Tải bản đầy đủ - 0 (trang)
VII. Influences of the Rhizosphere Flora on Succeeding or Associated Plants

VII. Influences of the Rhizosphere Flora on Succeeding or Associated Plants

Tải bản đầy đủ - 0trang

SOIL MICROORGANISMS AND PLANT ROOTS



279



crop residues on numbers of soil microorganisms was pronounced during

the first few months following addition, but had mostly disappeared

by nine months.

That qualitative changes accompany the quantitative has been

shown by Krassilnikov and Nikitina (1945), who found that an abrupt

change in types of microorganisms takes place during the decomposition

of plant roots. Doughty (1941) has called attention t o differences in

the rate of decomposition of plant roots, as measured by recovery of

coarse material and by production of carbon dioxide.

Although no lasting quantitative changes in microbial populations are

observed following crop growth, certain rhieophilic microorganisms have

been recovered a t varying intervals following crop removal. Smith

(1928) noted increased numbers of B. radiobacter in soil for several

weeks after the growth and harvesting of legumes. Nodule-forming bacteria inoculated on appropriate seed have been reported to become

established in soil and to persist therein for from one to inariy years following removal of the crop (Albrecht and Turk, 1930; Deherain, 1900;

Fred et al. 1926; Nobbe and Hiltner, 1898). Appleman and Sears (1947),

following study of numbers of nodule bacteria in field plots, concluded

that the largest numbers of rhieobia are found where the appropriate

host plants have recently been grown. Their data indicate that thc

presence of nodule bacteria in plots on which host plants have not been

grown recently should be attributed to applications of farm manure containing the organisms and not to any prolonged survival of nodule bacteria in soil.

2. Persistence of Changes in the Soil Environnient Brought



about by the Rhizosphere Flora

It has long been known that one species of plant may have a beneficial

or detrimental influence upon other species of plants that are growing

in close proximity to i t or that follow it in succession. General discussions of mixed cropping and of crop sequence effects have been given

by Nicol (1934), Miller (1938), and Ripley (1941).

There is evidence that both beneficial and deleterious effects upon

accompanying or following crops may result from changes in the soil

environment accomplished by the microflora accompanying certain crops.

The beneficial effect of a leguminous crop on another following frequently can be explained by the fixation of atmospheric nitrogen during

the growth of the legume. Although i t may be impossible to show change

in the total nitrogen content of a soil after legumes have been grown in

that soil for several years, the nitrate-supplying power of soils on which

legumes have previously been grown is generally greater than that of



280



FRANCIS E. CLARK



soils cropped to nonlegumes. Newton et al. (1939, 1940) found no difference in the total nitrogen of soil after alfalfa, timothy, brome grass and

western rye grass had been grown for periods of 1, 3, and 5 years. There

was, however, a greater accumulation of nitrates in the soil after alfalfa

than after grasses.

Inasmuch as the effects of crops on the physical condition of the soil

may persist from one to several years, an altered soil structure a t times

may account for the influence of one crop on another following. Grass

crops particularly have been found valuable in increasing the aggregat.ion

of soil, and the inclusion of a grass crop in a rotation is widely recommended.

Although the beneficial influence of grasses is not observed within

short periods of growth, the improved structure once obtained is more

persistent than the improvement obtained by applications of readily

decomposable organic matter to soil. Desirable effects on aggregation of

an extended bluegrass culture were noted by Woodruff (1940) to be still

in evidence even after six years of continuous fallow. Browning and

coworkers (Feng and Browning, 1947; Gish and Browning, 1949; Johnston et al., 1943; Wilson and Browning, 1946) have found clovers and

grasses to give benefits extending into the following cropping seasons.

Breazeale (1924) believed that the unfavorable effect of a sorghum

crop on another following might be due to the development of a poor

state of structure under sorghum. He suggested that cyanide excretion

by sorghum roots depressed microbiological activity and sufficiently

lowered the carbon dioxide content of the soil so that calcium became

less active, and that its replacement in zeolite by sodium led to soil

deflocculation.

Recognition of the factor of parasitism in the influence of one crop

on another is usually but not always a simple matter, and in a number

of crop sequence effects, this factor doubtless can be considered as unimportant. However, the recent work of Valleau et al., (1942, 1943,

1944) and of Diachun and Valleau (1946) showing that certain bacteria,

pathogenic to tomato and tobacco, overwinter on the roots of cover crops

and of weeds, emphasizes that concepts of host range and of control of

plant disease by crop rotation may need to be reconsidered. Valleau

et al. (1944) stated that bacteria capable of causing angular leaf spot and

wildfire in tobacco are not primarily tobacco plant pathogens, but are

organisms apparently adapted to a life on the surface of small rootlets

of several plants.

