Tải bản đầy đủ - 0 (trang)
VI. Proposed Model for Ion Absorption by Roots

VI. Proposed Model for Ion Absorption by Roots

Tải bản đầy đủ - 0trang

ION ABSORPTION BY PLANT ROOTS



199



would, in time, exchange for cytoplasmic H'. The initial conformational

change of the cation-subunit complex alters or distorts the other subunits

of the ATPase such that their electrical field strength is increased (Eisenman, 1962). An increased field strength would increase the affinity of the

subunit for H , thus decreasing the overall affinity for the alkali cations. As

a consequence of the higher field strength of the binding sites, the preference

for the alkali ions is shifted. This accounts for the observed change in selecOutside



Plasma

Membrane



Cytoplasm



No, K *



FIG. 7. A hypothetical model depicting how inorganic cations and anions are

transported across the plasma membrane into root cells. See text for explanation.



tivity of ion transport as the external concentration is increased (see Section

IV) .

The ATPase can also give rise to a pH and charge gradient across the

membrane (Mitchell, 1961) which represents an intermediate conservation

of the energy originally present in ATP. Since a charge separation occurs,

the ATPase contributes directly to the electrical potential and is therefore

electrogenic. Inhibition of the ATPase by shutting off the supply of ATP

or by direct inhibition would cause the electrical potential to fall abruptIy.

This accounts for the view that H+ is actively secreted by roots (Pitman,

1970), and for the evidence that ion transport is electrogenic (see Section

II,3).



200



T. K. HODGES



The anion carrier exchanges internal OH- for external anions, and this

collapses the pH gradient. Thus, inward anion transport uses the energy

which was temporarily conserved in the pH gradient.

According to the model, the ATPase is directly responsible for cation

transport and indirectly responsible for anion transport. However, the

anion carrier depends on an internal anion such as OH- or HC0,- and

is not necessarily dependent on ATP. Any intracellular reaction that generates excess OH- or HC0,- could drive the anion carrier. For example,

the light-driven C1- transporr in green tissue or cells may be a Cl-/OHexchange with the OH- being generated by the chloroplast redox reactions.

This possibility is supported by studies which show a light stimulated

HC0,-/OH- exchange in green algae (Smith, 1970; Raven, 1970; Lucas

and Smith, 1973). In roots, anion/HCO,- and HC0,-/OH- exchanges are

probable. This is based on the increase or decrease in organic acids which

accompany excess cation or excess anion uptake (Ulrich, 1941; Jacobson

and Ordin, 1954; Hurd, 1958; Hurd and Sutcliffe, 1957; Torii and Laties,

1966b; Hiatt, 1967a,b; Pitman, 1970; Zioni et al., 1971). For example,

when cation absorption exceeds anion absorption a HC0,-/OH- exchange

is likely. When anion absorption exceeds cation absorption an anion/

HC0,- exchange is likely. In the latter situation, the HC0,- would be

generated by breakdown of organic acids, and thus anion entry would not

be driven by ATP. Direct evidence for this has not been obtained, but

one would predict that uncouplers of phosphorylation should have less

effect on anion transport than on cation transport. This is true for photosynthetic tissue (see Section V ) , but similar comparisons have not been

made with roots. The important point here is that cation transport depends

on ATP and the plasma membrane ATPase. But, the anion carrier, and

thus anion influx, is driven by internal anions, which can be generated

by the action of the ATPase, breakdown of organic acids or, in the case

of green tissue, by OH- ions produced by chloroplasts.

The relationship between ion fluxes and membrane electrical potentials

also deserves further comment. Na+ appears to be actively secreted at the

plasma membrane, and K+ is generally close to electrochemical equilibrium

(see Section 111). In this model, ATP hydrolysis, via the ATPase, contributes directly to the membrane potential. Since cations activate the ATPase,

one would expect to find a close relationship between the electrical potential difference generated by the ATPase and cation transport, and this generally is what is observed for K+, but not for Na+. The basis for active

Na+ efflux could reside in the ion binding sites on the ATPase having a

high electric field strength following the ion-induced conformational

change. A site having a high field strength prefers either H+ or Na+ over

K+ (see section IV). Whether a K+/Na+exchange on the binding site at



ION ABSORPTION BY PLANT ROOTS



20 1



the cytoplasmic side of the membrane would induce the carrier to return

to its original conformation is unknown, but if this occurred, it could account for Na+ being actively transported back across the membrane. This

might also be the basis for the plant ATPase being slightly stimulated by

combinations of Na' and K (Hansson and Kylin, 1969; Kylin and Gee,

1970).

