Tải bản đầy đủ - 0 (trang)
V. Future Role of Agricultural Remote Sensing

V. Future Role of Agricultural Remote Sensing

Tải bản đầy đủ - 0trang

ROLE OF REMOTE SENSING



301



particular, sequential multispectral imagery acquired by satellite is capable

of covering large land areas very rapidly and acquiring data from otherwise

inaccessible areas. Computer-aided analysis of the vast amounts of data

available from satellite-borne sensors offers a very rapid method for obtaining information from the data, although the imagery may also be interpreted by manual mehods.

Many investigations have shown that it is possible to identify and measure the areas of major crop species using remotely observed multispectral

measurements. It is also possible to obtain information from these data

describing the condition and possible yield of crops. Meteorology data from

satellite-borne sensors may also be used by agronomists in predicting crop

yields. The feasibility and utility of remote sensing for other agricultural

applications including range surveys, soil mapping, and land use mapping,

has also been demonstrated.

While remote sensing is still a developing technology, and many improvements in its capabilities are foreseen, there is much evidence that

it is ready for operational use. Indeed, many users are now basing resource

management decisions on information obtained from remote sensing

systems.

The foremost example of the future role of remote sensing in determining the distribution and yield of crops is the Large Area Crop Inventory

Experiment (LACIE) recently begun by the U.S. Department of Agriculture, the National Aeronautics and Space Administration, and the National

Oceanic and Atmospheric Administration. The LACIE is designed to demonstrate and test the available technology for making crop surveys using

remote sensing data as one of the primary inputs. Area estimates will be

made from classifications of LANDSAT data (MacDonald et al., 1975),

and yield estimates will be developed from regression models of precipitation, temperature, and grain yield. The LACIE, the forerunner of an operational crop inventory system based on remote sensing data, will focus on

wheat production in the United States and seven other major wheatproducing countries.

ACKNOWLEDGMENTS

Special acknowledgment is made to Dr. J. B. Peterson for his helpful suggestions

and review.

REFERENCES

Al-Abbas, A. H., Barr, R., Hall, J . D., Crane, F. L., and Baumgardner, M. F. 1974.

Agrorr. J . 66, 16-20.

Allen, W. A., and Richardson, A. J . 1968. 1. Opt. SOC. Amer. 58, 1023-1028.



302



MARVIN E. BAUER



Allen, W. A., Gayle, T., and Richardson, A. J. 1970. 1. Opt. SOC.Amer. 60, 372-376.

Anuta, P. E., and Bauer, M. E. 1973. Info.Note 110873. Lab. Applic. Remote Sensing, Purdue Univ., West Lafayette, Indiana.

Baldwin, M.,Kellogg, C. E., and Thorp, J. 1938. In “Soils and Men: Yearbook

of Agriculture,” pp. 979-1001. U.S. Dept. Agr., Washington, D.C.

Bauer, M.E., and Cipra, J. E. 1973. Proc. Symp. Significant Results Obtained Earfh

Resources Technol. Satellite-1, 1973 NASA SP-327, pp. 205-21 2.

Bauer, M. E., Swain, P. H., Mroczynski, R. P., Anuta, P. E., and MacDonald, R.

B. 1971. Proc. Symp. Remote Sensing Environ. 7th, 1971 pp. 693-704.

Baumgardner, M. F., Kristof, S. I., Johnnsen, C. I., and Zachary, A. L. 1970. Ind.

Acad. Sci., Proc. 79, 413-422.

Baumgardner, M. F., and Henderson, J. A. 1974. Proc. Earth Resources Technol.

Satellite-1 Symp., 3rd, 1973 NASA SP-351, pp. 205-224.

Bentley, R. G. 1974. Proc. Earth Resources Technol. Satellite-1 Symp., 3rd, 1973

NASA SP-351, pp. 291-300.

Boeckel, J . H. 1974. Proc. Earth Resources Technology Satellite-1 Symp., 3rd, 1973

NASA SP-351,pp. 1-12.

Bowers, S. A., and Hanks, R. J. 1965. Soil Sci. 100, 130-138.

Bushnell, T. M. 1929. Amer. Soil Survey Ass. Bull. 10, 23-28.

