Tải bản đầy đủ - 0 (trang)
VI. Present Status and Outlook

VI. Present Status and Outlook

Tải bản đầy đủ - 0trang

PHOSPHORUS IN RUNOFF AND STREAMS



39



minations override any knowledge of the distribution of P between various

forms in runoff and streams, some of which will have a greater or lesser

effect on the biological productivity of surface waters.

Although relatively few studies have been conducted on the P loads of

streams and surface runoff from forest and urban watersheds respectively,

there is considerable agreement in the results so far obtained. The situation

is quite different for P loads in runoff and streams from agricultural watersheds. Frink (1971) stated that an “average” agricultural watershed with

respect to P loss is a “useless fabrication.” It would appear, however, that

the major problem arises from the lack of relevant information upon which

reliable estimates can be made, a situation which has arisen largely because

of an apparent lack of definition of the system being investigated.

The use of surface runoff plots to determine losses of P from agricultural

watersheds presents several problems. Surface runoff is a spasmodic rather

that a continuous phenomenon, its composition at any location being

highly heterogeneous and likely to change over short distances because

the energy of the aqueous component, and therefore its ability to carry

particulate material, varies with slope. The studies cited previously (Timmons et al., 1968; Nelson and Romkens, 1969), in which attempts were

made to measure the distribution of the P load between the solid and aqueous phases of surface runoff appear to have limited value. When surface

runoff enters streams, a much greater degree of homogeneity will be assumed, resulting in a new and probably more stable distribution of P between the aqueous and sediment phases, as discussed previously. Measurement of dissolved P fractions in surface runoff itself may lead to erroneous

conclusions regarding its impact on the dissolved P status of streams due

to the transitory nature of surface runoff.

In order to obtain more meaningful estimates of P loss from agricultural

watersheds, detailed studies of the P load of streams draining the watersheds are required. Some such studies have been conducted (Minshall et

al., 1969; Witzel et al., 1969; Campbell and Webber, 1969; Taylor et al.,

1971); these will be referred to as watershed analyses herein. None of

the watershed analyses cited, however, covered more than a 2-year period

of monitoring; the duration of the study could lead to considerable variation in P loss estimates, due to yearly differences in weather patterns as

noted by Timmons et al. (1968) for surface runoff studies.

Future studies must be based on the watershed analysis approach in

order to avoid bias in estimates of the P loss obtained in plot studies due

to differences in the energy of surface runoff imparted by slope variations

within the watershed. Furthermore, it is essential that studies be long-term

to minimize yearly variation in weather patterns and that the forms of P

measured be standardized. Although watershed analyses combine the P



40



J . C. RYDEN, J. K. SYERS, A N D R. F. HARRIS



loads of surface, subsurface, and groundwater runoff, these may be separated by determining P loads under various flow conditions in a way similar

to that used by Minshall et al. (1969) and to some extent Taylor et al.

( 1971 ) .

With careful selection of small watersheds in the same geographic and

climatic area, accurate records of fertilizer practice, and cognizance of less

diffuse or even point sources of P (e.g., effluent from animal-rearing or

industrial operations) within the watershed, it should be possible to obtain

meaningful estimates of the effects of various land use and fertilizer practices as well as physical variables on the loss of P from agricultural watersheds. This approach is similar to that which has been used to evaluate

P loads in streams draining forest watersheds. It is also important that

this be coupled with investigation to define diffuse sources of P more adequately in terms of the components which constitute such sources. Attempts have been made in this direction, as illustrated in the studies conducted by Taylor and Kunishi (1971), Cowen and Lee (1972), and

Ryden et al. (1972a,b). Studies similar to these are necessary if any

remedial steps are to be taken to reduce the magnitude of man-induced

diffuse P sources and will be particularly valuable if carried out in conjunction with watershed analyses. Only by adopting such an approach will it

be possible to provide adequate estimates of the potential of soil and fertilizer P for the P enrichment of streams; a topic which is currently surrounded by considerable controversy.