This model is admittedly speculative, but it is based on the characteristics of ion absorption by a variety of plant organs, tissues, and organelles.

In addition, it combines the concepts of negative cooperativity kinetics

(Koshland, 1970), the thermodynamic basis for selective ion binding by

charged sites (Eisenman, 1962; Diamond and Wright, 1969), an ATPase

generated proton gradient (Mitchell, 1961, 1966), and an anion exchange

carrier (Mitchell, 1968). Thus, the model represents the integration of

several different concepts with a variety of experimental observations. It

is, however, a hypothetical model, and many of its features need to be

critically evaluated.



VII.



'



Summary



Major advances are being made toward elucidating the mechanism of

nutrient absorption by roots. Some of these are as follows:

1. It is now possible to estimate the concentrations of ions in the cytoplasm and vacuoles of root cells. The bidirectional fluxes of ions across

both the plasma membrane and tonoplast can be determined. A knowledge

of these parameters is permitting the electrophysiologist to evaluate the

driving forces responsible for ion movements into and out of root cells.

2. Kinetics of ion absorption by roots is similar to the kinetics of enzyme catalyzed reactions. This is providing insight into the nature of ion

carriers. It is suggested here that an ion carrier consists of several subunits,

and it is the interaction of these subunits that is responsible for the observed decrease in ion affinities as the external ion concentration is

increased.

3. The selectivity of ion absorption by roots is similar to the selectivity

of ion binding to glass electrodes. The basis for the latter is the electrical

field strength of the binding sites. It is suggested here that variations in

the field strength of binding sites on the carriers are responsible for the

selectivity of ion absorption by roots. The field strength of the binding

sites may be governed by the interaction of carrier subunits, as well as

by the molecular environment of the ion carrier, e.g., the lipid and protein

composition of the membrane.

4. Aerobic respiration provides the energy for ion absorption by roots.



202



T. K. HODGES



ATP appears to be the primary energy source for absorption, and an

ATPase in the plasma membrane may represent the energy transducing

agent between ATP and transport. The possibility of the ATPase being

a cation carrier is considered. The possibility of anion absorption being

coupled to HC0,- and/or OH- efflux, via an anion exchange-carrier, is

suggested.

5 . The plasma membrane of root cells has only recently been isolated.

This should facilitate the isolation and identification of ion carriers.

In this paper I have primarily concentrated on reconciling the mechanism of ion transport. Hopefully, the ideas and concepts that have emerged

will lead to a better understanding of fertilizer usage by crops, the effects

of moisture or temperature stresses on nutrient absorption, the unique ability of certain plants to thrive in saline areas, and plant growth in general.

ACKNOWLEDGMENTS



I especially wish to thank Drs. Charles E. Bracker, Richard A. Dilley, and

D. James Morrt for reading the manuscript and making many helpful suggestions.

REFERENCES

Atkinson, M. R., and Polya, G. M. 1967. Aust. I . Biol. Sci. 20, 1069-1086.

Atkinson, M. R., and Polya, G. M. 1968. Aust. J . Biol. Sci. 21, 409-420.

Atkinson, M. R., Eckerrnan, G., Grant, M., and Robertson, R. N. 1966. Proc.

Nut. Acad. Sci. US.55, 560-564.

Bange, ,G. G. J., and Meijer, C. L. C. 1966. Acta Bot. Neer. 15, 434-450.

Barber, S. A. 1966. Nature (London) 212, 638-640.

Barr, C. E. 1965. J. Gen. Physiol. 49, 181-197.

Bear, F. E., and Prince, A. L. 1945. J . Amer. SOC. Agron. 37, 217-222.

Bledsoe, C., Cole, C. V., and Ross, C. 1969. Plant Physiol. 44, 1040-1044.

Blinks, L. R. 1935. J . Gen. Physiol. 18, 409-420.

Boszormenyi, Z., and Cseh, E. 1961. Physiol. Plant. 14, 242-252.

