .181



D

Dactylis glomerata, 211

Dacus carota, 51

Dahlia pinnata, 12

Derxia gummosa, 14

Diabrotica longicornis, 169

Digitaria decumbens, nitrogen fixation, 2,5,

6, I , 26,29,30

Diplanthera wrightii, 12

Disease control, 169

resistance, 41, 52-53, 265-341

Disking, 145,141, 153,163, 114

Dormancy, 184,209

E

Energy requirements, tillage-planting

systems, 169-180

Enterobacter cloacae, 9, 10, 11, 12



F

Fern, bracken, 23

Fertilization, 350, 313

Fertilizer, placement, 163-1 65



G



H

Haplopappus. 44

Helminthosporium maydis, 5 2

oryzae, 211

Herbicides, 144, 146, 111

Hoja blanca, 299-301

Hordeurn bulbosurn, 61

jubaturn, 131

culgare, 6 1

Humic acid, 85,86

Humin, 85

Humus, 86,103

Hy parrh enia dissolu ta, I

mfa, 7, 8



397



SUBJECT INDEX

I



M



Imogolite, 230

Inositol phosphate, 86-88,91,93, 103, 107

Insect control, 169

resistance, rice, 301-322

Irrigation, 210

trickle-drip, 343-393



Maize, 43,49,51,53,54, 71, 107

see also corn

nitrogen fixation, 8-9, 13,19,23,24,26,

27, 29, 30,31

Manganese, 20,205,206

Mangrove, 12

Manure, 101, 102, 111

Medicago asiatica, 186

falcata, 185, 203,213

glutinosa, 185

hispida, 129

lupulina, 203

sativa, 133,185, 186, 203,206

Melilotus alba, 122,133

officinalis, 133

Melinis rninuliflora, 7

Mentek, 288

Methodology, cell protoplasts, 55-60

haploid culture, 44-46, 47

mutant isolation, 48-55

organic phosphorus analysis, 84

soil dispersing, 232-234

Milkweed, 162,163

Millet, 108

Mineral, interrelationship, 207-209

root growth,204

uptake, 204-206

Mineralization, 98,100-112

Moisture, mineralization, 103-104

Mold, blue, 47

Montmorillonite, 2 38

Mycorrhizae, 94-95,108



J

Juncus balticus, 12



K

KlebsieNa aerobacter, 12

pneurnoniae, 72

Kresek. 280



L

Laodelphax striatellus, 3 15

Lasso, 172-176

Leaf blight, corn, 169

Leafhopper, green, 292, 316-318, 322,327,

330

green rice, 298, 318

zigzag, 298

Legume, 5 1

seedling growth, 119-1 39

Lespedeza, 124

cuneata, 133

sripufacea, 133

striata, 133

Leucena glauca, 8

Light, growth, alfalfa, 191-195

Lilium, 44

Lime, 205

Linum usitatissirnurn, 57

Lolium, 189

perenne, 92, 98

rigidum, 98

LOIOX,173-176

Lotus cornicutatus, 133

purshianus, 129

Lucerne, 13

Lycopersicon escutenturn, 5 7



N

Nephotettix cincticeps, 298, 315, 318

virescens, 288, 316

Nicotiana, 45,47, 62

glauca, 58, 59

glu tinosa, 47

langsdorfi, 5 8,59

tabacurn, 41,57,59

Nilaparvata lugens, 294,307

Nitrapyrin, 164

Nitrogen, 85,105,106, 164, 216

nitrate, 128, 349



398



SUBJECT INDEX



Nitrogen fixation, 206-207

efficiency, 21-22

gene manipulation, 71-73

grass, 1-38

Nodulation, 127, 128, 206, 207

No-till, 146,147,149-150,153,155,156,

163,169,175-176,177



0

Oat, 43, 108,215

Onobrychis viciifolia, 133

Orange, 57

Orange leaf virus, 288

Oryza nivara, 295, 327

Oxygen, nitrogen fixation, 17-18,28-29

P

Pachydriplosis oryzae, 318

Panicum diehotomiflorum, 163

maximum, 7, 8,23,24,25,27

Panicum, fall, 163

Paraquat, 175-176

Paspalum comersenii, 7

notatum, nitrogen fixation, 2,5, 7,

14-15,27,28,30,32

Pasture, 97-98

Pea, 57, 119

Pennisetum americanum, 25

purpureum, 7, 29

Pepper, bell, 348

red, 62

Peronospora tabacina, 47

Phaseolus spp., 119, 126,193

Photomorphogenesis, 192

Photoperiod, 187, 191-192

Photosynthesis, 3,189, 194

Phosphabacterium, 108

Phosphorus, 129,147,164,204,216

grassland cycle, 96-97

inorganic, 93, 97, 105-106

soil organic, 83-1 17

Physiological predetermination, 120-1 21

Phytophthora, 203, 204

megasperma, 203

nico tianae, 4 7

Pinus radiata, 94

Pisum sativa, 57

spp., 119



Plant association, 214-217

Plant hopper, 299

brown, 307-313,323,323,330

small brown, 296, 315

white-backed, 314

Plowing, 130-131, 143,148-150, 153,

155,156,166,172-173,177

Podzol, 85,97

Potamogeton filiformis, 12

Potassium, 128,147, 164, 207, 208

Potato, 43

Protoplast, plant cell, 55-61

Pseudomonas tabaci, 5 2

Pyricularia oryzae, 267



R

Rape, 12

Rapeseed, 57

Recilia dorsalis, 298

Rhizobium, 24, 32, 72, 131

Rhizoctnoica solani, 275

Rhizophora mangle, 12

Rhodospirillum rubrum, 20, 21

Rice,43,45,46,47,51,72

blast, 267-275, 322, 323

cadang cadang, 288

delphacid, 314-315

disease and insect resistance, 265-34 1

dwarf, 288,298

nitrogen fixation, 9-10, 13, 27

Ridge system, 145, 149, 150,155, 159,

167,174,177

Root rot, 351

Rootwork, Northern, 169

Ryegrass, 9



S

Saccharum sp., 57

Sainfoin, 120,121,122,123,125,126,

128.133

Salinity, 348, 352

Salt-tolerance, 5 3-54

Sacrification, 122

Seedbed preparation, 130-131

Seedling growth, legume, 119-139

Sesarnia inferens, 301

Sheath blight, 275-27 7

Sogatella furcifera, 3 14, 3 15



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VIII. Water Management in Marginal Soils

Tải bản đầy đủ ngay(0 tr)

×