Comparative tables of the relative magnitude of various P sources have

been drawn up for individual watersheds (Miller and Tash, 1967; Lee et

al., 1969; Jaworski and Hetting, 1970). Although such tables are useful

for identification of problems within a specific watershed, extrapolation

of this concept to a national basis is dangerous. Local and regional variations in land use can seriously distort the relative impact of any source

of P on water quality. The way in which P source data are presented can

also lead to different conclusions as to the impact of one source as opposed

to another. This is particularly true for comparative tables of P sources

compiled on a nationwide basis. McCarty (1967) estimates that in the

United States, 4.9 X loGto 77.2 X loGkg of P per year is lost to surface

waters through urban surface runoff, whereas 54.5 x lo6 to 544.8 x loG

kg of P per year originates from agricultural runoff. If losses are expressed

on a per area basis, relative contribution estimates are very similar if not

reversed, losses being 0.23 to 3.59 and 0.12 to 1.23 kg/ha per year, respectively. These figures show the need for careful evaluation of problems

within any given watershed or group of watersheds. Watershed analyses

will provide more useful data than estimations of the magnitude of various

P sources from a national standpoint.



PHOSPHORUS IN RUNOFF AND STREAMS



41



ACKNOWLEDGMENTS

Research supported by the College of Agricultural and Life Sciences, University

of Wisconsin, Madison, by the Office of Water Resources Research Project No.

WRC 71-10 (OWRR A- 038- WIS), and by the Eastern Deciduous Forest Biome

Project, International Biological Program, National Science Foundation subcontract

3351, under Interagency Agreement AG-199, 40-193-69, with the Atomic Energy

Commission, Oak Ridge National Laboratory.



REFERENCES

Allen, S. E., Carlise, A., White, E. J., and Evans, C. E. 1968. J . Ecol. 56, 497-504.

Anderson, G. 1967. 111 ‘‘Soil Biochemistry” (A. D. McLaren and G. H. Peterson,

eds.), pp. 67-90. Dekker, New York.

Avco Corporation. 1970. “Storm Water Pollution from Urban Land Activity.” U.S.

Dept. of the Interior, Fed. Water Qual. Admin., U S . Govt. Printing Office,

Washington, D.C.

Bache, B. W. 1964. J. Soil Sci. 15, 110-116.

Barber, S. A., Walker, J. M., and Vasey, E. H. 1963. Trans. J . Meet. C o m m .

IV and V . Int. SOC.Soil Sci., 1962, p p . 121-124.

Biggar, J. W., and Corey, R. B. 1969. I n “Eutrophication: Causes, Consequences,

Correctives,” pp. 404-445. Nat. Acad. Sci., Washington, D.C.

Black, C. A. 1970. In “Agricultural Practices and Water Quality” (T. L. Willrich

and G. E. Smith, eds.), pp. 72-93. Iowa State Univ. Press, Ames.

Bolton, E. F., Aylesworth, J. W., and Hore, F. R. 1970. Can. J . Soil Sci. 50,

275-279.

Bormann, F. H., Likens, G. E., Fisher, D. W., and Pierce, R. S. 1968. Science

159, 882-884.

Brink, N., and Gustafsson, A. 1970. Lantbriikslroegsk. Inst. Markvetenskap-Vattenvard

No. I.

Bromfield, S. M. 1965. A u s f . J . Soil Rcs. 3, 31-44.

Bromfield, S. M., 1967. Arcst. J. Soil Res. 5, 93-102.

Bryan, E. H . 1971. S. Water Res. Pollilt. Contr. Conf. 20tlr, 1971.

Buehrer, T. F., and Williams, J. A. 1936. Ariz., A y r . Exp. Sta., Bull. 64, 1-40.

Campbell, F. R., and Webber, L. R. 1969. J . Soil Water Conserv. 24, 139-141.

Carter, D. L., Bondurant, J. A,, and Robbins, C. W. 1971. Soil Sci. SOC. Amer.,

Proc. 35, 331-335.

Chakravart, S. N., and Talibudeen, 0. 1962. J . Soil Sci. 13, 231-240.

Chang, S. C., and Jackson, M. L. 1957. Soil Sci. 84, 133-144.

Cole, C. V., Olsen, S. R., and Scott, C. 0. 1953. Soil Sci. SOC. Amer., Proc.