The question may be raised as to the extent to which, in a legumegrass mixture, the root microflora associated with one plant species may

influence the growth and welfare of the second plant species. Certainly



ROLL MICROORGANISMS AND PLANT ROOTS



281



the microbiological factor is not the only factor responsible for the success

of legume-grass mixtures. Such factors as maximum utilization of moisture, available nutrients, and of light intensity, or even the protection

of one species by another in reducing ground freezing and heaving may

a t times be of predominant importance.

Other than extensive work concerning improved nitrogen nutrition

of the nonlegume in a grass-legume mixture, there is a limited literature

concerning the microbiological factors in such mixtures. This does not

necessarily mean that such factors are not operating. Nicol (1935)

found that the roots of alfalfa and of grass growing in sand were difficult

to separate when these plants were grown together, but that no such

difficulty was encountered with the roots of contiguous plants grown in

single crop culture. Microbiological studies have not been made of the

intermingled root systems of legumes and grasses. Possibly, with present

imperfections of microbiological technique, the attempt to characterize

a mixed rhizosphere and to differentiate it from the rhizospheres of the

component species grown separately would be unsuccessful. But inasmuch as differing plants encourage specific microfloras, and particularly

since the rhizospheres of legumes harbor greater numbers of microorganisms than do those of nonlegumcs, it is possible that a combined

rhixosphere would offer advantages, either in increased availability of

nutrients or in increased production of growth accelerating substances,

to the nonleguminous component of the mixed crop. It is also possible

that the combination of two root systems with their accompanying

microfloras can act on the physical condition of the soil to a differing

degree than either separately. Page and Willard (1947) have stated

that from the standpoint of soil structure, the combination of a deeprooted legume and a grass seems almost ideal. These several possibilities

indicate the existence of other microbiological factors in addition to those

of symbiotic nitrogen fixation in legume-grass mixtures, and emphasize

the need for broader microbiological study of mixed legiime-grass rhizospheres.

I n general summary of the preceding subsections, there appears little

evidence that the characteristic microflora of a given crop can long persist

in soil after the removal of that crop, but it does appear possible that

such a microflora effects changes in the physical or chemical conditions

of the soil, and that these changes are sufficiently lasting to influence a

following crop. I n mixtures of legumes and grasses, symbiotic nitrogenfixing bacteria associated with the former apparently increase the supply

of nitrogen available to the latter; otherwise, there is practically no

evidence of the existence of direct microbiological effects by the microflora of one plant upon the growth and development of an associated



282



FHANCIR E. CLARK



plant. This lack of evidence does not mean necessarily that such effects

do not exist.

A dozen years ago, Loehwing (1937) stated that the mutual interest

and cooperative participation of agronomists, microbiologist,s, and biochemists in questions of root interaction had produced practical results

otherwise unachievable, but that “further factual research on root excret,ions and interactions is required for the complete integration of the

physiology of the root with that of the shoot and for the proper evaluation of the many edaphic factors influencing plant development.” I n this

review an attempt has been made to emphasize some of the more recent

contributions of the many soil microbiologists who have become intereded

in the relationships of soil microorganisms and plant roots. Although

progress in this field of study has in no way been sensational, nevertheless it is encouraging to note that as individual problems in rhizosphere

microbiology are more intensively studied, their relationships to each

other and to the welfare of growing plants are becoming more clearly

established.

REFERENCES

Adati, M. 1939. J. SOC.Trop. Agric. Taihoku Imp. Univ. 11, 57-65.

Albrecht, W. A., and Turk, L. M . 1930. Mo. Agr. Expt. Sla. Res. Bull. 132.

Allison, F. E. 1947. Soil Sci. 64, 413-429.

Allison, F. E., Gaddy, V. L., Pinck, L. A., and Armiger, W. H. 1947. Soil Sci. 64,

489-497.



Allison, F. E., Hoover, S. R., and Morris, H. J. 1934. J. Agr. Research 49, 1115-1123.

Angell, H. R., Walker, J. C., and Link, K. P. 1930. Phytoputh. 20, 431-438.

Appleman, M. D., and Sears, 0. H . 1916. J. Am. SOC.Agron. 38, 545-550.

Appleman, M.D., and Sears, 0. H . 1947. Soil Sci. SOC.Am. Proo. 11, 252-254.

Barker, H. A., and Broyer, T. C. 1942. Soil Sci. 53, 467-477.

Beijerinck, M.W. 1901. Zentr. Bakt. Parasitenk. I 1 7, 561-582.

Beijerinck, M. W. 1913. Bolia Microbiol. 2, 123-125.

Beijerinck, M. W., and Van Delden, A. 1902. Zentr. Bakt. Pn,rtisit~nk.I1 9, 3-43.

Berezova, E.F. 1941. Microbiology (U.S.S.R.) 10, 918.

Berezova, E. F., Naumova, A. N., and Rasnizina, E. A. 1938. Compt. w n d . ncod.

