Tải bản đầy đủ - 0 (trang)
VIII. Analysis of Pyritic Soils

VIII. Analysis of Pyritic Soils

Tải bản đầy đủ - 0trang






The degree of acidification produced after exposing pyritic soils to

atmospheric oxidation is often used to identify potential acid sulfate soils.

In many instances, emphasis is placed on air-drying the soil rather than

on oxidation as such. Some investigators expose the soil for several months

after air-drying, and others dry and rewet several times before measuring

the final pH. It is unlikely that appreciable oxidation of pyrite would occur

in the dry state, and as air-drying a partially oxidized pyritic soil inactivates

ferrous iron-oxidizing bacteria, only the relatively slow chemical oxidation

process would operate in the rewetted soil. Ideally the soils should be kept

permanently moist and aerated. Polythene is permeable to oxygen, and

extensive acidification of moist samples stored for several weeks in thin

polythene bags has been observed; this could perhaps be the most convenient way of making the test. Van Breemen (1973) found that oxidizing a

pyritic soil in the laboratory always gave a pH 1-2 units lower than the

value attained by the same soil when drained in the field, so that a large

proportion of the acid formed in the laboratory is either not formed in

the field, or is neutralized or eliminated in some way (Brinkman and Pons,

1973). Presumably the difference between the acidities developed in the

field and in the laboratory results from samples tending to be more completely oxidized in the laboratory and not being subjected to leaching,

th,at the hydrolysis of ferric and aluminum sulfates is minimal, and acid

oxidation products are not removed from the system. Because the pH of

a water slurry of an acid sulfate soil is a function of the dilution, Doemel

and Brock (1971 ) measured the pH at various dilutions and extrapolated

the readings to zero dilution.




The monosulfides are readily decomposed by dilute acid, and several

convenient methods for determining the liberated hydrogen sulfide are

available. However, the monosulfide contents of sulfidic soils are usually

too small to be significant. The speed with which ferrous sulfide oxidizes

on exposure to air precludes drying and adequate mixing to obtain representative samples, and as ferrous sulfide is usually concentrated around

decaying root fragments, and generally sporadically distributed, prohibitively large samples would need to be used to obtain representative results.

As well as these mechanical difficulties,the chemical determination of ferrous sulfide in soil is subject to uncertain errors caused by the presence

of acid-soluble ferric compounds, so that some hydrogen sulfide is oxidized

by Fe3+ when the sample is acidified. Pruden and Bloomfield (1968)



limited errors from this cause to a degree t;*,rtwas acceptable in laboratory

incubation experiments by using a solution of stannous chloride in hydrochloric acid to liberate hydrogen sulfide. However, pyrite also yields

hydrogen sulfide with this reagent, so that this method is not applicable to

normal field samples. It has been suggested that iron monosulfides can be

determined indirectly by determining the ferrous iron liberated by dilute

acid. Under these conditions Fe3+is reduced by both hydrogen sulfide and

soil organic matter (Pruden and Bloomfield, 1969), so that results obtained

by this method would have no significance.



Pons ( 1964b) described a microscopical method for determining pyrite

in soils; the method gave good correlation with chemically determined


Pyrite can be determined chemically as the difference between the sulfate contents before and after oxidation, hydrogen peroxide being perhaps

the most convenient oxidizing agent. Tabatabai and Bremner (1970) used

alkaline hypobromite prior to determining total sulfur as sulfate, and this

has the advantage of giving an iron-free extract. However, the absence

of iron is essential only if sulfate is to be determined turbidimetrically-a

method that we find unreliable. Iron can be removed with an ion exchange

resin if sulfate is to be determined as barium sulfate, but interference from

iron can be avoided more readily by adding ascorbic acid to reduce Fe3+

before precipitation. Iron does not interfere in the reduction of sulfate to

hydrogen sulfate with hydriodic acid (Luke, 1943); absorption of the hydrogen sulfide in sodium hydroxide and titration with mercuric acetate

solution, with dithizone as indicator (Archer, 1956) is a very precise

method for determining small amounts of sulfate.

The basic ferric and aluminum sulfates formed in acid sulfate soils are

relatively insoluble, and fairly drastic conditions are necessary to ensure

complete extraction; 20-30 minutes of digestion with 2 N hydrochloric

acid, on a water bath, is usually adequate. The rate of oxidation of pyrite

by Fe3+is appreciable, so that the acid extraction should not be prolonged

unduly, and for the same reason it is preferable to use separate samples

for the before- and after-oxidation sulfate determinations.

Bloomfield et al. (1968) observed that oxidizing acid sulfate soils with

hydrogen peroxide gave consistently slightly smaller total sulfur values than

ignition with vanadium pentoxide (Bloomfield, 1962). The difference between the two values probably represents organic sulfur not oxidized by

hydrogen peroxide, and as such would have little significance in this




Rasmussen (1961) determined the pyrite content of soils by X-ray

diffraction, with magnesium oxide as internal standard. Petersen ( 1969)

used the same method, making a correction for interference by quartz.