17, 352-356.

Cooke, G. W., and Williams, R. J. B. 1970. J . SOC. Water Treat. Exani. 19, 253-276.

Cooper, C. F. 1969. I n “Eutrophication: Causes, Consequences, Correctives,” pp.

446-463. Nat. Acad. Sci., Washington, D.C.

Cosgrove, D. J . 1967. I n “Soil Biochemistry” (A. D. McLaren and G. H. Peterson,

eds.), pp. 216-228. Dekker, New York.

Cowen, W., and Lee, G. F. 1972. Leaves as a source of phosphorus. Mimeo. Water

Chem. Program, University of Wisconsin, Madison.



42



J. C. RYDEN, J. K. SYERS, AND R. F. HARRIS



Dion, H. G. 1944. Soil Sci. 58, 41 1-424.

Elliott, I. L. 1971. Proc. Tech. Conf. N . Z . Fert. Mfr. Res. Ass., 13th, 1971 p. 93.

Erickson, A. E., and Ellis, B. G. 1971. Mich., Agr. E r p . Sta., Bull. 31, 1-16.

Ferguson, F. A. 1968. Environ. Sci. Technol. 2, 188-193.

Fippin, E. 0. 1945. Soil Sci. 60, 223-239.

Frink, C. R. 1967. Environ. Sci. Technol. 1, 425-428.

Frink, C. R. 1971. I n t . Symp. Ident. Measure. Environ. Pollut., Sess. B . June

14 1971.

Gardner, W. R. 1965. I n “Soil Nitrogen” (W. V. Bartholomew and F. E. Clark,

eds.), Agron. Monogr. No. 10, pp. 550-572. Amer. SOC. Agron., Madison,

Wisconsin.

Gastuche, M. C., Fripiat, J. J., and Sokolski, S . 1963. Pedologie 13, 155-180.

Gilbertson, C. B., McCalla, T. M., Ellis, R. J., Cross, 0. E., and Woods, W. R.

1970. Nebr., Agr. Expr Sta., Bull. 508, 1-23.

Gorbunov, N. I., Dzydevich, G. S., and Tunik, B. M. 1961. Sov. Soil Sci. 11,

1252-1259.

Gore, A. J. P. 1968. J. Ecol. 56, 4 8 3 4 9 5 .

Goring, C. A. I., and Bartholomew, W. V. 1950. Soil Sci. SOC. Amer., Proc. 15,

1 89-1 95.

Greaves, M. P., and Wilson, M. J. 1969. Soil Biol. & Biochem. 1, 37-43.

Greenland, D. J. 1965. Soils Fert. 28, 415-425.

Guy, H. P. 1970. In “Techniques of Water-Resources Investigations of the United

States Geological Survey,” Book 3, Chapter CI, pp. 1-55. U.S. Dept. of the

Interior, U.S. Govt. Printing Office, Washington, D.C.

Guy, H. P., and Ferguson, G. E. 1970. J. Soil Water Conserv. 25, 217-221.

Hanapel, R. J., Fuller, W. H., and Fox, R. H. 1964. Soil Sci. 97, 421-427.

Harris, R. F., Ryden, J. C., and Syers, J. K. 1972. Agron. Abstr. p. 180.

Hemwall, I. B. 1957. Advan. Agron. 9, 95-111.

Hingston, F. J., Atkinson, R. J., Posner, A. M., and Quirk, J. P. 1969. Trans.

Int. Congr. Soil Sci., 9th, 1968 Vol. 1, pp. 669-679.

Hsu, P. H. 1964. Soil Sci. SOC. Amer., Proc. 28, 4 7 4 4 7 8 .

Huffman, E. 0. 1969. Trans. I n t . Congr. Soil Sci., 9th 1968 Vol. 2, pp. 745-754.

Jackson, M. L. 1963. Clays Clay Minerals, Proc. Nut. Conf. Clays Clay Minerals

11, 29-46.

Jackson, M. L. 1969. Trans. Int. Congr. Soil Sci., 9th, 1968 Vol. 4, pp. 281-292.