S C ~ ,U.S.S.R. 18, 357-361.

Bonner, J. 1937. Botan. R e v . 3, 616-640.

Bower, C.A. 1949. Iowa Agr. Expt. Sto. Res. Bull. (in press).

Boysen-Jensen, P. 1936. Growth Hormones in Plants. MrGraw-Hill, NPWYork.

Breazeale, J. F. 1924. J . Am. Soc. Agron. 16, 689-701.

Breed, R. S., Murray, E. G. D., and Hitchens, A. P. 1948. Bergey’s Manual of DPterminative Bacteriology. 6th ed., Williams and Wilkins, Baltimore.

Broadbent, F. E., and Norman, A. G. 1947. Soil Sci. 8 o c . Am. Proc. 11, 264-267.

Brown, P. E. 1912. Iowa Agr. Expt. Stn. Res. Bd1. 6.

Brown, R. 1946. Nature 157, 65-69.

Carlyle, R . E., and Thorpe, J. D. 1947. J . Am. Soc. Agron. 39, 929-936.

Caron, A. 1895. Landw. Vers. Sta. 45, 401-418.

Clark, F. E. 1939. Trans. Kansas Acad. Sci. 42, 91-96.



SOIL MICROORGANISMS AND PLANT ROOTS



283



Clark, F. E. 1940. Trans. Kansas Acad. Sci. 43, 75-84.

Clark, F. E. 194. U.S.D.A. Tech. Bull. 835.

Clark, F. E. 1948a. Soil Sd.65, 193-202.

Clark, F. E. 1948b. Soil Sd.SOC.Am. Proc. 12, 239-242.

Clark, F. E., Hervey, R. J., and Blank, L. M. 1948. U 3 . D . A . Tech. Bull. 935.

Clark, F. E.,and Thom, C. 1939. Trans. Third Comm. Intern. Soc. Soil Sci. A, 94100.

Clark, N. A. 1930. Science 71, 268-269.

Clark, N.A.,and Roller, E. M. 1931. Soil Sci. 31, 299-310.

Conn, H.J., and Dimmick, I. 1947. J. Bact. 54, 291303.

Dawson, R. E., Dawson, V. T., and McCalla, T. M. 1948. Neb. Agr. Expt. Sta. Res.

BUZZ. 155.

Deherain, P. P. 1900. Expt. Sta. Record 11, 218.

Diachun, S.,and Valleau, W. D. 1946. Phytopath. 36, 277-280.

Dorokhova, M. A. 1942. Bull. acad. sci. U.R.S.S. 36, 219-234.

Doughty, J. L. 1941. Sci. Agr. 21, 429-432.

Eaton, F. M.,and Rigler, N. E. 1946. J. A ~ TResearch

.

72, 137-161.

Falck, R. 1923. Mykol. Unters. Ber. 2, 38-72.

Fellows, H. 1929. Phytopath. 19.103.

Feng, C.L.,and Browning, G. W. 1947. Soil Sci. Soc. Am. Proc. 11, 67-73.

Prancke, H. L. 1934. Flora 129, 1-52.

Frid~,A. B. 1885. Ber. deut. botan. Ges. 3, 128-145.

Fred, E. B., Baldwin, I. L., and McCoy, E. 1932. Root Nodule Bacteria and

Leguminous Plants. Univ. Wisconsin Press, Madison.

Fred, E. B.,and Haas, A. R. C. 1919. J. Gen. Physiol. 1, 631-638.

Fred, E. B., Whiting, A. L., and Hastings, E. G. 1926. Wisc. Agr. Espt. Sta. Res.

Bull. 72.

Fujimoto, C. K., and Sherman, G. D. 1948a. J. Am. Soc. A g ~ o n 4

. 0, 527-534.

Fujimoto, C.K.,and Sherman, G. D. 1948b. Soil Sci. 66, 131-146.

Gainey, P. L. 1946. Kans. Agr. Expt. Stn. Rept. 1944-1946,p p . 17-18.

Garrett, 8. D. 1938. Biol. Rev. Cambridge Phil. Soc. 13, 159-185.

Garrett, S.D. 1941. Ann. Applied Biol. 28, 14-18.

Garrett, S.D. 1944. Root Disease Fungi. Chronica Botanica Co., Waltham, Mass.

Gelteer, F. V. 1943a. Dokl. Akad. S. Kh. Nauk. 3, 38-40.

Geltser, F. V. 1943b. Pedology (U.S.8.R.) 9-10,62-74.

Geltser, F. V. 1946. Pedology (U.SS.IZ.) 8, 421-426.

Gerretsen, F. C. 1937. Ann. Botany 1, 207-230.

Gerretsen, F. C. 1948. Plant and Soil 1, 51-81.

Gish, R. E.,and Browning, G. M. 1949. Ahil Sci. Soe. Arne).. Proc. 13, (in press).