For survey purposes, the determination of total sulfur by X-ray fluorescence spectroscopy provides a rapid method for the initial screening of

large numbers of samples. Brown and Kanaris-Sotiriou (1969) found that

the generally large and variable organic content of Malayan acid sulfate

soils caused serious matrix effects, but the application of a correction factor

based on the loss on ignition gave acceptable results.



Acid sulfate soils cover relatively small areas in temperate lands,

though they may be important locally in drainage projects. Pyritic materials

in mining spoils are of considerable importance in many regions. Acid sulfate soils cover large areas in the tropics, and where they occur in densely

populated zones urgently need improvement for agriculture.

Much research has been done on the factors governing the formation

of sulfides in sediments and on the mechanisms involved in the oxidation

of the sulfides, so that the conditions leading to extreme acidity are now

well understood. However simple routine methods that are rapid and reliable are needed for detecting potential acid sulfate soils, and for predicting

the degree of acidity that would develop on drainage; this is necessary for

soil suitability ratings.

Whereas the progress of acidification on drying has been determined

in laboratory experiments, very little work has been done in field conditions or on undisturbed cores, which would be the nearest approximation

to the field state. Rates of oxidation are so very different under these conditions from those in laboratory samples that much more quantitative information is needed. Much of the field evidence available on oxidation and

leaching comes from reclaimed polders where the progress of soil changes

has not been closely monitored.

Leaching of sulfates has been thoroughly studied in the laboratory, but

very little information is available for field conditions. The rates at which

sulfides oxidize, the rates at which the resulting sulfates are leached and

the degree of acidity that develops on oxidation and leaching are obviously

of the greatest importance in the improvement of these soils for agriculture.

In the tropics many short-term ad hoc field experiments on the reclamation and improvement of acid sulfate soils have been reported, but few

long-term experiments have been described. In dryland crops the large

amount of aluminum that appears in the soil sollition when the soils be-



come very acid is probably the major factor limiting plant growth, so that

techniques for limited oxidation by drainage control, and liming for counteracting acidity, need more investigation. In waterlogged conditions the

toxic factors are less well defined. Ferrous iron and hydrogen sulfide are

both toxic to rice, but methods for identifying the precise soil conditions

under which these toxicities arise are not well developed.

Finally, it is important to note that the appropriate ameliorative treatments will vary depending on the physical environment; as well as the soils,

the climate and the social and economic aspects of the region must be considered. Where population pressure is not serious such soils would best

be left out of consideration for agricultural use.

In despoiled mining areas, a somewhat different -emphasis is needed.

The ability to mine valuable ores without ruining large tracts of country

is likely to be emphasized more in future, so that methods of preventing

extreme acidity developing, and of reclaiming those areas already

despoiled, will be needed.


Abd-El-Malek, Y.,and Rizk, S. G. 1963. J. Appl. Bacteriol. 26, 7-13, 14-19, and


Adams, F., and Lund, Z. F. 1966. Soil Sci. 101, 193-198.

Adams, F., and Pearson, R. W. 1967. In “Soil Acidity and Liming” (R. W. Pearson

and F. Adams, eds.), Agron. Monogr. No. 12, pp. 161-206. Amer. SOC. Agron.,

Madison, Wisconsin.

Agricultural Research Council. 1967. Agr. Res. Corrnc. Cent. A f r . , Annu. Rep.

p. 26.

Alexander, M. 1961. “Introduction to Soil Microbiology.” Wiley, New York.

Allam, S. W. 1971. Ph.D. Thesis, Louisiana State University, Baton Rouge.

Allbrook, R. F. 1973. Proc. I n t . Symp. Acid Sulpliate Soils, 1972 (in press).

Allen, E. T., Crenshaw, J. S., and Johnson, J. 1912. Amer. 1. Sci. 33, 169-236.

Andriesse, J. P., van Breemen, N., and Blokhuis, W. A. 1973. Proc. Int. Symp. Acid

Sulphate Soils, 1972 (in press).

Annual Report. 1957. Malaya, Annu. Rep. Dep. Agr., p. 32.

Annual Report WARRS 1959. West Afr. Rice Res. Sta., Rokupr. Sierra Leone,

Annu. Rep. p. 32.

Annual Report. 1962. Wesr Afr. Rice Res. Sra., Rokrrpr. Sierra Leone, Annu. Rep.

p. 22.

Archer, E. E. 1956. Analyst 81, 181-182.

Ashmead, D. 1955. Colliery Guardian 190, 684-698.

Baas Becking, L. G. M., and Moore, D. 1961. Econ. Geol. 56, 259-272.

Baba, I., and Harada, T. 1954. l a p . 1. Breed. 4, 101-151.