Jaworski, N. A., and Hetting, L. J. 1970. I n “Relationship of Agriculture to Soil

and Water Pollution,” pp. 134-146. Cornell Univ. Press, Ithaca, New York.

Johnson, H. P., and Moldenhauer, W. C. 1970. I n “Agricultural Practices and

Water Quality” (T. L. Willrich and G. E. Smith, eds.), pp. 3-20. Iowa State

Univ. Press, Ames.

Johnston, W. R., Ittihadieh, F., Daum, R. M., and Pillsbury, A. F. 1965. Soil

Sci. SOC.Amer., Proc. 29, 287-289.

Jordan, D. 0. 1955. In “The Nucleic Acids” (E. Chargaff and J. N. Davidson,

eds.), Vol. 1, pp. 447-492. Academic Press, New York.

Juday, C., and Birge, E. A. 1931. Wis. Acad. Sci. Arts Lett. 26, 354-382.

Kafkafi, U., Posner, A. M., and Quirk, J. P. 1967. Soil Sci. SOC. Amer., Proc.

31, 348-353.

Keup, L. E. 1968. Water Res. 2, 373-386.

Kittrick, J. A., and Jackson, M. L. 1956. J . Soil Sci. 7 , 81-89.

Kluesener, J. 1972. Ph.D. Thesis, University of Wisconsin, Madison.



PHOSPHORUS IN RUNOFF AND STREAMS



43



Knoblauch, H. C., Kolodny, L., and Brill, G. D. 1942. Soil Sci. 53, 369-378.

Kunishi, H. M., Taylor, A. W., Heald, W. R., Gburek, W. J., and Weaver, R. N.

1972. 1. Agr. Food Chem. 20, 900-905.

Lahav, N., and Bolt, G. H. 1963. Nufure (London) 200, 1342-1344.

Langbein, W. B., and Iseri, K. T. 1960. U S . , Geol. Surv., Water-Supply Pup.

1541-A, 1-26.

Larsen, J. E., Langston, R., and Warren, G. F. 1958. Soil Sci. SOC. Amer., Proc.

22, 558-560.

Latterell, J. J., Holt, R. F., and Timmons, D. R. 1971. I. Soil. Water Conserv.

26, 21-24.

Lee, G. F. 1970. “Eutrophication Information Program,” Occ. Pap. No. 1. University

of Wisconsin, Madison.

Lee, G. F., Beatty, M. T., Corey, R. B., Fruh, E. G., Holt, C. L. R.,Jr., Hunter,

W., Lawton, G. W., Peterson, A. E., Schraufnagel, R. H., and Young, K. B.

1969. “Revised Report on the Nutrient Sources to Lake Mendota” Univ. of Wis.

Report to Lake Mendota Problems Committee.

Lindsay, W. L., and Stephenson, H. F. 1959. Soil Sci. SOC. Amer., Proc. 23, 12-18.

McCarty, P. L. 1967. I . Amer. Water Works Ass. 59, 344-366.

McKee, G. D., Parrish, L. P., Hirth, C. R., Mackenthun, K. M., and Keup, L. E.

1970. Water Sewage Works 117, 246-250.

Machenthun, K. M. 1965. “Nitrogen and Phosphorus in Water.” U.S. Dept. of

Health, Education and Welfare, Public Health Serv., Div. of Water Supply and

Pollution Control, U.S. Govt. Printing Office, Washington, D.C.

Mackenthun, K. M. 1968. I. Amer. Water Works Ass. 60, 1047-1054.

Mackenthun, K. M., Keup, L. E., and Stewart, R. K. 1968. I. Water Pollirt. Control

Fed. 40, 72-81.

McKercher, R. B. 1969. Trans. Int. Congr. Soil Sci., 9th, 1968 Vol. 3, pp. 547-553.

Martin, J. K. 1964. N.Z. J . Agr. Res. 7, 736-749.

Massey, H. F., and Jackson, M. L. 1952. Soil Sci. SOC. Amer., Proc. 16, 353-356.

Massey, H. F., Jackson, M. L., and Hayes, 0. E. 1953. Agron. I. 45, 543-547.

Metzler, D. F., Culp, R. L. Staltenberg, H. A,, Woodward, R. L., Walton, G.,

Chang, S. L., Clarke, N. A., Palmer, C. M., and Middleton, F. M. 1958.