Goring, C. A. I., and Clark, F. E. 1949. Soil Sci. SOC.A m . Proc. 13, (in press).

Gott, C. L. T., and Goldsmith, G. W. 1946. Phytopath. 36, 667-670.

Gottheil, 0. 1901. Zentr. Bakt. Parasitenk. I I 7, 481-484.

Graf, G. 1930. Zentr. Bakt. Parasitenk. I I 82, 44-69.

Greaves, J. E. 1918. Soil Sci. 4 163-217.

Greaves, J. E.,Stewart, R., and Hirst, C. F. 1917. J . A y i . Research 9, 293-341.

Elarmsen, G. W. 1940. Antonie vun Leruwejrhoek 1. Microbiol. Serol. 6, 178-199.

Hatch, A. B. 1936. J. Forestry 34, 22-29.

Hatch, A. B. 1937. Black Rock Forest Bull. 6.

Headdon, W. P. 1927. Colo. Agr. E’xpt. Sta. Bull. 319.



284



FRANCIS E. CLARK



Hellreigel, H., and Wilfarth, H. 1888. Beilageheft Ztschr. Ver. Rubenzucker-lndustrie Deut. Reichs. (Original not seen. Cited after Wilson, 1940).

Hildebrand, A. A., and West, P. M. 1941. Can. J. Research C19, 183-198.

Hiltner, L. 1904. Arb. deut. landw. Gesell. 98, 59-78.

Hoffman, C. 1914. Univ. Kansas Sci. Bull. 9, 81-99.

Hubbell, D.S.,and Chapman, J. E. 1946. Soil Sci. 62,271-281.

Humfeld, H.,

and Smith, N. R. 1932. J. Agr. Research 44, 113-120.

Isakova, A. A. 1936. Bull. acad. sci. U.S.S.R. 13, 429-432.

Isakova, A. A. 1939. Bull. acad. sci. U.S.S.R. 1939, 838-855.

Isakova, A. A. 1940. Compt. rend. mad. sci. U.S.S.R. 28, 170-173.

Isakova, A. A.,and Smirnova, A. 1937. Compt. rend. acad. sci. U.S.S.R. 14, 397-398.

Jackson, M. L., Mackie, W. Z., and Pennington, R. P. 1947. Soil Sci. Soc. A m . Proc.

11, 57-63.

James, N.,and Sutherland, M. L. 1939. Can. J . Research C17, 72-86,97-108.

Jenscn, H.L. 1940. Proc. Linnean SOC.N . S.Wales 65, 1-122.

Jensen, H. L., and Swaby, R. J. 1940. Proc. Linnean SOC.N . S. Wales 65, 557-564.

Johnson, J. 1919. Soil Sci. 7, 1-103.

Johnston, J. R.,Browning, G. M., and Russell, M. B. 1943. Soil Sci. SOC.Am. Proc.

7, 105-107.

Jones, H. E. 1948. J. A m . SOC.Agron. 40, 522-526.

Kanivetz, I. I. 1940. Pedology (U.S.S.R.) 6, 125-126.

Kanivetz, I. I., and Korneeva, N. P. 1937. Pedology (U.S.S.R.) 10, 1429-1441.

Kanivetz, I. I., and Pritzker, N. Y. 1940. Pedology (U.S.S.R.) 6, 126.

Katznelson, H. 1946. Soil Sci. 62, 343-354.

Katznelson, H., Lochhead, A. G., and Timonin, M.I. 1948. Botan. Rev. 14,543-587.

Katznelson, H., and Richardson, L. T. 1943. Can. J. Research C21, 249-255.

Kendall, A. I. 1928. Bacteriology, General, Pathological, and Intestinal. 3rd ed.,

Lea & Febiger, Philadelphia.

King, F. H., and Whitson, A. R. 1900. Wisc. Agr. Expt. &a. Ann. Rept. 17, 204-226.

KrassiInikov, N. A. 1934. Microbiology (U.S.S.R.) 3, 343-359.

Krassilnikov, N. A. 1940. Microbiology (U.S.S.R.) 9, 395-423.

Krassilnikov, N.A. 1944. Microbiology (U.S.S.R.) 13, 144-146.

Krassilnikov, N. A., Kriss, A. E., and Litvinov, M. A. 1936a. Microbiology

(U.S.S.R.) 5, 87-96.

Krassilnikov, N. A., Kriss, A. E., and Litvinov, M. A. 193613. Microbiology

(US.S.R.1 5, 270-286.

Krassilnikov, N. A., and Nikitina, N. I. 1945. Pedology (U.S.S.R.) 2, 131-135.

Lewis, R. W., and Hamner, C. L. 1946. Mich. Agr. Expt. Sda. Quart. Bull. 29, 112114.

Liebig, J. 1858. Ann. Chem. Pharm. 105, 109-144.