Baba, I., Takahashi, Y., and Iwata, I. 1953. Proc. Crop Sci. SOC.Jap. 21, 235-236.

Bache, B. W. 1963.1. SoilSci. 14, 113-123.

Barnshisel, R. I., and Massey, H. F. 1969. Soil Sci. 108, 367-372.

Beck, J. V., and Brown, D. G. 1968.1. Bucteriol. 96, 1433-34.



Bernal, J. D. 1969. “Science in History,” Vol. 2, p. 399. Pelican Books, London.

Berner, R. A. 1962. I n “Biogeochemistry of Sulphur Isotopes” (M. L. Jensen,

ed.), Nat. Sci. Found. Symp., pp. 107-120. Yale Univ. Press, New Haven,


Berner, R. A. 1964. 1. Geol. 72, 293-306.

Berner, R. A. 1967. Amer. 1. Sci. 265, 773-785.

Berner, R. A. 1970. Amer. 1.Sci. 268, 1-23.

Berner, R. A. 1972. Nobel Symp. 20, 347-362.

Beye, G. 1973. Proc. Int. Symp. Acid Sitlphate Soils, 1972 (in press).

Bloomfield, C. 1962. Analyst 87, 586-589.

Bloomfield, C. 1967. Rothamsted Exp. Sta. Rep.. 1966 p. 73.

Bloomfield, C. 1969. J . Soil Sci. 20, 207-221.

Bloomfield, C. 1972. 1. Soil Sci. 23, 1-16.

Bloomfield, C. 1973. Proc. Int. Symp. Acid Sulphate Soils, 1972 (in press).

Bloomfield, C., Coulter, J. K., and Kanaris-Sotiriou, R. 1968. Trop. Agr. (Trinidad)

45, 289-300.

Bloomfield, C., Brown, G., and Catt, J. A. 1970. Plant Soil 33,479-481.

Brammer, H. 1966. Pak. I . Soil Sci. 2, 17-30.

Brayley, S. A. 1954. Mechanization 18, 113-1 15.

Brinkman, R., and Pons, L. J. 1973. Proc. Int. Symp. Acid Sulphate Soils, 1972

(in press).

Bromfield, S. M. 1953. 1. Gen. Microbiol. 8, 378-390.

Brophy, G. P., Scott, E. S., and Snellgrove, R. A. 1962. Amer. Mineral. 47, 112-126.

Brown, G., and Kanaris-Sotiriou, R. 1969. Analyst 94, 782-786.

Bryner, L. C., and Anderson, R. 1957. 2nd. Eng. Chem. 49, 1721-24.

Bryner, L. C., and Jameson, A. K. 1958. Appl. Microbiol. 6, 281-287.

Bryner, L. C., and Jones, L. W. 1965. Develop. Ind. Microbiol. 7, 287-297.

Bryner, L. C., Beck, J. V., Davis, D. B., and Wilson, D. G. 1954. Ind. Eng.

Chem. 46, 2587-92.

Bryner, L. C., Walker, R. B., and Palmer, R. 1967. Trans. A I M E 238,56-61.

Burkin, A. R. 1971. Metals Mater. 5, 47-50.

Campbell, L. L., and Postgate, J. R. 1965. Bacteriol. Rev. 29, 359-363.

Carpenter, L. V.,and Herndon, L. K. 1933. W . Va., Eng. Sta. Res., dull. 10.

Carter, J. 1959. Trans. Inst. Brit. Geogr. 26.

Cate, R. B., and Sukhai, A. P. 1964. Soil Sci. 98, 85-93.

Chadwick, M. J., and Salt, J. K. 1969. Nature (London) 224, 186.

Chenery, E. M. 1953. “A Digest of the Chemistry of Dead Swamps in Kigezi

District, S. W. Uganda.” Govt.-Printer, Uganda.

Chenery, E. M. 1954. Trans. Int. Cong. Soil Sci. Sth, 1954 Vol. 4, pp. 195-198.

Clark, C. S. 1966. 1. Sanit. Eng. Div.. Proc. Amer. SOC.Civil Eng. 92, 127-145.

Clarke, J. S., Gobin, C. A., and Sprout, P. N. 1961. Can. 1.Soil Sci. 41, 218-225.

Coleman, N. T., and Craig, D. 1961. Soil Sci. 91, 14-18.

Colmer, A. R., and Hinkle, M. E. 1947. Science 106, 253-256.

Connell, W. E., and Patrick, W. H. 1968. Science 159, 86-87.

Coulter, B. S. 1966. Ph.D. Thesis, University London.

Coulter, B. S. 1969. Soils Fert. 32, 215-223.

Coulter, J. K. 1972. Soils Fert. 35, 475-498.

Coulter, J. K. 1973. Proc. Int. Symp. Acid Sulphate Soils, 1972 (in press).