Boszormenyi, Z., and Cseh, E. 1964. Physiol. Plant. 17, 81-90.

Bowling, D. J. F., and Ansari, A. Q . 1971. Planta 98,323-329.

Bowling, D. J. F., and Ansari, A. Q. 1972. J. Exp. Bot. 23, 241-246.

Briggs, G. E., and Robertson, R. N. 1957. Annu. Rev. Plant Physiol. 8 , 11-32.

Briggs, G. E., Hope, A. B., and Robertson, R. N. 1961. “Electrolytes and Plant

Cells.” Blackwell, Oxford.

Brown, H. D., and Altschul, A. M. 1964. Biochern. Biophys. Res. Commun. 15,

479-483.

Brown, H. D., Neucere, N. J., Altschul, A. M., and Evans, W. J. 1965. Life

Sci. 4, 1439-1447.

Butler, G . W. 1953. Physiol. Planf. 6, 617-635.

Cereijido, M., and Rotunno, C. A. 1970. “Introduction to the Study of Biological

Membranes.” Gordon & Breach, New York.

Chance, B., and Williams, G. R. 1955. J. Biol. Cliem. 217, 383-407.

Chappell, J. B., and Haarhoff, K. N. 1967. In “Biochemistry of Mitochondria”

(E. C. Slater, Z. Kaniuga, and L. Wojtczak, eds.), p. 75. Academic Press,

New York.



ION ABSORPTION BY PLANT ROOTS



203



Collander, R. 1941. Plant Physiol. 16, 691-720.

Collander, R. 1959. I n “Plant Physiology” (F. C. Steward, ed.), Vol. 2, pp. 3-103.

Academic Press, New York.

Coster, H. G. L. 1966. Aust. J. Biol. Sci. 19, 545-554.

Cram, W. J. 1968a. Biochim. Biophys. Acta 163, 339-353.

Cram, W. J. 1968b. J. Ewp. Bor. 19, 611-616.

Cram, W. J. 1969a. Biochim. Biophys. Acta 173, 213-222.

Cram, W. J., and Laties, G. G. 1971. Aust. J . Biol. Sci. 24, 633-646.

Dainty, J . 1962. Annu. R e v . Plant Physiol. 13, 379-402.

Diamond, J. M., and Solomon, A. K. 1959. J . G e n . Physiol. 42, 1105-1121,

Diamond, J. M., and Wright, E. M. 1969. Annu. R e v . Physiol. 31, 581-646.

Dilley, R. A. 1971. Curr. Top. Bioenerg. 4, 237-271,

Dodds, J. J. A., and Ellis, R. J. 1966. Biochem. ,I. 101, 31.

Dunlop, J., and Bowling, D. J. F. 1971. J . Exp. Bot. 22, 445-452.

Eadie, G. S. 1942. J . Biol. Chem. 146, 85-93.

Eisenman, G. 1961. I n “Membrane Transport and Metabolism” (A. Klienzeller

and A. Kotyk, eds.), p. 163. Academic Press, New York.

Eisenman, G. 1962. Biophys. 1. 2, 259-323.

Eisenman, G. 1965. In!. Congr. Physiol. Sci. [Proc.], 23rd pp. 489-506.

Elzam, 0. E., and Epstein, E. 1965. Plant Physiol. 40, 620-624.

Elzam, 0. E., and Hodges, T. K. 1967. Plant Physiol. 42, 1483-1488.

Elzam, 0. E., and Hodges, T. K. 1968. Plant Physiol. 43, 1108-1114.

Elzam, 0. E., Rains, D. W., and Epstein, E. 1964. Biochem. Biophys. Res. Commrtn.

15, 273-276.

Epstein, E. 1953. Nature (London) 171, 83-84.

Epstein, E. 1955. Plant Physiol. 30, 529-535.

Epstein, E. 1961. Plant Physiol. 36, 437-444.

Epstein, E. 1966. Nature ( L o n d o n ) 212, 1324-1327.

Epstein, E. 1968. Experientia 24, 616-617.

Epstein, E. 1972a. “Mineral Nutrition of Plants: Principles and Perspectives.” Wiley,

New York.

Epstein, E. 1972b. N e w Phytol. 71, 873-874.

Epstein, E. 1973. I n t . R e v . Cytol. 34, 123-168.