Linford, M. B. 1942. Soil Sci. 53, 93-103.

Link, K. P., Angell, H. R., and Walker, J. C. 1929a. J. Biol. Chem. 84, 719-725.

Link, K.P., Dickson, A. D., and Walker, J. C. 1929b. J. Bbl. Chem. 84, 719-725.

Link, K. P., and Walker, J. C. 1933. J. Biol. Chem. 100,379-383.

Lipman, J. G.,and Starkey, R. L. 1935. N.J. Agr. Expt. Sta. Bull. 595.

Lochhead, A. G. 1940. Can. J. Research C18, 42-53.

Lochhead, A. G. 1948. J. Bact. 55, 579-580.

Lochhead, A. G.,and Chase, F. E. 1943. Soil Sci. 55, 185-195.

Lochhead, A. G.,and Thexton, R. H. 1947. Can. J. Research C25, 20-26.

Lochhead, A. G.,Timonin, M. I., and West, P. M. 1940. Sn'. Agr. 20, 414-418.



SOIL MICROORGANISMS A N D P L A N T ROOTS



285



Loehwing, W. F. 1937. Botan. Rev. 3, 195-239.

Lohnis, F. 1910. Handbuch der landw. Bakteriologie. Geb. Borntraeger, Berlin.

Lohnis, F. 1926. Soil Sci. 22, 355-389.

Lundeghrdh, H. 1924. Der Kreislauf der Kohlensaure in der Natur. Gust,nv

Fischer, Jena.

Lutman, B. F., and Wheeler, H. E. 1948. J . Wash. Acad. Sci. 38, 336-340.

Lyon, T.L.,and Bizzell, J. A. 1911. N.Y. Agr. Expt. &a. Bull. 294, pp. 365-374.

Lyon, T.L.,and Bizzell, J. A. 1913. N.Y. Agr. Ezpt. Sta. Mem. 1.

Lyon, T . L.,Bizzell, J. A., and Wilson, B. D. 1920. Soil Sci. 9, 53-64.

Lyon, T.L.,Bizzell, J. A,, and Wilson, B. D. 1923. J . Am. SOC.Agron. 15, 457-467.

Lyon, T.L., Bizzell, J. A., and Wilson, B. D. 1924. J . Am. SOC.Agron. 16, 396-405.

Lyon, T.L., and Wilson, B. D. 1928. N.Y. Agr. Expt. Sta. Mem. 115.

McArdle, R.E. 1932. J. Agr. Research 44,287-316.

McBurney, C. H.,

Bollen, W. B., and Williams, R. J. 1935. Proc. Natl. Acad. Sci.

US.21, 301-304.

McCalla, T. M. 1942. Soil Sci. SOC.Am. Proc. 7, 209-214.

McCalla, T.M. 1944. Soil Sci. 59, 287-297.

McCalla, T.M., and Duley, F. L. 1948. Science 108, 163.

McComb, A. L. 1938. J. Forestry 36, 1148-1154.

McComb, A.L. 1943. Iowa Agr. Expt. Sta. Res. Bull. 314.

McComb, A. L.,and Griffith, J. E. 1946. Plant Physiol. 21, 11-17.

MacDougal, D. T.,and Dufrenoy, J. 1944. Plant Physiol. 19, 440-465.

MacDougal, D. T.,and Dufrenoy, J. 1946. Plant Physiol. 21, 1-10.

McGeorge, W. T. 1938. Ariz. Agr. Expt. Sta. Tech. Bull. 82, 295-331.

Martin, J. P. 1945. Soil Sci. 59, 163-174.

Martin, J. P.,and Waksman, S. A. 1940. Soil Sci. 50, 29-47.

Martin, J. P.,and Waksman, S. A. 1941. Soil Sci. 52, 381-394.

Menkin, R. 1946. Socialist Agr. July 1, 1946.

Metzger, W. H. 1928. Soil Sci. 24, 273-280.

Miller, E.C. 1938. Plant Physiology. 2nd ed., McGraw-Hill, New York.

Mishustin, E. N., and Gromyko, E. P. 1946. Microbiology (U.SSJ2.) 15, 175.

Mishush, E.N., and Pushkinskaya, 0. 1942. Microbiology (U.S.S.R.) 11, 92-104.

Mitchell, H. L., Finn, R. F., and Rosendahl, R. 0. 1937. Black Rock Forest Papers

I, No. 10.

Mitchell, R. B., Hooton, D. R., and Clark, F. E. 1941. J. Agr. Research 63, 635-547.

Morrow, M. B., Roberts, J. L., Adams, J. E., Jordan, H. V., and Guest, P. 1938. J .

Agr. Research 56, 197-208.

Myers, H.E.,and McCalla, T. M. 1941. Soil Sci. 51, 189-200.

Neller, J. R. 1922. Soil Sci. 13, 139-160.