Coutinet, S., and Durand, J. H. 1966. Agron. Trop. (Paris) 21, 374-360.


32 1

Dale, I. R. 1939. Inst. Pap. Forest. Inst. Oxford No. 18.

Davis, J. H. 1940. Pap. Tortugas Lab. 32, No. 16.

Doemel, W. N., and Brock, T. D. 1971. Nature ( London) 229, 574.

Dommergues, Y.,Combremont, R., and Beck, G. 1969. Rev. Ecol. Biol. 6, 115-129.

Doubleday, G. P. 1969. Proc. N . Engl. Soils Discuss. Group No. 6, pp. 21-25.

Doubleday, G. P. 1971. Ph.D. Thesis, University of London.

Driessen, P. M. 1973. Proc. Int. Symp. Acid Sulphate Soils, 1972 (in press).

Dudal, R. 1968. I n ‘!World Soil Resources,” Rep. No. 33. FAOLJNESCO, Rome.

‘Duncan, D. W., Landesman, J., and Walden, C. C. 1967. Can. 1. Microbiol. 13,


Dunham, K. 1961. Advan. Sci. 18, 184-299.

Dunn, I. G. 1965. Malay. Agr. I . 45, 204-211.

Durand, J. H. 1967. Bull. Etude Sol [2] No. 4, pp. 35-39.

Edelman, C. H., and van Staveren, J. M. 1958. 1. Soil Water Conserv. 13, 5-17.

Ehrlich, H. L. 1962. In “Biogeochemistry of Sulphur Isotopes” (H. L. Jensen,

ed.), Nat. Sci. Found. Symp., pp. 153-168. Yale University, New Haven, Connecticut.

Evans, H. 1966. Proc. 1966 Meet. Brit. Wesr Ind. Sugar Techno!. pp. 291-300.

Evans, H., and Cate, R. B. 1962. World Crops 14,370-373.

Fletcher, A. W. 1971. Clrem. Ind. ( London) pp. 776-780.

Ford, H. W. 1973.1. Amer. SOC.Hort. Sci. 98, 66-68.

Ford, H. W., and Calvert, D. V. 1969. Soil Sci. SOC. Amer., Proc. 33, 816-817.

Ford, H. W., and Calvert, D. V. 1970. Proc. Soil Crop Sci. SOC. Fla. 30, 304-307.

Ford, H. W., Calvert, D. V., and Belville, B. C. 1968. Trans. A S A E ( A m e r .

SOC. Agr. Eng.) 11, 566-7.

Fosberg, F. R. 1964. I n “Scientific Problems of the Humid Tropical Zone Deltas

and their Implications,” Proc. Dacca Syrnp., pp. 227-233. UNESCO, Paris.

Foy, C. D., and Brown, J. C. 1964. Soil Sci. SOC.Amer., Proc. 28, 27-32.

Frink, C. R. 1973. Proc. Int. Symp. Acad Sulphate Soils, 1972 (in press).

Furbish, W. J. 1963. Amer. Mineral. 48, 703-706.

Giglioli, M. E. C., and King, D. F. 1966. 1. Appl. Ecol. 3, 1-19.

Gleen, H. 1950. Nature ( London) 166, 871-872.

Gleen, H. 1951.1. Gen. Microbiol. 5, XV.

Glob, P. W. 1971. “The Bog People.” Paladin, London.

Grant, C. J. 1973. Proc. Int. Symp. Acid Sirlphate Soils, 1972 (in press).

Grass, L. B. 1969.1. Soil Water Conserv. 24, 135-138.

Hardan, A. 1973. Proc. Int. Symp. Acid Sulphate Soils, 1972 (in press).

Harmsen, G. W. 1954. Plant Soil 5, 324-348.

Hart, M. G. R. 1959. Plant Soil 11, 215-236.

Hart, M. G. R. 1961. Analyst 86, 472-475.

Hart, M. G. R. 1962. Plant Soil 17, 87-98.

Hart, M. G. R. 1963. Plant Soil 19, 106-114.

Hart, M. G. R., Carpenter, A. J., and Jeffery, J. W. 0. 1963. Agron. Trop. (Paris)

18, 800-802.

Herbillion, A. J., Pecrot, A., and Vielvoye, L. 1966. Pedologie 16, 5-16.

Hesse, P. R. 1958. Hydrobiologia 11, 29-39.

Hesse, P. R. 1963. Plant Soil 19, 205-218.

Hollingworth, S. E., and Bannister, F. A. 1950. Mineral. Mag. 29, 1-17.

Hollis, J. P., and Rodriguez-Kabana, R. 1967. Phytopathology 57, 84 1-847.



Horn, M. E., and Chapman, S. L. 1969. Trans. Int. Congr. Soil Sci., 9th 1968 Vol. 3,

pp. 31-40.