Carneggie, D. M. 1968. Proc. Symp. Remote Sensing Environ., 5th. 1968 pp. 373-385.

Carneggie, D. M., Pettinger, L. R., Hay, C. M., Daus, S. J., and Colwell, R. N.

1969. In “Analysis of Earth Resources on Apollo 9 Photography,” Univ. of

California, Berkeley, California.

Carneggie, D. M., and DeGloria, S. D. 1973. Proc. Symp. Significant Results Obtained Earth Resources Technol. Satellite-], 1973 NASA SP-327, pp. 91-96.

Ciesla, W. M., Bell, J. C., and Curlin, J. W. 1967. Photogr. Eng. 33, 883-888.

Cipra, J. E., Baumgardner, M. F.,Stoner, E. R., and MacDonald, R. 6. 1971. Sail

Sci. Amer. Proc. 35, 1014-1017.

Cobb, W. B. 1922. Amer. Soil Survey Ass. Bull. 4, 77-79.

Collins, W. G. 1972. Proc. Symp. Remote Sensing Environment, 8th, 1972 pp. 103-1 14.

Colwell, I. E. 1974. Remote Sensing Environ. 3, 175-183.

Colwell, R. N. 1956. Hilgardia 26, 223-286.

Colwell, R. N. (ed.) 1960. “Manual of Photographic Interpretation.” Amer. SOC.

Photogrammetry, Washington, D. C.

Colwell, R. N. 1968. Sci. Amer. 218, 54-69.

Condit, H. R. 1970. Phofogr. Eng. 36, 955-966.

Draeger, W. C., Pettinger, L. R., and Benson, A. S. 1971. Proc. Symp. Remote

Sensing of Environment, 7th, 1971 pp. 1205-1217. Univ. of Michigan, Ann Arbor.

Earth Satellite Corporation. 1974. Final Rep. U.S.Dept. Agr. on Contr. 123341024.

Washington, D.C.

Follansbee, W. A. 1973. Tech. Memo NESS 44. Nat. Oceanic and Atmos. Admin.,

Washington, D.C.

Fritz, N. L. 1967. Photogr. Eng, 33, 1128-1138.

Gates, D. M., Keegan, H. J., Schleter, J. S., and Weidner, V. R. 1965. Appl. Opt.

4, 1 1-20.

Gausman, H. W., Allen, W. A., and Wiegand, C. L. 1972. Soil Water Conserv.

Res. Rep. 342, Agr. Res. Service, US. Dept. of Agr., Weslaco, Texas.

Gupta, J. N., Kettig, R. L., Landgrebe, D. A., and Wintz, P. A. 1973. Proc. Conf.

Machine Processing Remotely Sensed Data, 1973 pp. 4b, 25-35.

Haralick, R. M. Shanmugam, K., and Dinsteiin, I. 1973. IEEE Trans. Systems, Man,

Cybernetics. 3( 6 ) , 610-621.



ROLE OF REMOTE SENSING



303



Hart, W. G., Ingle, S. J., Davis, M. R., Mangum, C., and Higgins, A. 1971. In

“The Third Biennial Workshop on Color Aerial Photography in the Plant Sciences” (A. Anson, ed.), pp. 98-1 13. Amer. SOC.Photogrammetry, Falls Church,

Virginia.

Hay, C. M. 1974. Photogr. Eng. 40, 1283-1294.

Heller, R. C. 1968.Proc. Symp. Remote Sensing Environment, 5th, 1968 pp. 387-434.

Heller, R. C. 1970. I n “Remote Sensing, With Special Reference to Agriculture and

Forestry” (J. R. Shay, ed.), pp. 35-70. Nat. Acad. Sci., Washington, D.C.

Hoffer, R. M. 1967.Purdue Univ. Agr. Exp. Sta. Res. Bull. 831.

Hoffer, R. M., and Johannsen, C. J. 1969. In “Remote Sensing of Ecology” (P.

L. Johnson, ed.), pp. 1-16. Univ. of Georgia Press, Athens, Georgia.

Holmes, R. A., and MacDonald, R. B. 1969.Proc. IEEE 57,629-639.