Epstein, E., and Hagen, C. E. 1952. Planr Physiol. 27, 457-474.

Epstein, E., and Rains, D. W. 1965. Proc. Nut. Acad. Sci. US.53, 1320-1324.

Epstein, E., Rains, D. W., and Elzam, 0. E. 1963. Proc. Nut. A c a d . Sci. US.

49, 684-692.

Etherton, B. 1963. Plant Physiol. 38, 581-585.

Etherton, B. 1967. Plant Physiol. 42, 685-690.

Etherton, B. 1968. Plant Physiol. 43, 838-840.

Etherton, B., and Higinbotham, N. 1960. Science 131, 409-410.

Fisher, J. D. 1969. Ph.D. Dissertation, University of Illinois, Urbana.

Fisher, J., and Hodges, T. K. 1969. Plant Physiol. 44, 385-395.

Fisher, J . D., Hansen, D., and Hodges, T. K. 1970. Plant Physiol. 46, 812-814.

Foote, B., and Hanson, J. B. 1964. Plant Physiol. 39, 450-460.

Fried, M., and Broeshart, H. 1967. “The Soil-Plant System in Relation to Inorganic

Nutrition.” Academic Press, New York.

Fried, M., and Noggle, J. C. 1958. Plant Physiol. 33, 139-144.

Fried, M., and Shapiro, R. E. 1961. Annu. R e v . Plant Physiol. 12, 91-112.

Fried, M., Oberlander, H. E., and Noggle, J. C. 1961. Plant Physiol. 36, 183-191.



204



T. K. HODGES



Gauch, H. G. 1972. “Inorganic Plant Nutrition.” Dowden, Hutchinson & Ross,

Inc., Stroudsburg, Pennsylvania.

Gerhart, J. C., and Pardee, A. B. 1962. J. Biol. C k e m . 237, 891-896.

Gerson, D. F., and Poole, R. J. 1972. Plant Physiol. 50, 603-607.

Goldman, D. E. 1943. J . Gen. Physiol. 27, 37-60.

Green, D. E., Asai, J., Harris, R. A,, and Penniston, J. T. 1968. Arch. Biochem.

Biophys. 125, 684-705.

Gruener, N., and Neumann, J. 1967. Physiol. Plant. 19, 678-682.

Hagen, C. E., and Hopkins, H. T. 1955. Plant Physiol. 30, 193-199.

Hagen, C. E., Leggett, J. E., and Jackson, P. C. 1957. Proc. Nat. Acad. Sci.

U.S. 44, 496-503.

Hall, J. L. 1969. PIanta 85, 105-107.

Hall, J. L. 1971a. J . Microsc. (Paris) 93, 219-225.

Hall, J. L. 1971b. J . Exp. Bot. 22, 800-808.

Hall, J. L., and Butt, V. S. 1969. J. Exp. Bot. 20, 751-762.

Handley, R., Metwally, A., and Overstreet, R. 1965. Plant Physiol. 40, 513-520.

Hanson, J. B., and Hodges, T. K. 1967. Curr. T o p . Bioenerg. 2, 65-98.

Hanson, J. B., Bertagnolli, B. L., and Shepherd, W. D. 1972. Plant Physiol. 50,

347-354.

Hansson, G., and Kylin, A. 1969. 2. Pflanzenphysiol. 60, 270-275.

Hiatt, A. J. 1967a. 2. Pflanzenphysiol. 56, 233-245.

Hiatt, A. J. 1967b. Plant Physiol. 42, 294-298.

Hiatt, A. J. 1968. Plant Physiol. 43, 893-901.

Hiatt, A. J. 1969. Plant Physiol. 44, 1528-1532.

Hiatt, A. J. 1970a. Plant Physiol. 45, 408-410.

Hiatt, A. J. 1970b. Plant Physiol. 45, 411-414.

Hiatt, A. J., and Hendricks, S. B. 1967. Z Pflanzenphysiol. 56, 220-232.

Higinbotham, N. 1959. Plant Physiol. 34, 645-650.

Higinbotham, N. 1970. Amer. Zoo/. 10, 393-403.

Higinbotham, N. 1973. Annu. Rev. Plant Physiol. (in press).

Higinbotham, N., Etherton, B., and Foster, R.J. 1964. Plant Physiol. 39, 196-203.