IRAT 1971. Rapport d’activite, 1969-1970. Institut de recherches agronomiques

tropicales et des cultures vivrikres, Station de Recherches de Djibelor, Senegal.

IRRI 1971. Int. Rice Res. Inst., Los Banos Annu. Rep. 1970 p. 48.

Islam, A., and Ullah, S. M. 1968. Pak. J . Soil Sci. 4, 45-53.

Jackson, W. A. 1967. In “Soil Acidity and Liming” (R. W. Pearson and F. Adams,

eds.), Agron. Mongr. No. 12, pp. 43-124. Amer. SOC. Agron., Madison,


James, A. L. 1966. Endeavour 25, 154-157.

Janitzky, P., and Whittig, L. D. 1964. J. Soil Sci. 15, 145-157.

Jensen, H. L. 1927. Zentralbl. Bakteriol. Parasitenk. Infektioskr., A bt. I 72, 242-246.

Johansson, G . 1962. Acta Chem. Scand. 16,403-420.

Johnston, A. E. 1972 Rothamsted Exp. Sta. Rep. 1971 Part 2, 177-180.

Jordan, H. D. 1964. J . Appl. Ecol. 1, 209-212.

Kanapathy, K. 1973. Proc. Int. Symp. Acid Sirlphate Soils, 1972 (in press).

Kaplan, I. R., Emery, K. O., and Rittenberg, S. C. 1963. Geochim. Cosmochim.

Acta 27, 297-331.

Keay, R. W. J. 1953. K e w Bull. 8, 121-127.

Kelly, D. P. 1970. Symp. Int. Soufre Versailles pp. 217-232.

Kelly, D. P. 1971. Annu. Rev. Microbiol. 25, 177-210.

Kendall, P. F., and Wroot, H. E. 1924. “The Geology of Yorkshire,” pp. 358-363.

Publ. Authors, Vienna.

Kivenen, E. 1950. Trans. Int. Congr. Soil Sci., 4th 1?50 Vol. 2, pp. 259-262.

Leathen, W. W., and Madison, K. M. 1949. Bacteriol. Proc. 64.

Leathen, W. W., Brayley, S. A., and McIntyre, L. D. 1953. Appl. Microbiol. 1,


Leathen, W. W., Kensel, N. A., and Brayley, S. A. 1956. J . Bacterial. 72, 700-704.

Lefebre-Drouet, E. 1967. C . R . Acad. Agr. Fr. 53, 926-932.

Le Roux, N. W. 1969. New Sci. 43, 12-16.

Le Roux, N. W. 1971. In “Microbiological Aspects of Metallurgy” (J. D. A. Miller,

ed.), p. 173-182. Med. & Tech. Publ., Aylesbury.

Lipman, J. G., Waksman, S. A., and Joffe, J. S. 1921. Soil Sci. 12, 475-489.

Lockard, R. G. 1959. Min. Agr. Fed. Malaya, Bull. 108.

Lorenz, W. C. 1962. U.S., Bur. Mines, Inform. 8080.

Luke, C. L. 1943. Ind. Eng. Chem., Anal Ed. 15, 602-604.

Lynn, W. C., and Whittig, L. D. 1966. Clays Clay Minerals, Proc. Nat. C o n f .

Chays Clay Minerals 14, 241-248.

McLean, E. O., Reicosky, S. C., and Lakshmanam, C. 1965. Soil Sci. SOC. Amer.,

Proc. 29, 374-378.

McLean, H. C. 1918. Soil Sci. 5,251-290.

Macnae, W. 1966. Aust. 1. Bot. 14, 67-104.

Macnae, W., and Kalk, M. 1962. J. Ecol. 50, 19-34.

Magistad, 0. C. 1925. Soil Sci. 20, 181-225.

Marchlewitz, B., Hasche, D., and Schwartz, D. 1961. Z. AIlg. Mikrobiol. 1, 179-191.

Martin, F. J., and Hill, R. D. 1968. Proc. Symp. Coal Mine Drainage Res., 2nd,

pp. 46-63.

Martin, J. P., and Evans, H. 1964. In “Sugar Cane Diseases of the World” (C.

G. Hughes, E. V. Abbott, and C. S. Wismen, eds.), Chapter VI, Vol. 11, p.

197-236. Elsevier, Amsterdam.

May, R. F., and Berg, W. A. 1966. Coal Age 71,74-75.



Mellor, J. W. 1935. “A Comprehensive Treatise on Inorganic and Theoretical Chemistry,” Vol. 14, p. 242 et seq. Longmans, Green, New York.

Melville, G. E., Freney, J. R., and Williams, C. H. 1971. Soil Sci. 112, 245-248.

Miller, L. P. 1950. Conrrib. Boyce Thompson Inst. 16, 85-89.

Mitsui, S. 1956. “Inorganic Nutrition, Fertilisation and Soil Amelioration for Lowland Rice,” 3rd ed. Yokendo Ltd., Tokyo.