1. Amer. W a f e r Works Ass. 50, 1021-1057.

Midgley, A. R., and Dunklee, D. E. 1945. Vt., Agr. E x p . Sta., Bull. 523, 1-19.

Millar, C. E., and Turk, L. M. 1955. “Soil Fertility.” Wiley, New York.

Millar, W. E., and Tash, J. C., 1967. Interim Report, Upper Klamath Lake Study,

Oregon. Fed. Water Pollut. Contr. Admin. Publ. WP-20-8.

Miller, R. B. 1961. N.Z. J . Sci. 4, 844-853.

Minshall, N. E., Nichols, M. S., and Witzel, S. A. 1969. Water Resow. Res. 5,

706-7 13.

Muljadi, D., Posner, A. M., and Quirk, J . P. 1966. I. Soil Sci. 17, 212-247.

Neal, 0. R. 1944.1. Amer. SOC. Agron. 36, 601-607.

Nelson, D. W., and Romkens, M. J. M, 1969. In “Relationship of Agriculture

to Soil and Water Pollution,” pp. 215-225. Cornell Univ. Press, Ithaca, New

York.

Nykvist, N. 1959. A c f a Oecol. Scand. 10, 190-21 1 .

Ohle, W. 1953. Vom Wasser 20, 11-23.

Olsen, S. R., and Watanabe, F. S. 1957. Soil Sci. SOC. Amer., Proc. 21, 144-149.

Ozanne, P. G . 1963. Trans. 1. Meet. Comm. IV and V , Int. SOC. Soil Sci., 1962

pp. 139-143.



44



J. C. RYDEN, J. K. SYERS, AND R. F. HARRIS



Peperzak, P., Caldwell, A. G., Hunzicker, R. R., and Black, C. A. 1959. Soil

Sci. 87, 293-302.

Pierre, W. H., and Parker, F. W. 1927. Soil Sci. 24, 119-128.

Pinck, L. A., Sherman, M. S., and Allison, F. A. 1941. Soil Sci. 51, 351-365.

Rennie, D. A., and McKercher, R. B. 1959. Can. J. Soil Sci. 34, 64-75.

Rogers, H. T. 1941. Soil Sci. SOC.Amer., Proc. 6, 263-271.

Roth, C. B., Jackson, M. L., and Syers, J . K. 1969. Clays Clay Minera/s, Proc.

Nat. C o n f . Clays Clay Minerals 17, 253-264.

Russell, E. J., and Prescott, J . A. 1916. J . Agr. Sci. 8, 65-110.

Ryden, J. C., Syers, J. K., and Harris, R. F. 1972a. J. Environ. Qua/. 1, 430-434.

Ryden, J . C., Syers, J. K., and Harris, R. F. 1972b. J. Eniziron. Qua/. 1, 435-438.

Ryden, J. C., Syers, J. K., and Harris, R. F. 1972c. Analyst 97, 903-908.

Sagher, A., and Harris, R. F. 1972. Abstr., C o n f . Gt. Lakes Res., I S t h , 1972 p.

193.

Saunders, W. M. H. 1965. N.Z. J . Agr. Res. 8, 30-57.

Sawyer, C. N. 1947. J. N. E ~ i g l Water

.

Works Ass. 61, 109-127.

Scarseth, G. D., and Chandler, W. V. 1938. J. Amer. SOC. Agron. 30, 361-374.

Shen, M. J., and Rich, C. I. 1962. Soil Sci. Soc. Amer., Proc. 26, 33-36.

Shipp, R. R., and Matelski, R. P. 1960. Soil Sci. SOC. Arner., Proc. 24, 450-452.

Shukla, S . S., Syers, J. K., Williams, J. D. H., Armstrong, D. E., and Harris,

R. F. 1971. Soil Sci. SOC. Amer., Proc. 35, 244-249.

Sommers, L. E., Harris, R. F., Williams, J. D. H., Armstrong, D. E., and Syers,

J. K. 1972. Soil Sci. SOC.Amer., Proc. 36, 51-55.

Stewart, K. M., and Rohlich, G. A. 1967. Eutrophication-A

Review. Report to the

State Water Control Board, California.