Newman, A.S.,and Norman, A. G. 1947. J. Bact. 54, 37-38.

Newton, J. D.,Wyatt, F. A., Ignatieff, V., and Ward, A. S. 1939. Can. J . Research

C17, 256-293.

Newton, R., and Young, R. S. 1940. Can. J . Research Cl8, 136-141,374-387.

Newton, R.,Young, R. S., and Malloeh, J. G. 1939. Can, J . Research C17, 212-231.

Nicol, H. 1934. B i d . Rev. Cambridge Phil. SOC.9, 383-410.

Nicol, la. 1935. Emp. J . Expt. Agr. 3, 189-195.

Nikolsky, N. N. 1942. S6orn. Pam. W . R . Williams L942, 377-382. (Original not

seen. Cited after Soils and Fert. 11, 4, 1948).

Nobbe, F., and Hiltner, L. 1898. Landw. Vers.-Sta. 49, 476-480.

Norman, A. G. 1947. Soil Sci. SOC.Am. Proc. 11, 9-15.



286



FRANCIS E. CLARK



Page, J. B., and Willard, C. J . 1947. Soil Sri. SOC.A m . Proc. 11. 81-88

Parker, F. W. 1924. Soil Sci. 17,229-248

Parker, F. W. 1925. Soil Sci. 20, 39-44.

Payne, M. G., and Fults, J. L. 1947. J. A m . SOC.Agron. 39, 52-55

Pearson, R. W., Norman, A. G.. and Ho, Chiing. 1942. Soil Sci. Xor. A m . Prof-.6,

168-175.



Peele, T. C. 1940. J . Am. SOC.Agron. 32, 664-668.

Peele, T. C., and Beale, 0. W . 1940. Soil Sci. SOC.A m . Proc. 5, 33-35.

Perotti, R. 1926. Proc. Intern. SOC.Soil Sci. 2, 146-161.

Pierre, W. H. 1948. J. Am. SOC.Agron. 40, 1-14.

Pinck, L. A., Allison, F. E., and Gaddy, V. L. 1945. Soil Sci. Xor. A m . Proc. 10,

230-234.



Pohlman, G. G. 1946. Soil Sci. 62, 255-266.

Porter, J. R. 1947. Bacterial Chemistry and Physiology. Wiley, New York.

Poschenreider, H . 1929. Zentr. Bakt. Parasitenk. I I 79, 222-228.

Poschenreider, H. 1930. Zentr. Bakt. Parasitenk. I I 80, 369-378.

Prescott, J. A. 1920. Sultanic Agr. SOC.Tech. Sec. Bull. 2, 33-3.

Radziewski, G. G. 1940. Pedology (U.S.S.R.) 6, 126.

Rayner, M. C. 1927. New Phytologist 26, 22-45, 85-114

Ripley, P. 0. 1941. Sci. Agr. 21, 522-583.

Roberts, J. L., and Roberts, E. 1939. Soil Fcz. 48, 135-139.

Rokitzkaya, A. I. 1932. Proc. IntPrn. Congr. Soil Sci., 2nd Conqr. Leningrad-MoaCOW ISSO, 111, 260-262.

Rosendahl, R. 0. 1942. Soil Sci. 9oc. Am. Proc. 7, 477-479.

Rossi, G., Riccardo, S., Gesue, G., Stanganelli, M., and Wang, Tsii Kao. 1936. Soil

Sci. 41, 53-66.

Routien, J. B., and Dawson, R. F. 1943. Am. J. Rofnny 30, 440-451.

Russell, E. J . 1914. J. Agr. Sci. 6, 18-57.

Sabanin, D. A., and Minina, E. G. 1932. Pior. IntPrrr. ('ongr. Soil Sci., 2nd Congr.

Leningrad-Moscow 1930, 111, 224-235.

Sachs, J . 1860. Botan. Z. 18, 117-119.

Samuel, G., and Piper, C. S. 1929. Ann. Applwd Biol. 16, 493-524

Sanford, G. B. 1948. Sci. Agr. 28, 21-25.

Schmidt, E. L. 1947. Soil Sci. 64,459-468.

Schreiner, O., and Shorey, E. 1909. US. Dept. Agi. Bur. Soils Bull. 53.

Sekera, F., and Brunner, A. 1943. Bodenk. PflPrniihr. 29, 169-212

Sen, J. 1929. Agr. J . India 24, 229-231.

Shelaurnova, A., and Menkina, P. 1936. Mirrobzology (U.S.S.H.) 8, 2-69.

Sidorenko, A. I. 1940. Microbiology (U.SS.R.) 9, 153-158.

Smith, N. R. 1928. J . Bact. 15, 20-21.

Smith, N. R., Dawson, V. T., and Wenzel, M E. 1946. Soil Sci. SOC.A m . Pror. 10,

197-201.