Mitsui, S., Aso, S., Kumazawa, K., and Ishiwara, T. 1954. Trans Inr. Congr. Soil

Sci. 5111,1954 Vol. 2, pp. 364-368.

Miyake, K. 1916. J. Biol. Chem. 25, 23-28.

Moorman, F. R. 1961. I n “Researches on Acid Sulphate Soils and their Amelioration

by Liming,” pp. 3-15. Agronomic Library, Ministry of Rural Affairs, Saigon.

Moorman, F. R. 1963. Soil Sci. 95, 271-275.

Morton, J. F. 1965. Econ. Bor. 19, 113-123.

Motomura, S., and Yokoi, H. 1969. Soil Sci. Plant Nurr. 15, 28-37.

Mulder, E. G. 1964. I n “Principles and Applications in Aquatic Microbiology,”

(H. Heukelekian and N. C. Dondero, eds.), pp. 82-97. Wiley, New York.

Murakami, H. 1966. Soils Fert. 31, 844 (abstr.).

Mutatkar, U. K., and Pritchett, W. L. 1966. Soil Sci. SOC.Amer. Proc. 30, 343-346.

Nambiar, E. P., Nair, T. J., and Subramoney, N. 1966. J. Indian SOC. Soil Sci.

14, 13-17.

Napier, E., Wood, R. A., and Chambers, L. A. 1968. I n “Advances in Extractive

Metallurgy,” p. 942-957. Inst. Mining Met. Symp. 1967, London.

Neckers, J. W., and Walker, C. R. 1952. Soil Sci. 74, 467-70.

Nhung, M. M., and Ponnamperuma, F. N. 1966. Soil Sci. 102,2941.

Ogata, G . , and Bower, C. A. 1965. Soil Sci. SOC.Amer. Proc. 29, 23-25.

Okajima, H., and Takagi, S. 1953. Rep. Inst. Agr. Res., Tohoku Univ.5, 21-31.

Okajima, H., and Takagi, S. 1955. Sci. Rep. Res. Inst., Tohoku Univ., Ser. D.

6, 89-99.

Okajima, H., and Takagi, S. 1956a. 1. Sci. Soil, T o k y o 26, 323-328.

Okajima, H., and Takagi, S. 1956b. J . Sci. Soil, Tokyo 26, 455-458.

Park, Y. D., and Tanaka, A. 1968. Soil Sci. Plant Nurr. 14, 27-34.

Parr, J. F. 1969. Soils Fert. 32, 411-415.

Patrick, W. H., and Mahapatra, I. C. 1968. Advan. Agron. 20, 323-359.

Patrick, W. H., and Wyatt, R. 1968. Soil Sci. SOC.Amer. Proc. 28, 647-653.

Petersen, L. 1966. Acra Agr. Scand. 16, 120-128.

Petersen, L. 1969. Acra Agr. Scand. 19, 40-44.

Petersen, L., Rasmussen, K., and Jensen, A. T. 1968. Kgl. Vet.- Landbohoejsk.,

Arsskr. pp. 35-48.

Pham, H-A., Moorman, F. R., and Golden, J. D. 1961. I n “Researches on Acid

Sulphate Soils and their Amelioration by Liming,” pp. 17-52. Agronomic Library,

Ministry of Rural Affairs, Saigon.

Pitts, R. G. 1971. Ph.D. Thesis, Louisana State University, Baton Rouge.

Poelman, J. N. B. 1973a. Boor en Spade (in press).

Poelman, J. N. B. 197313. Proc. I n r . Symp. Acid Sulphate Soils, 1972 (in press).

Ponnamperuma, F. N., Yuan, W. L., and Nhung, M. M. 1965. Nature (London)

207, 1103-1 104.

Ponnamperuma, F. N., Attanandana, T., and Beye, G. 1973. Proc. Int. Symp. Acid

Sulphate Soils, 1972 (in press).

Pons, L. J. 1956. Trans. I n t . Congr. Soil Sci., 6th, 1956 Vol. B, pp. 727-734.

Pons, L. J . 1964a. Agr. Exp. Sfa., Paramaribo, Surinam, Bull. 82, 141-162.

3 24


Pons, L. J. 1964b. In “Soil Micromorphology” (A. Jongerius, ed.), pp. 401-409.

Elsevier, Amsterdam.

Pons, L. J. 1970. Fys. Geogr. Bodemk. Lab. Amsterdam, Publ. 16, 93-107.

Pons, L. J., and van der Kevie, W. 1969. Report No. SSR-81-1969. Soil Survey

Div., Land Development Dept., Ministry of National Development, Bangkok.

Postgate, J. R. 1959. Annu. Rev. Microbiol. 13, 505-520.

Postgate, J. R. 1960. Progr. Ind. Microbiol. 2, 49-69.