Stoltenberg, N. L., and White, J. L. 1953. Soil Sci. SOC.Amer., Proc. 17, 406-410.

Stumm, W. 1964. U S . , Pub. Health Serv., Publ. 999-WP-15, 299-323.

Sullivan, W. T., and Hullinger, D. L. 1969. Trans. 111. State Acad. Sci. 62, 198-217.

Swanson, N. P., Mielke, L. N., and Lorrimor, J. C. 1970. I n “Relationship of

Agriculture to Soil and Water Pollution,” pp. 226-232. Cornell Univ. Press,

Ithaca, New York.

Syers, J. K., and Walker, T. W. 1969. J . Soil Sci. 20, 318-324.

Syers, J. K., Shah, R., and Walker, T. W. 1969. Soil Sci. 108, 283-289.

Syers, J. K., Murdock, J. T., and Williams, J. D. H. 1970. Sod Sci. Plant Anal.

1, 57-62.

Syers, J. K., Evans, T. D., Williams, J. D. H., and Murdock, J. T. 1971. Soil

Sci. 112, 267-275.

Syers, J. K., Smillie, G. W., and Williams, J. D. H. 1972. Soil Sci. Soc. Amer.,

Proc. 36, 20-25.

Syers, J. K., Browman, M. G., Smillie, G. W., and Corey, R. B. 1973. Soil Sci.

SOC. Amer., Proc. 37, 358-363.

Sylvester, R. 0 . 1961. U S . , Pub. Health Serv., Publ. SEC-TR-W61-3, 80-87.

Taylor, A. W. 1967. 3. Soil Water Conscrv. 5, 228-231.

Taylor, A. W., and Kunishi, H. M. 1971. J . A g r . Food Chem. 19, 827-831.

Taylor, A. W., Edwards, W. M., and Simpson, E. C. 1971. Water Resour. Res.

7, 81-89.

Thomas, A. W., Carter, R. L., and Carreker, J. R. 1968. Trans. A S A E ( A m e r .

SOC. Agr. Eng.) 11, 677--679 and 682.

Tirnmons, D. R., Burwell, R. E., and Holt, R. F. 1968. Minn. Sci. 24, 16-18.



PHOSPHORUS IN RUNOFF AND STREAMS



45



Timmons, D. R., Holt, R. F., and Latterell, J. J. 1970. Water Rasorrr. Res. 6,

1367-1 375.

Twenhofel, W. M. 1950. “Principles of Sedimentation,” 2nd ed. McGraw-Hill, New

York.

Voelcker, A. 1874. J . Roy. Agr. SUC.Engl. [2] 10, 132-165.

Vollenweider, R. A. 1968. “Scientific Fundamentals of the Eutrophication of Lakes

and Flowing Waters with Particular Reference to Nitrogen and Phosphorus

as Factors in Eutrophication.’’ OECD, Paris.

Wang, W. C., and Brabec, D. J. 1969. J . Arner. Water Works Ass. 61, 460-464.

Way, J . T. 1850. J . Roy Agr. SOC.EngI. 11, 313-379.

Weibel, S. R. 1969. Z i t “Eutrophication: Causes, Consequences, Correctives,” pp.

383-403. Nat. Acad. Sci., Washington, D.C.

Weibel, S. R., Anderson, R. J., and Woodward, R. L. 1964. J . Water Pollut. Contr.

Fed. 36, 914-924.

Weibel, S . R., Weinder, R. B., Cohen, J. M., and Christianson, A. G . 1966. J .

Amer. Water Works Ass. 58, 1075-1084.

Weidner, R. B., Christianson, A. G . , Weibel, S. R., and Robeck, G. G. 1969.

J . Water Polliit. Contr. Fed. 41, 377-384.

White, D. E., Hem, J . D., and Waring, G. A. 1963. U.S. Geol. Sun.’., Prof. Pap.

440F, Chapter F.

White, E. 1972. N . Z . Ecol. SOC.Proc. 19, 163-172.

White, R. W., and Beckett, P. H. T. 1964. Plnnr Soil 20, 1-15.