Smith, N. R., and Humfeld, H. 1831. J. Ag?. Hewarrh 43, 715-731.

Sohngen, N . L. 1914. Zentr. Bakt. Parasitenk. I1 40, 545-554.

Stahl, E. 1900. Jahrb. Unss. Botan. 34, 534-668.

Starc, A. 1943. Arch. Mikrobiol. 13, 164-181.

Starkey, R. L. 1929a. Sod Sci. 27,319-334.

Starkey, R. L. 192913. Soil Sci. 27, 355-374.

Starkey, R. L. 1929~. Soil Sci. 27, 433-444.

Starkey, R. L. 1931a. Soil Sci. 32,367-393.



SOIL MICROORGANISMS AND PLANT ROOTS



387



Starkey, R. L. 1931b. Soil Sci. 32, 395-404.

Starkey, R. L. 1938. Soil Ski. 45, 207-249.

Starkey, R. L. 1939. Inter~t.Congr. Microhiol., Rept. Pro(:. 3rd Cotigr.. N e w York,

1939, p . 304. Waverly Press, Baltimore.

Steinberg, R. A. 1947. J. Agr. Research 75, 199-206.

Stevensen, E. C., and Mitchell, J. W. 1945. Science 101, 642-644.

StilIe, B. 1938. Arch. Mikrobiol. 9, 477-485.

Stoklasa, J. 1908. Deut. landw. Presse 35, 274-275, 286-287, 297-298.

Stockli, A. 1946. Schweiz. landw. Monatsh. 24, 19-20.

Strugger, S. 1948. Can.J. Research C26, 188-193.

Stumbo, C. R., Gainey, P. L., and Clark, F. E. 1942. J. Agr. Research 64, 633-665.

Tervet, I . W., and Hollis, J. P. 1948. Phytopathology 38, 960-967.

Thimann, K. V. 1939. Trans. Third C o n m . Intern. SOC.Soil Sci. A, 24-28.

Thimann, K. V., and Bonner, J. 1938. Physiol. Rev. 18, 524-553.

Thom, C. 1935. Trans. Intern. Congr. Soil Sci., 3rd Congr. Oxjord 1936, 1, 160-163.

Thoni, C. 1938. J. Wash. Acad. Sci. 28, 137-153.

Thom, C., and Humfeld, H. 1932. Soil Sci. 34, 29-36.

Thom, C., and Smith, N. R. 1939. Soils and Men. (Yearbook of Agr. 1938). U.S.

Govt. Printing Office, Washington, D.C., pp. 940-947.

Thompson, L. M., and Black, C. A. 1948. Soil Sci. SOC.Am. Proc. 12, 323-326.

Thompson, L. M., Black, C. A., and Clark, F. E. 1949. Soil Sci. SOC.Am. Proc. 13.

(In press).

Thompson, R. C. 1942. Univ. Texas Publ. 4237, pp. 87-96.

Thornton, H. G. 1935. Trans. Intern. Congr. Soil Sci., 3rd Congr. Oxjord 1936, 2,

81-94.

Thornton, H. G., and Nicol, H. 1934. J. Agr. Sci. 24, 540-543.

Timonin, M. I. 1940a. Can. J . Research C18, 307-317.

Timonin, M.I. 1940b. Can. J . Research B18, 444-456.

Timonin, M.I. 1941. sbil Sci. 52, 395-413.

Timonin, M. I. 1947. Soil Sci. SOC.Am. Yroe. 11, 284-292.

Tinionin, M. I . 1949. Soil Sci. SOC.A m . Proc. 13. (In press).

Truffaut, G., and Vladykov, V. 1930. ConLpt. rend. 190, 824-826.

Tmog, E. 1927. Proc. Intern. Congr. Soil Sci., 1st CongT. Washington, D.C. i9E7, 3,

628-636.

Tyner, L. E. 1948. Curl. J. Research C26, 86-93.

Valleau, W. D., Johnson, E. M., and Diachun, S. 1942. dcietace 96, 164.

Valleau, W. D., Johnson, E. M., and Diachun, S. 1943. K y . Agr. E z p t . Sta. Bull.

454.

Valleau, W. D., Johnson, E. M., and Diachun, S. 1944. Phgtopath. 34, 163-174.

Velich, A. 1903. Zentr. Bakt. Parasitenk. I1 10, 678-679.

Verona, O., and Luchetti, G. 1931. Soc. I n t . Microb. Bull. R r z . Ital. 3, 201-203.

Virtanen, A. I., and Linkola, T. 1947. Antonit! 71an Lee,iiiuenhoek J . Mierobiol.

Serol. 12, 65-77.

Waksman, S. A., and Martin, J. P. 1939. Scieriw 90, 304-305.

Waksman, S.A., and Starkey, R. L. 1931. Soil and the Microbe. Witey, New York.