Postgate, J. R. 1968. I n “Inorganic Sulphur Chemistry” ( G . Nickless, ed.), pp.

259-279. Elsevier, Amsterdam.

Powell, A. R., and Parr, S. W. 1919. I l l . Univ., Eng. Exp. Sta., Bull. 111.

Pringsheim, E. G. 1949. Trans. R o y . SOC. London, Ser. B 233, 453-482.

Pringsheim, E. G. 1949. Biol. Rev. Cambridge Phil. SOC.24, 200-245.

Prowse, G. A. 1968. Working Paper No. 1. Tropical Fish Culture Research Institute,


Pruden, G., and Bloomfield, C. 1968. Analyst 93, 532-534.

Pruden, G., and Bloomfield, C. 1969. Analyst 94, 688-689.

Puustjarvi, V., and Juusela, T. 1952. Acta. Agri. Scand. 2, 131-152.

Quispel, A., Harmsen, G. W., and Otzen, D. 1952. Plant Soil 4, 43-55.

Rasmussen, K. 1961. Thesis, Copenhagen (English summary).

Raychaudhuri, S. P., and Ananthraman, P. V. 1960. J. Indian Soil Sci. 8, 223-228.

Reid, D. A., Jones, G. D., Armiger, W. H., Foy, C. D., Koch, E. J., and Starling,

T. M. 1969. Agron. 1. 61, 218-222.

Richards, P. W. 1952. “The Tropical Rain-Forest. An Ecological study.” Cambridge

Univ. Press, London and New York.

Rickard, D. T. 1969a. Stockholm Contrib. Geol. 20, 49-66.

Rickard, D. T. 1969b. Stockliolm Contrib. Geol. 20, 67-95.

Rickard, D. T. 1973. Proc. Int. Symp. Acid Sulphate Soils, 1972 (in press).

Roberts, W. M. B., Walker, A. L., and Buchanan, A. S. 1969. Miner. Deposita

4, 18-29.

Rocquero de Laburu, C., and Garcia-Casal, J. 1973. Proc. Int. Symp. Acid Sulphate

Soils, 1972 (in press).

Rodriguez-Kabana, R., Jordan, J. W., and Hollis, J. P. 1965. Science 148, 524-526.

Rorison, I. H. 1973. Proc. lnt. Symp. Acid Sulphate Soils, 1972 (in press).

Rosevear, D. R. 1947. Farm Forest 8, 23-30.

Roy, A. B., and Trudinger, P. A. 1970. “The Biochemistry of Inorganic Compounds

of Sulphur.” Cambridge Univ. Press, London and New York.

Rudolphs, W. 1922. Soil Sci. 14, 135-147.

Sadler, W. R., and Trudinger, P. A. 1967. Miner. Deposita 2, 158-168.

Savory, H. J. 1953. K e w Bull. 8, 127-128.

Scheltema, W., and Boons, H. ch. P. M. 1973. Proc. I t i t . Synip. Acid Siilpltate Soils,

1972 (in press).

Shiori, M., and Tanada, T. 1954. “The Chemistry of Paddy Soils in Japan,” Min.

Agr. Forest., Jap. Govt.

Sioli, H. 1964. In “Scientific Problems of the Humid Tropical Zone Deltas and

their Implications.” Proc. Dacca Symp., pp. 89-96. UNESCO, Paris.

Slager, S., Jongmans, A. G., and Pons, L. J. 1970. 1. Soil Sci. 21, 233-241.

Smittenberg, J., Harmsen, G . W., Quispel, A., and Otzen, D. 1951. Plant Soil

3, 353-360.

Soil Taxonomy. 1970. “Soil Survey.” Soil Conservation Service, U S . Dept. Agr.,

Washington, D.C.



Sombatpanit, S. 1970. Thesis, Royal Agriculture College, Uppsala.

Spencer, W. F., Patrick, R., and Ford, H. W. 1963. Soil Sci. SOC. Amer., Proc.

27, 134-137.

Steers, J. P. 1959. Endeavour 18, 75-82.

Szabolcs, I. 1966. Soils Fert. 1967 30, 2437 (abstr.)

Tabatabai, M.A., and Bremner, J. M. 1970. Soil Sci. SOC.Amer. Proc. 34, 62-65.

Takijima, Y. 1965. Soil Sci. Plant Nurr. 11, 204-211.

Tanaka, A., and Navasero, S. A. 1966a. Soil Sci. Plant Nutr. 12, 55-60.

Tanaka, A., and Navasero, S. A. 1966b. Soil Sci. Plant Nutr. 107-114.

Tanaka, A., and Navasero, S. A. 1966c. Spil Sci. Plant Nirtr. 197-201.

Tanaka, A., and Navasero, S. A. 1967. Soil Sci. Plant Nutr. 13, 25-30.