Holter, M. R., Bair, M., Beard, J. L., Limperis, T., and Moore, R. K. 1970. In

“Remote Sensing, With Special Reference to Agriculture and Forestry” (J. R.

Shay, ed.), pp. 73-163. Nat. Acad. Sci., Washington, D.C.

Huson, J. J. 1970. “Land Utilization in the Crati Valley, Italy.” I.T.C., Delft, The

Netherlands.

Kanemasu, E. T. 1974. Remote Sensing Environ. 3,4347.

Knight, C. G.,and Harnapp, V. R. 1971. “Remote Sensing of Tropical Agricultural

Systems.” Center for Research, Inc., Univ. of Kansas, Lawrence, Kansas.

Knipling, E. B. 1967. Proc. Workshop Infrared Color Photography Plant Sci., 1967.

Knipling, E. B. 1969. In “Remote Sensing in Ecology” (P. L. Johnson, ed.), pp.

17-29. Univ. of Georgia Press, Athens Georgia.

Knipling, E. B. 1970.Remote Sensing Environ. 1, 155-159.

Kristof, S . J., and Zachary, A. L. 1974.Photogr. Ettg. 40, 1427-1434.

Kubelka, V. P., and Munk, F. 1931.Z . Tech. Phys..ll, 593-601.

Lab. for Agr. Remote Sensing. 1968. Purdue Univ. Agr. Exp. Sta. Res. Bull. 844.

Lab. for Agr. Remote Sensing. 1970. Purdue Univ. Agr. Exp. Sta. Res. Bull. 873.

Landgrebe, D. A. 1973. Info. Note 031573. Lab. Applic. Remote Sensing, Purdue

Univ., West Lafayette, Indiana.

Landgrebe, D. A. 1974. Proc. Earth Resources Teclrnol. Satellite-1 Symp., Jrd,

1973 NASA SP-351,pp. 41-74.

Langley, P. G. 1969. Proc. Symp. Remote Sensing Environ., 7th pp. 1179-1 183, 1969.

Learner, R. W., Myers, V. I., and Silva, L. F. 1973. Rev. Sci. Instr. 44, 611-614.

MacDonald, R. B., Bauer, M. E., Allen, R. D., Clifton, J. W., Landgrebe, D. A., and

Erickson, J. D. 1972.Proc. Symp. Remote Sensing Environ. Bth, 1972 pp. 157-190.

MacDonald, R. B., Erb, R. B., and Hall, F. G. 1975. Proc. Symp. Machine Processing

Remotely Sensed Data, 1975 pp. lB,1-23.

MacLeod, N. H. 1974. Proc. Earth Resources Technol. Satellite Symp., 3rd, 1973

NASA SP-351,pp. 247-266.

Manzer, F. E., and Cooper, G. R. 1967. Maine Agr. Exp. Sta. Bull. 646.

Mark Systems, Inc. 1966. Final Tech. Rep. Project ACRE. Cupertino, California.

Mathews, H. L., Curnmingham, R. L., Cipra, J. E., and West, T. R. 1973. Soil

Sci. Amer., Proc. 37, 88-93.

Meyer, M. P.,and Calpouzos, L. 1968. Photogr. Eng. 34,554-557.

Miller, B. 1972.Aviat. Week Space Technol. 97(3),4446.

Montgomery, 0.L. 1974. M. S. Thesis, Purdue Univ., West Lafayette, Indiana.

Morain, S. A. 1974. I n “Remote Sensing: Techniques for Environmental Analysis”

(J. E. Estes and L. W. Senger, eds.), pp. 134-135. Hamilton Publ. Co., Santa

Barbara, California.

Norman, G. G., and Fritz, N. L. 1965. Proc. Florida State Hort. SOC.78, 59-63.



304



MARVIN E. BAUER



Payne, J . A., Hart, W. G., Davis, M. R., Jones, L. S.,Weaver, D. J., and Horton,

B. D. 1971. I n “The Third Biennial Workshop on Color Aerial Photography

in the Plant Sciences” (A. Anson, ed.), pp. 215-229. Amer. SOC. of Photogrammetry, Falls Church, Virginia.

Pearson, R. L., and Miller, L. D. 1972. Proc. Symp. Remote Sensing Environ.. 8th,

1972 pp. 1355-1379.