Wier, D. R., and Black, C. A. 1968. Soil Sci. SOC.Arner., Proc. 32, 51-55.

Williams, E. G . , and Saunders, W. M . H. 1956. J . Soil Sci. 7, 90-108.

Williams, E. G., Scott, N. M., and McDonald, M. J. 1958. J . Sci. Food Agr.

9, 551-559.

Williams, J . D. H., and Walker, T. W. 1969. Soil Sci. 107, 213-219.

Williams, J. D. H., Syers, J. K., and Walker, T. W. 1967. Soil Sci. Soc. Amer.,

Proc. 31, 736-739.

Williams, J. D. H., Syers, J. K., Walker, T. W., and Shah, R. 1969. Agrocliinzica

6, 491-501.

Williams, J. D. H., Syers, J . K., Harris, R. F., and Armstrong, D. E. 1971a.

Soil Sci. SOC.Anier., Proc. 35, 250-255.

Williams, J. D. H., Syers, J. K., Armstrong, D. E., and Harris, R. F. 1971b.

Soil Sci. SOC. Arner., Proc. 35, 556-561.

Wischmeier, W. H., and Smith, D. D. 1965. U S , ,D r p . Agr., Handb. 282.

Witzel, S . A,, Minshall, N., Nichols, M. S., and Wilke, J . 1969. Trans. A S A E

( A m r r . SOC. Agr. Eng.) 12, 338-341.



This Page Intentionally Left Blank



CRIMSON CLOVER

W . E . Knight and E . A . Hollowell

.



U S Department of Agriculture. Mississippi State. Mississippi.

and U.S. Department of Agriculture. Beltsville. Maryland



I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A . Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C . Economic Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I1. Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A . Root. Stem. and Leaf ......................................

B. Flower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C . Pollination and Seed Development ...........................

I11. Physiology ........................

.......................

A . Growth and Development . . . . . . .

B. Flowering . . . . . . . . . . . . . . . . . . .

C . Seed . . . . . . . . . . . . . . . . .

...............................

IV . Culture .........................

A. Adaptation . . . . . . . . . . . . . . . . . .

B. Soils and Soil Fertility . . . . . . . .

C. Inoculation ...............................................

D . Establishment . . . . . . . . . . . .

.............................

E . Companion Grasses and Cro

uences ......................

F . Weed Control .....................

....................

G . Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H. Insects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I . Seed Production . . . . . . . . . . . . . . . . . . . . . . . .

V. Utilization . . . . . . . . . . .

.................................

A . Pasture . . . . . . . . . .

.................................

B. Hay and Silage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C. Green Manure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D . Seed .....................................................

VI . Genetics and Cytology . . . .

.................................

A . Cytology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B. Inheritance of Characters

..............................

VII . Breeding . . . . . . . . . . . . . . . .

A . Objectives . . . . . . . . . . . . . . . . . .

B. Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C . Seed Shattering . . . . . . . . . . . . .

D . Seedling Vigor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E. Inbreeding and Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F. Cultivars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VIII . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47



48

48

48

49

50

50

50

51

52

52

54

55

57

57

57

59

59

61

62

63

63

64

65

65

66

66

67

68

68

68

69

69

70

70

70

70

71

72

73



48



W. E. KNIGHT AND E. A. HOLLOWELL



I.



Introduction



A.



ORIGIN



Crimson clover, Trifolium incarnatum L., of the section Trifolium, belongs to the Leguminosae (Ascherson and Graebner, 1906-1910; Coombe,

1968; Zohary, 1970). Numerous botanists have recognized many varieties,

based on wild populations. The authors believe, however, that these are

nothing more than variations of morphological characteristics found in

large populations of plants.

Crimson clover is a winter-annual clover. It is native to Europe, where

it was cultivated as a forage and green-manuring crop in Italy, France,

Spain, Germany, Austria, and Great Britain during the eighteenth century.

In 1818, this clover was introduced into the United States. By 1855, seed

was widely distributed by the United States Patent Office (Kephart, 1920).

This clover has been called “scarlet clover” because of the rich scarlet

flowers. It is also known as “French clover,” “Italian clover,” “German

clover,” “incarnate clover,” and “annual clover” (Westgate, 1913, 1914).