Tanaka, A., and Yoshida, S. 1970. “Nutritional, Disorders of the Rice Plant in

Asia.” Int. Rice Res. Inst., Manila, Philippines.

Tanaka, A., Loe, R., and Navasero, S. A. 1966. Soil Sci. Plant Nutr. 12, 158-164.

Tanaka, A., Mulleriyawa, R. P., and Yasu, T. 1968. Soil Sci. Plant Nutr. 14,


Teakle, L. J. H., and Southern, B. L. 1937. 1. Dep. Agr., West Austr. 14, 404-424.

Temple, K. L., and Colmer, A. R. 1951. I . Bacteriol. 62, 605-611.

Temple, K. L., and Koehler, W. A. 1954. W . Va., Eng. Exp. Sta., Res. Bull.


Thompson, J. G. 1972. Rhodesian 1. Agr. Res. 10, 153-157.

Tomlinson, P. T. E. 1957. Trop. Agr. (Trinidad) 34, 4150.

Trafford, B. D., Bloomfield, C., Kelso, W. I., and Pruden, G. 1973. 1. Soil Sci.

24(4) (in press).

Trudinger, P. A. 1971. Mining Sci. Eng. 3, 13-25.

Triiper, H. G., and Hathaway, J. C., 1967. Nature (London) 215, 435-436.

Tuovinen, 0. H., and Kelly, D. P. 1972. Z. Allg. Mikrobiol. 12, 311-346.

Turner, P. D., and Bull, R. A., 1967. “Diseases and Disorders of the Oil Palm

in Malayasia.” Incorporated Society of Planfers, Kuala Lumpur.

Unz, R. F., and Lundgren, D. G. 1961. Soil Sci. 92, 302-313.

VBmos, R. 1958a. Soil Plant Food ( T o k y o ) 4 , 3 7 4 0 .

VBmos, R. 1958b. Nature (London) 182, 1688.

V h o s , R. 1959a. Acta Agron. (Budapest) 9, 117-128.

VBmos, R. 1959b. Plant Soil 11, 65-77.

VBmos, R. 1964.1. Soil Sci. 15, 103-109.

VBmos, R. 1967. Soils Fert. 30, 2438 (abstr.).

van Beers, W. E. J. 1962. Bull. Int. Inst. Land Reclam. Improve. No. 3.

van Breemen, N. 1973. Proc. Int. Symp. Acid Sulphate Soils 1972 (in press).

van der Kevie, W. 1972. Thai 1. Agr. Sci. 5, 165-182.

van der Kevie, W. 1973. Proc. Int. Symp. Acid Sitlphate Soils, 1972 (in press).

van Holst, A. F. and Westerveld, G. J. W. 1973. Proc. Int. Symp. Acid Sulphate

Soils, 1972

Vann. J. H. 1969. “Land Forms, Vegetation and Sea-Level Changes Along the

Guiana Coast of South America.” Tech. Rep. No. 3. State University College,

Buffalo, New York.

Varghese, T., Thampi, P. S., and Money, N. S. 1970. 1. Indian SOC. Soil Sci.

218, 65-69.

Verhoop, J. A. D. 1940. Thesis, University of Leiden (English summary).

Verner, A. R., and Orlovsky, N. V. 1948. Soils Fert. 1949 12, 483 (abstr.).

Vieillefon, J. 1969. Sci. Sol. No. 2, pp. 115-148.



Vieillefon, J. 1973. Proc. Int. Symp. Acid Sulphate Soils, 1972 (in press).

Wadsworth, M. E. 1972. Minerals Sci. Eng. 4, 36-47.

Warshaw, C. M. 1956. Amer. Mineral. 41, 288-296.

Watson, J. G. 1928. Malay. Forest Rec. No. 6.

Watts, J. C. D. 1969. Malay Agr. 1. 47, 187-202.

Westerveld, G. J. W., and van Holst, A. F. 1973. Proc. Int. Symp. Acid Sulphate

Soils, 1972 (in press).

Wiklander, L., Hallgren, G., and Jonsson, E. 1950. Ann. R o y . Agr. Coll. Swed.

17, 425-440.

Wolfe, R. S. 1964. In “Principles & Applications in Aquatic Microbiology” (H.

Heukelekian and N. C . Dondero, eds.), pp. 82-97. Wiley, New York.

Yamada, N., and Ota, Y. 1958. Proc. Crop. Sci. SOC. Jap. 27, 155-160.

Yamane, I., and Sato, J. 1961. Sci. Rep. Res. Inst., Tohuku Univ., Ser. D 12,


Yuan, T. L. 1963. Soil Sci. 95, 155-163.

Zsoldos, F. 1962. Plant Soil 16, 269-283.

Zuur, A. J. 1952. Soil Sci. 74, 75-89.

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VIII. Analysis of Pyritic Soils

Tải bản đầy đủ ngay(0 tr)