Walker, J. C., Link, K. P., and Angell, H. R. 1929. Proc. Y n t l . Acad. Sci. U.S. 15,

845-850.

West, P. M. 193. Nature 144, 1050-1051.

West, P. M., and Hildebrand, A. A. 1941. Curb. J. Reaaurch C19, 199-210.

West, P.M., and Lochhead, A. G. 1940a. Can. J. Research C18, 129-135.



288



FRANCIS E. CLARK



West, P. M., and Lochhead, A. G. 1940b. Soil Sci. 50,409-420.

West, P. M.,and Wilson, P. W. 1938. Nature 142, 397-398.

Willis, W. H.,and Green, V. E. 1949. Soil Sci. SOC.Am. Proc. 19:

Wilson, B. D., and Wilson, J. K. 1925. N.Y. Agr. Ezpt. Sta. Mem. 95.

Wilson, H.A.,and Browning, G. M. 1948. Soil Sci. Boc. Am. Proc. 10,51-57.

Wilson, J. K.,and Choudhri, R. S. 1946. J . Econ. Entomol. 39, 537-538.

Wilson, J. K.,and Choudhri, R. S. 1948. J . Agr. Research 77, 25-32.

Wilson, P. W. 1940. Biochemistry of Symbiotic Nitrogen Fixation. Univ. Wisconsin Preaa, Madison.

Wilson, P. W., and Burton, J. C. 1938. J . Agr. Sci. 28, 307-323.

Woodruff, C.M. 1940. Soil Sci. Soc. Am. Proc. 4, 13-18.

Young, H.E. 1936. J . Auatralian Inst. Agr. Sci. 2, 32-34.

Zukovskaya, P.W. 1941. Microbiology (U.SS.R.) 10, 919.



Weed Control

A. S. CRAFTS AND W . A . HARVEY

Uniueraiiy of California. Davis. California

CONTENTS



Page

I . Introduction

. . . . . . . . . . . . . . . . . . . . . .

289

I1. Tillage. Cropping. and Competition in the Control of Weeds . . . . 290

I11. Chemical Weed Control . . . . . . . . . . . . . . . . . . 293

IV . Principles of Chemical Weed Control . . . . . . . . . . . . . 293

V. Herbicidal Action . . . . . . . . . . . . . . . . . . . . . 295

VI . Molecular Properties of Herbicides . . . . . . . . . . . . . . 296

VIT . EmuIsions and Emulsion Stabilizers . . . . . . . . . . . . . . 298

VIII . Selectivity of Herbicides . . . . . . . . . . . . . . . . . . 299

IX . The 2.4-D Herbicides . . . . . . . . . . . . . . . . . . . 300

X . Uses of 2.4-D . . . . . . . . . . . . . . . . . . . . . .

303

1 . General Contact Spray . . . . . . . . . . . . . . . . 303

2 . Selective Contact Spray . . . . . . . . . . . . . . . . 303

3. Translocated Spray . . . . . . . . . . . . . . . . . . 304

4 . Temporary Soil Sterilization . . . . . . . . . . . . . . . 305

5. Permanent Soil Sterilization . . . . . . . . . . . . . . . 307

XI . Nitro- and Chloro-Substituted Phenols . . . . . . . . . . . . . 307

XII.Oils . . . . . . . . . . . . . . . . . . . . . . . . . .

308

XI11. Other Organic and Inorganic Chemicals . . . . . . . . . . . . 310

1 . I P C (Isopropyl Phenylcarbamate) . . . . . . . . . . . . 310

2 . TCA (Trichloroacetic Acid) . . . . . . . . . . . . . . . 310

3. PMAS (Phenylmercuric Acetate) . . . . . . . . . . . . . 311

4 . Cyanamid and Cyanate . . . . . . . . . . . . . . . . . 311

5 . CS,, DD, Prochlors . . . . . . . . . . .

. . . . . . 311

6. Arsenic, Borax, ChIorate . . . . . . . . . . . . . . . . 312

XIV. Water Weed Control . . . . . . . . . . . . . . . . . . . 312

XV . Herbicide Application Equipment . . . . . . . . . . . . . . . 312

XVI . Drift, Volatilization, Blowing of Herbicides . Secondary and Residual

312

Effects . . . . . . . . . . . . . . . . . . . . . . . .

XVII . Flame Cultivation . . . . . . . . . . . . . . . . . . . .

314

XVIII . The New Agronomy . . . . . . . . . . . . . . . . . . . .

314

References . . . . . . . . . . . . . . . . . . . . . . .

315



I. INTRODUCTION

Chemical weed control has recently come to the forefront. as an important phase of modern scientific agriculture . With the introduction of

2,4-dichlorophenoxyacet.ic acid (2,4-D), tremendous strides have been

289



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VII. Influences of the Rhizosphere Flora on Succeeding or Associated Plants

Tải bản đầy đủ ngay(0 tr)

×