Foury (1950) lists more than twenty common names by which crimson

clover is known throughout the world.



B.



DISTRIBUTION



The genus Trifolium consists of some 250 described species of annual,

and perennial forms that are widely distributed. Pieters and Hollowell

(1937) listed crimson clover, Trifolium incarnatum L.; with red, T.

pratense L.; alsike, T . hybridum L.; and white, T , repens L.; as one of

the four Trifolium species of primary importance in the United States.

Crimson clover is grown widely as a winter annual from the Gulf Coast

region, except peninsular Florida, and as far northward as Maryland,

southern Ohio, and Illinois. It spread rapidly throughout the southeastern

states after 1880. By 1900, it was considered a good crop as far north

as Kentucky. It also is grown in the Pacific Coast states and is an important seed crop in Western Oregon (Rampton, 1969; Williams et af., 1957;

Williams and Elliott, 1960). If planted late in May or early in June, it

can be grown as a summer annual in northern Maine (Westgate, 1924;

Kephart, 1920) and is a promising crop for high altitudes. Initially, crimson clover was used as a winter cover and green manure crop (Duggar,

1897; von Horn, 1936; Westgate, 1914; Kephart, 1920). Since it grew

during the off-season of the year, it was considered to be one of the most

economical legumes for green-manuring (Duggar, 1897; Kephart, 1920).



CRIMSON CLOVER



49



Before 1942, the largest acreage of crimson clover was located in Tennessee, Georgia, Alabama, Kentucky, and Oregon (Hollowell, 1943-1 947,

1947, 1950). After 1942, a rapid increase in use of crimson clover occurred. Contributing to this increase are: ( a ) the development of reseeding

or volunteering varieties, ( b ) recognition of the requirements of crimson

clover for substantial amounts of mineral fertilizers for rapid stand establishment and vigorous growth, (c) an appreciation of its value for winter

grazing, and (d) an understanding of its need for thorough inoculation

(Hollowell, 1951; Hollowell and Knight, 1962).

C.



ECONOMIC

IMPORTANCE



Crimson clover is probably the most important annual legume in the

rapidly expanding winter grazing program of the South (Stewart and

Boseck, 1947; Hollowell and Knight, 1962). One of the most important

characteristics of crimson clover is its ability to grow rapidly during the

fall and early spring when the land is not occupied by the ordinary summer-grown crops. It, therefore, fits well into cropping systems and sequences. Other characteristics that make crimson clover the most important winter-annual legume in the South are: ( a ) it will grow under a wide

range of climatic and soil conditions; ( b ) it has many uses; ( c ) it produces

large yields of easily harvested seed; and ( d ) it thrives in association with

other crops (Hollowell, 1951 ;Hollowell and Knight, 1962).

The total acreage of crimson clover is not known. The domestic disappearance of seed reached a peak in 1951 with 37,812,000 pounds of seed

used in the United States. Since 1960, domestic use of seed has declined

from an annual disappearance of 16,724,000 pounds to 10,116,000

pounds in 1970. Several factors contribute to this decline: ( a ) a sudden

increase in seed losses in the mid 1950’s from clover seed weevils, ( b )

more than 60% of the crimson clover acreage was in reseeding cultivars

that did not require annual reseeding, thus reducing demand for seed, (c)

a decline in price of seed as seed production moved to the West and peracre yields of seed increased, and ( d ) an emphasis during the 1960’s on

high per-acre yields of grass forage produced with mineral nitrogen.

Since 1965, considerable emphasis has been placed on arrowleaf clover.

This has resulted in a shift in acreage formerly in crimson clover to arrowleaf clover. Unless some of the hazards involved in the production of arrowleaf clover are overcome, crimson clover will continue to be the reliable

standby in the winter-grazing program in the South (Kight and Wellhausen, 1968).

Crimson clover has several advantages over arrowleaf, Trifolium vesiculosum Savi. (Beaty and Powell, 1969; Hoveland et al., 1569; Knight



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VI. Present Status and Outlook

Tải bản đầy đủ ngay(0 tr)

×