Phelps, R. A. 1974. Proc. Annu. Meet. Amer. Inst. Aeronaut. Astronaut., 10th

Paper 74-252.

Rabben, E. L., Chalmers, E. L., Manley, E., and Pickup, J. 1960. I n “Manual of

Photographic Interpretation” (R. N. Colwell, ed.), pp. 99-168. Amer. SOC. of

Photogrammetry, Washington, D. C.

Rains, A. B., and Brunt, M. A. 1972. Proc. Symp. Remote Sensing Environ., 7th,

1972 pp. 2319-2924.

Rouse, J. W., Haas, R. H., Schnell, J. A., and Deering, D. W. 1974. Proc. Earth

Resources Technol. Satellite-I Symp., Jrd, 1973 NASA SP-351, pp. 309-3 18.

Seevers, P. M., Lewis, D. T., and Drew, J. V. 1974. Proc. Earth Resources Technol.

Satellite-1 Symp., 3rd, 1973 NASA SP-351, pp. 225-234.

Sinclair, T. R., Schreiber, M. M., and Hoffer, R. M. 1973. Agron! J. 65, 276-283.

Schmugge, T., Gloersen, P., Wilheit, T., and Geiger, F. 1974. 1. Geophys. Res. 79,

3 17-323.

Stanhill, G., Kafkafi, V., Fuchs, M., and Kagan, Y. 1973. Isr. J . Agr. Res. 22,

109-118.

Steiner, D. 1970. Photogr. Eng. 36, 187-194.

Stoner, E. R., Baumgardner, M. F., and Cipra, 1. E. 1972. Info. Note 111272. Lab.

for Applic. Remote Sensing Purdue Univ., West Lafayette, Indiana.

Suits, G. H. 1972. Remote Sensing Environ. 2, 117-125.

Thaman, R. R. 1974. In “Remote Sensing, Techniques for Environmental Analysis”

(J. E. Estes and L. W. Senger, eds.), pp. 189-223. Hamilton, Santa Barbara,

California.

Thomas, J. R., Myers, V. I., Heilman, M. D., and Wiegand, C. L. 1966. Proc. Symp.

Remote Sensing Environ., 4th, 1966 pp. 305-312.

Thomas, J. R., Wiegand, C. L., and Myers, V. I. 1967. Agron. 1. 69, 551-554.

Ulaby, F. T., Chilar, J., and Moore, R. K. 1974. Remote Sensing Environ. 3, 185-203.

Von Steen, D. H., Learner, R. W., and Allen, W. A. 1969. Proc. Symp. Remote

Sensing Environ., 6th pp. 1 1 15-1 122.

Westin, F. C. 1974. Proc. Earth Resources Technol. Satellite-I Symp., 3rd, I973

NASA SP-351, pp. 183-204.

Wiegand, C. L., Gausman, H. W., Cuellar, J. A., Gerberman, A. H., and Richardson,

A. J. 1974. Proc. Earth Resources Technol. Satellite-I Symp., 3rd, 1973 NASA

SP-3 5 1.

Wiegand, C . L., Heilman, M. D., and Gerbeman, A. H. 1968. Proc. Symp. Remote

Environ., 5th, 1968 pp. 325-342.

Willstatter, R., and Stoll, A. 1913. “Untersunchungen uber die Assimilation der

Kohlensaure.” Springer-Verlag, Berlin and New York.

Yates, H. W., and Bandeen, W. R. 1975. Proc. IEEE 63, 148-163.

Zachary, A. L., Cipra, I. E., Diderickson, R. I., Kristof, S.J., and Baumgardner, M. F.

1972. Info. Note 110972. Lab. Applic. Remote Sensing, Purdue Univ., West

Lafayette, Indiana.



CHEMICAL MONITORING OF SOILS FOR

ENVIRONMENTAL QUALITY AND ANIMAL AND

HUMAN HEALTH’



.



Dale E Baker and Leon Chesnin

Departments of Agronomy. the Pennsylvania State University. University Park.

Pennsylvania. and University of Nebraska. Lincoln. Nebraska



I . Introduction .........................................................



I 1 . Soil Pollution Sources.................................................



A . Agricultural Pollutants and Soil Erosion ............................