Higinbotham, N., Etherton, B., and Foster, R.J. 1967. Plant Physiol. 42, 37-46.

Higinbotham, N., Graves, J. S., and Davis, R. F. 1970. J . Membrane Biol. 3,

210-222.

Hill, A. V. 1910. 1. Physiol. (London) 40, IV-VII.

Hoagland, D. R., and Broyer, T. C. 1936. Plant Physiol. 11, 471-507.

Hoagland, D. R., and Davis, A. R. 1929. Protoplasma 6,610-626.

Hodges, T. K. 1966. Nature (London) 209,425-426.

Hodges, T. K., and Hanson, J. B. 1965. Plant Physiol. 40, 101-109.

Hodges, T. K., and Leonard, R. T. 1973. In “Methods in Enzymology” (S. P.

Colowick and N. 0. Kaplan, eds.). Academic Press. New York (in press).

Hodges, T. K., and Vaadia, Y . 1964 Plant Physiol. 37, 490-494.

Hodges, T. K., Leonard, R. T., Bracker, C. E., and Keenan, T. W. 1972. Proc.

Nut. Acad. Sci. U.S. 69, 3307-3311.

Hofstee, B. H. J. 1952. Science 116, 329-331.

Hope, A. B. 1965. Aust. J . Biol. Sci. 18, 789-801.

Hope, A. B. 1971. “Ion Transport and Membranes, A Biophysical Outline.” Butterworth, London.

Hope, A. B., and Stevens, P. G. 1952. Aust. J . Sci. Res., Ser. B 5, 335-343.

Horowitz, C. T., and Waisel, Y . 1970. Experientia 26, 941-942.



ION ABSORPTION BY PLANT ROOTS



205



Hurd, R. G. 1958. J. Exp. Bot. 9, 159-174.

Hurd, R. G., and Sutcliffe, J. F. 1957. Nature ( London) 180, 233-235.

Jackson, P. C., and Adams, H. R. 1963. J . Gen. Physiol. 46, 369-386.

Jackson, P. C., and Stief, K. J. 1965. J . Gen. Physiol. 48, 601-616.

Jacobson, L., and Ordin, L. 1954. Plant Physiol. 29, 70-75.

Jacobson, L., Overstreet, R., King, H. M., and Handley, R. 1950. Plant Pliysiol.

25, 639-647.

Jacobson, L., Moore, D. P., and Hannapel, R. J. 1960. Plant Physiol. 35, 352-358.

Jacoby, B. 1966. Plant Cell Physiol. 7 , 307-311.

Jennings, D. H. 1963. “The Absorption of Solutes by Plant Cells.” Iowa State

Univ. Press, Ames.

Jeschke, W . D. 1970. Planta 94, 240-245.

Johansen, C., Edwards, D. G., and Loneragan, J. F. 1970. Plant Physiol. 45, 601-603.

Kahn, J. S., and Hanson, J. B. 1957. Plant Physiol. 32, 312-316.

Kedem, 0. 1961. I n “Membrane Transport and Metabolism” (A. Kleinzeller and

A. Kotyk, eds.), pp. 87-93. Academic Press, New York.

Kitasato, H. 1968. J . Gen. Physiol. 52, 60-87.

Koshland, D. E. 1969. Curr. Top. Cell. Regul. 1, 1.

Koshland, D. E. 1970. I n “The Enzymes” (P. D. Boyer, ed.), 3rd ed., Vol. 1,

pp. 341-396. Academic Press, New York.

Kylin, A., and Gee, R. 1970. Plant Physiol. 45, 169-172.

Laties, G. G. 1969. Annu. Rev. Plant Physiol. 20, 89-116.

Leggett, J. E., and Epstein, E. 1956. Plant Plrysiol. 33, 222-226.

Leonard, R. T., and Hanson, J. B. 1972. Plant Physiol. 49,436-440.

Leonard, R. T., and Hodges, T. K. 1973. Plant Physiol. 52, 6-12.

Leonard, R. T., Hansen, D., and Hodges, T. K. 1973. Plant Physiol. 51, 749-754.

Levitzki, A., and Koshland, D. E. 1969. Proc. Nut. Acad. Sci. U S . 62, 1121-1128.

Lineweaver, H., and Burk, D. 1934. J. Amer. Chem. SOC. 56, 658-666.

Lucas, W. J., and Smith, F. A. 1973. J . Erp. Bot. 24, 1-14.

Lund, E. J. 1928. I . Exp. Zool. 51, 265-290.

Lundegirdh, H. 1934. Annu. Rev. Bioclrern. 3, 485-500.

Lundeglrdh, H. 1939. Nature ( London) 143, 203-204.

Lundeglrdh, H. 1945. A r k . Bot. 32A, 1-139.

LundegHrdh, H. 1955. Annu. Rev. Plant Physiol. 6, 1-24.

LundegHrdh, H., and Burstrom, H. 1933. Planta 18, 683-699.

Luttge, U., and Laties, G. G. 1966. Plant Physiol. 41, 1531-1539.

Luttge, U., and Laties, G. G. 1967. Plant Physiol. 42, 181-185.

MacDonald, I. R., DeKock, P. C., and Knight, A. H. 1960. Physiol. Plant. 13,

76-89.

Macklon, A. E. S., and Higinbotham, N., 1970. Plant Pliysiol. 45, 133-138.

MacLennan, D. H. 1970. I n “Current Topics in Membranes and Transport” (F.

Bronner and A. Kleinzeller, eds.), Vol. 1, pp. 177-232. Academic Press,

New York.

MacRobbie, E. A. C. 1965 Biochim. Biophys. Acta 794, 64-73.

MacRobbie, E. A. C. 1966. Aust. J . Biol. Sci. 19, 363-370.

MacRobbie, E. A. C. 1969. J. Exp. Bor. 20, 236-256.

MacRobbie, E. A. C. 1970. Quart. Rev. Biophys. 3, 251-293.

MacRobbie, E. A. C., 1971. Annu. Rev. Plant Physiol. 22, 75-96.

MacRobbie, E. A. C., and Dainty, J. 1958a. J . Gen. Physiol. 43, 335-353.

MacRobbie, E. A. C., and Dainty, J. 1958b. Physiol. Planr. 11, 782-801.



206



T. K. HODGES



Marinos, N. G. 1962. Amer. J . Bot. 49, 834-841.

Mitchell, P. 1961. Nature (London) 191, 144-148.

Mitchell, P. 1966. Biol. Rev. 41, 445-502.

Mitchell, P. 1968. “Chemiosrnotic Coupling and Energy Transduction.” Glynn Res.

Ltd., Bodmin, Cornwall, England.

Monod, J., Changeux, J. P., and Jacob, F. 1963. J. Mol. Biol. 6, 306-329.

Moore, C. L. 1971. Curr. Top. Bioenerg. 4, 191-236.

Neirinckx, L. J. A., and Bange, G. G. T. 1971. Acta Bot. Neer. 20,481-488.

Nelson, N., Deters, D. W., Nelson, H., and Racker, E. 1973. 1. Biol. Chem. 248,

2049-2055.

Nerncek, O., Sigler, K., and Kleinzeller, A. 1966. Biochim. Biophys. Acta 126,

73-80.

Neurnann, J., and Gruener, N. 1967. Zsr. J . Chem. 6, 107.

Nissen, P. 1971. Physiol. Plant. 24, 315-324.

Nobel, P. 1969. Plant Cell Physiol. 10, 597-605.

Nobel, P. 1970. Plant Physiol. 46, 491-493.

Noggle, J. C., and Fried, M. 1960. Soil Sci. SOC.Amer., Proc. 24, 33-35.

Ordin, L., and Jacobson, L. 1955. Plant Physiol. 30, 21-27.

Osterhout, W. J. V. 1935. Proc. Nut. Acad. Sci. U.S. 21, 125-132.

Overstreet, R., Jacobson, L., and Handley, R. 1952. Plant Physiol. 27, 583-590.

Packer, L., Murakami, S., and Mehard, C. W. 1970. Annu. Rev. Plant Physiol.

21, 271-304.

Pallaghy, C. K., and Scott, B. I. H. 1969. Aust. J . Biol. Sci. 22, 585-600.

Pallaghy, C. K., Luttge, U., and von Willert, K. 1970. 2. Pganzenphysiol. 62,

51-57.

Penth, B., and Weigl, J. 1969. 2. Naturforsch. B 24, 342-348.