B. Animal Wastes...................................................

C. Industrial and Municipal Wastes...................................

111. Soil and Waste Composition Monitoring ................................

A. Total Composition of Soils and “Agricultural Chemicals”. ............

B. lnterpretation of Total Composition Results .........................

C. Labile Concentrations and Ionic Activities...........................

D. Bioassay Techniques for Chemical Monitoring of Soils................

IV . Methods of Chemical Analysis.........................................

A. Precision and Accuracy...........................................

B. Instrumental Methods............................................

V . Monitoring of Macroelements..........................................

A. Soluble Salts ....................................................

B. Nitrogen-Nitrate. Nitrite. Ammonia. and Nitrosamines ...............

C. Phosphorus .....................................................

D. Potassium. Calcium. and Magnesium ...............................

E. Sulfur..........................................................

VI . Monitoring of Microelements..........................................

A . Boron ..........................................................

B. Iron and Manganese ..............................................

C. Zinc. Copper and Molybdenum....................................

D. Iodine and Selenium...............................................

E. Chromium ......................................................

F. Cobalt ..........................................................

G . Fluorine ........................................................

H . Vanadium and Nickel ............................................

I . Lithium and Others ..............................................

VII . Toxic Trace Elements. Organometallic Complexes........................

A. Cadmium. Lead. Nickel Carbonyl. Antimony. Beryllium. and Mercury . .

B. Lead and Arsenic................................................

C. Cadmium .......................................................

D. Mercury and Others ..............................................

VIII . Recommendations for Continuing Research ..............................

References............................................................



306

307

307

309

313

316

317

318

320

322

323

323

324

327

327

332

337

341

342

343

344

346

349

354

354

355

356

356

358

358

358

359

359

363

364

366



Contribution to the Journal Series of the Agricultural Experiment Stations of

The Pennsylvania State University (No. 4835) and University of Nebraska (No. 3940) .

305



306



DALE E. BAKER AND LEON CHESNIN



I.



Introduction



Agronomists serve the public through dedication to the goal of relieving

the harsh constraints that weight upon our stewards of the land. The farmer

looks to the agronomist for help in making decisions regarding soil management and crop production. Increased public concern for a quality environment exemplified in the United States by Federal Law, PL 92-500 with

its zero discharge goal, when coupled with an energy crisis, an increasing

rate of inflation, a monetary crisis, and a world food shortage, make it

mandatory that the agronomists be cognizant of their interface with related

disciplines in order to optimize production. The facts about pollution of

the environment in relation to animal and human health must be made

clear so that animal and human health as well as other aspects of environmental quality can be protected, while avoiding costly and unnecessary

constraints.

A systematic computerized search of the literature on the subject of soil

and water in relation to environmental quality produced more than 3000

titles and abstracts related to the subject since 1968, with perhaps 10%

being published in journals read regularly by those of us specializing in

soils and crops. The objectives of this review are ( 1 ) to consider aspects

of environmental quality in which soils may serve as sources or sinks for

potentially toxic substances in air, water, and the food chain, and ( 2 ) to

review and attempt to interpret methods and concepts important in soil

chemical monitoring.

“Science and the Quality of Life,” the theme of the 1975 annual meeting

of the American Association for the Advancement of Science (AAAS),

is one of many examples of the increased emphasis on the applications

of science and technology for the enhancement of man.

Land disposal of wastewater and sludge is receiving much publicity and

research support. Toflemire and Van Alstyne (1974) reported on six symposia including 139 papers with about 1000 published pages. More than

100 land disposal systems for wastewater were in operation in the United

States in 1972, and 14 new study areas were authorized by U.S. Environmental Protection Agency in 1973. Their 10-page review with 120 references provides convincing arguments for land disposal of wastes. They

noted that a May 1973 Gallup Poll “revealed that 40 percent of the people

would not object to drinking recycled sewage.”

The national emphasis on clean air and clean water using soils as “living

filters” requires that soil monitoring procedures include methods and implementation programs to protect crop plants and the food chain from attaining harmful concentrations of the various environmental pollutants.



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

V. Future Role of Agricultural Remote Sensing

Tải bản đầy đủ ngay(0 tr)

×