Pierce, W. S.,and Higinbotham, N. 1970. Plant Physiol. 46, 666-673.

Pitman, M. G. 1963. Aust. J . Biol. Sci. 16, 647-668.

Pitrnan, M. G. 1969. Plant Physiol. 44, 1233-1240.

Pitrnan, M. G. 1970. Plant Physiol. 45, 787-790.

Pitrnan, M. G. 1971. Aust. 1. Biol. Sci. 24, 407-421.

Pitrnan, M. G., and Saddler, H. D. W. 1967. Proc. Nut. Acad. Sci. US.57, 44-49.

Pitman, M. G., Courtice, A. C.,and Lee, B. 1968. Aust. J. Biol. Sci. 21, 871-881.

Polya, G. M., and Atkinson, M. R. 1969. Aust. J. Biol. Sci. 22, 573-584.

Poole, R. I. 1966. J . Cen. Physiol. 49, 551-563.

Poole, R. J. 1969. Plant Physiol. 44,485-490.

Poole, R. J. 1971a. Plant Physiol. 47, 731-734.

Poole, R. J. 1971b. Plant Physiol. 47, 735-139.

Poux, N. 1967. J . Microsc. (Paris) 6, 1043-1058.

Rains, D. W. 1967. Science 156, 1382-1383.

Rains, D. W. 1968. Plant Physiol. 43, 394-400.

Rains, D. W. 1969. Plant Physiol. 44, 547-554.

Rains, D. W., and Epstein, E. 1967a. Plant Physiol. 42, 314-318.

Rains, D. W., and Epstein, E. 1967b. Plant Physiol. 42, 319-323.

Rains, D. W., and Floyd, R. A. 1970. Plant Physiol. 46, 93-98.

Ratner, A., and Jacoby, B. 1973. J. Exp. Bot. 24, 231-238.

Raven, J. A. 1967. J . Cen. Physiol. 50, 1627-1640.

Raven, J. A. 1968. J . Exp. Bot. 19, 233-253.

Raven, J. A. 1969. New Phytol. 68, 1089-1113.

Raven, J. A. 1970. Biol. Rev. Cambridge Phil. SOC. 45, 167-221.



ION ABSORPTION BY PLANT ROOTS



207



Robertson, R. N. 1960. Biol. Rev. Cambridge Phil. SOC.35, 321-264.

Robertson, R. N. 1968. Cambridge Monogr. Exp. Biol. No. 15.

Robertson, R. N., and Turner, J. S. 1945. Aust. J . Exp. Biol. 23, 63-73.

Robertson, R. N., and Wilkins, M. J. 1948. Aust. J . Sci. Res. B 1, 17-37.

Robertson, R. N., Wilkins, M. J., and Weeks, D. C. 1951. Airst. J . Sci. Res.

B 4, 248-264.

Rosene, H. F., and Lund, E. J. 1953. In “Growth and Differentiation in Plants”

(W. E. Loomis, ed.), pp. 219-252. Iowa State COIL Press, Ames.

Saddler, H. D. W. 1970. J . Gen. Physiol. 55, 802-821.

Scott, B. I. H., Gulline, H., and Pallaghy, C. K. 1968. Arcst. I . Biol. Sci. 21, 185-200.

Sexton, R., and Sutcliffe, J. F. 1969. Ann. Bor. (London) [N.S.] 33, 683-694.

Skou, J . C. 1965. Physiol. Rev. 45, 596-617.

Slater, E. C. 1953. Nature (London) 172, 975-982.

Slater, E. C. 1971. Quart. Rev. Biophys. 4, 35-72.

Slayman, C . L. 1970. Amer. Zool. 10, 377-392.

Smith, F. A. 1970. New Phytol. 69, 903-917.

Spanswick, R. M. 1970. J. Membrane Biol. 2, 59-70.

Steward, F. C. 1932. Protoplasma 15, 29-58.

Steward, F. C., and Mott, R. L. 1970. Int. Rev. Cyrol. 28, 275-310.

Sutcliffe, J. F. 1962. “Mineral Salts Absorption in Plants.” Pergamon, Oxford.

Teorell, T. 1949. Arch. Sci. Physiol. 3, 205-219.

Thomas, R. C. 1972. Physiol. Rev. 52, 563-594.

Torii, K., and Laties, G. G. 1966a. Plant Physiol. 41, 863-870.

Torii, K., and Laties, G. G . 196613. Plant Cell Physiol. 7, 395-403.

Ulrich, A. 1941. Amer. 1. Bot. 28, 526-537.

Ussing, H. H. 1949. Acta Physiol. Scand. 17, 43-56.

van den Honert, T. H. 1937. Naturcrk. Tijdschr. Ned. Indie 97, 150-162.

Vasington, F. D., and Murphy, J. V. 1962. J. Biol. Chem. 237, 2670-2677.

Venkateswarlu, P., Armstrong, W. D., and Singer, L. 1965. Plant Physiol. 40,

255-261.

Viets, F. G. 1944. Plant Physiol. 19, 466-480.

Vlamis, J., and Davis, A. R. 1944. Plant Physiol. 19, 33-51.

Vorobiev, L. N. 1967. Nature (London) 216, 1325-1327.

Weigl, J. 1963. Planta 60, 307-321.

Weigl, J. 1964. Z. Naturforsch. B 19, 646-648.

Weigl, J. 1967. Planta 75, 327-342.

Weigl, J. 1970. Z. Naturforsch. B 25, 96-100.

Weigl, J. 1971. Z. Pflanzenphysiol. 64, 77-79.

Welch, R. M., and Epstein, E. 1968. Proc. Nut. Acad. Sci. U S . 61, 447-453.

Welch, R. M., and Epstein, E. 1969. Plant Physiol. 44, 301-304.

Zioni, A. B., Vaadia, Y.,

and Lips, S. H. 1971. Physiol. Plant. 24, 288-290.



This Page Intentionally Left Blank



LODGING IN WHEAT, BARLEY, AND OATS:

THE PHENOMENON, ITS CAUSES,

AND PREVENTIVE MEASURES

Moshe J. Pinthus

The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel



I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



...........................

........

A. Stem Lodging and Root Lodging . . . . . . . . . . . . . . .

....................

B. Mechanical Aspects of Lodging . . . . . .

C. Recovery from Lodging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



11. Description and Causes



111.



IV.



V.



VI.



VII.



...



D. Lodging Caused by Foot-Rot or Root-Rot Diseases . . . . . . . . . . . . . .

E. Lodging of Insect-Attacked Culms . . . . . . . . . . . . . . . . . . . . . . . . . .

Effects of Lodging on Crop Development and Yield .

.........................

A. Methods of Investigation . .

B. Effects on Grain Yield . .:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

....................

C. Effects on Grain Quality . . . . . . .

D. Effects on Culm Development and Tillering . . . . . . . . . . . . . . . .

E. Physiological Effects of Lodging . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F. Impact of Lodging on Grain Harvest . . . . . . . . . . . . . . . . . . . . . . . .

G. Incidence of Diseases in Lodging Crops . . . . . . . .

Plant Characters Associated with Lodg

A. Culm Characters

..................................

B. Root and Crown Characters . . . . . . .

.................

..................................

C. Mechanical Prope

D. Other Characters . . . . . . . . . . . . .

Environmental and Agronomic Factor

A. Light and Temperature . . . . . . . .

B. Nitrogen Supply . . . . . . . . . . . . .

C. Phosphorus, Potassium, and Trace Elements . . . . . . . . . . . . . . . . . .

D. Moisture Supply and Soil Aeration . . . . . . . . . . . . . . . . . . . . . . . . . .

E. Crop Rotation and Tillage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F. Synergistic Effects . . . . . . . . . .

.............

Prevention of Lodging . . . . . . . . . . .

.............

.......................

A. Cultural Practices . . . . . . . . . . . .

B. Application of 2-Chloroethyl T r

C. Application of Herbicides and Other Che

Breeding for Lodging Resistance . . . . . . . . . . . . . . . .

............

A. Evaluation of Lodging Resistance . . . . . .

B. Inheritance of Lodging Resistance and Associated Characters . . . . . .

C. Achievements and Prospects of Breeding . . . . . . . . . . . . . . . . . .

209



210

21 1

21 1

213

216

216

217

217

217

220

221

222

222

223



224

226

228



235

236

236

237

238

238

246



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VI. Proposed Model for Ion Absorption by Roots

Tải bản đầy đủ ngay(0 tr)

×