Tải bản đầy đủ - 0 (trang)
VI. CLINICAL TRIALS FOR AD TESTING OF POSSIBLE DISEASE-MODIFYING AGENTS

VI. CLINICAL TRIALS FOR AD TESTING OF POSSIBLE DISEASE-MODIFYING AGENTS

Tải bản đầy đủ - 0trang

damage has been inflicted. Disease-modifying therapies are most likely

to influence progression to disease and/or delay onset of symptoms.

Proper assessment of the effects of a therapy will require clinical trial

designs that make the appropriate measurements. It will be important

to assess plaque load and/or h-peptide level in patients treated with

aggregation inhibitors or other modes of reducing either brain hpeptide content or its effects in addition to the classical cognitive end

points. Whatever the outcome of the trials, in interpreting the results

for the development of new generations of therapeutics it is important

to determine whether the therapy accomplished what it was designed to

do—reduce amyloid peptide deposition. If h peptide is eliminated but

no therapeutic benefit is observed, we should conclude that the h

peptide is not the major player—at least in the patient population selected for study. The answer will be important in justifying future

pharmaceutical investment as well as in guiding future research for

effective therapies against AD.



REFERENCES

1. Davies SW, Beardsall K, Turmaine M, DiFiglia M, Aronin N, Bates GP.

Are neuronal intranuclear inclusions the common neuropathology of

triplet-repeat disorders with polyglutamine-repeat expansions? Lancet

1998; 351:131–133.

2. Kakizuka A. Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet 1998; 14:396–402.

3. Kim TW, Tanzi RE. Neuronal intranuclear inclusions in polyglutamine

diseases: nuclear weapons or nuclear fallout? Neuron 1998; 21: 657–659.

4. Koshy BT, Zoghbi HY. The CAG/polyglutamine tract diseases: gene

products and molecular pathogenesis. Brain Pathol 1997; 7:927–942.

5. Rubinaztein DC, Wyttenbach A, Rankin J. Intracellular inclusions,

pathological markers in diseases caused by expanded polyglutamine tracts?

J Med Genet 1999; 36:265–270.

6. Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B,

Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE. Huntingtinencoded polyglutamine expansions form amyloid-like protein aggregates in

vitro and in vivo. Cell 1997; 90:549–558.

7. Lathrop RH, Casale M, Tobias DJ, Marsh JL, Thompson LM. Modeling

protein homopolymeric repeats: possible polyglutamine structural motifs

for Huntington’s disease. Proc Int Conf Intelligent Syst Molec Biol 1998;

6:105–114.



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



8. Altschuler EL, Hud NV, Mazrimas JA, Rupp B. Random coil conformation for extended polyglutamine stretches in aqueous soluble monomeric peptides. J Peptide Res 1997; 50:73–75.

9. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R,

Bates GP, Lehrach H, Wanker EE. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 1999; 96:4604–4609.

10. Bates GP, Mangiarini L, Davies SW. Transgenic mice in the study

of polyglutamine repeat expansion diseases. Brain Pathol 1998; 8:

699–714.

11. Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN.

Recruitment and the role of nuclear localization in polyglutaminemediated aggregation. J Cell Biol 1998; 143:1457–1470.

12. Gourfinkel AI, Cancel G, Duyckaerts C, Faucheux B, Hauw JJ, Trottier Y,

Brice A, Agid Y, Hirsch EC. Neuronal distribution of intranuclear

inclusions in Huntington’s disease with adult onset. Neuroreport 1998;

9:1823–1826.

13. Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross

CA. Intranuclear neuronal inclusions in Huntington’s disease and

dentatorubral and pallidoluysian atrophy: correlation between the density

of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 1998;

4:387–397.

14. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP,

Aronin N. Aggregation of Huntingtin in neuronal intranuclear inclusions

and dystrophic neurites in brain. Science 1997; 277:1990–1993.

15. Duyckaerts C, Durr A, Cancel G, Brice A. Nuclear inclusions in

spinocerebellar ataxia type 1. Acta Neuropathol Berl 1999; 97:201–207.

16. Hayashi Y, Kakita A, Yamada M, Egawa S, Oyanagi S, Naito H, Tsuji S,

Takahashi H. Hereditary dentatorubral–pallidoluysian atrophy: ubiquitinated filamentous inclusions in the cerebellar dentate nucleus neurons.

Acta Neuropathol Berl 1998; 95:479–482.

17. Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel An I, Damier

P, Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A. Spinocerebellar

ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal

intranuclear inclusions. Hum Mol Genet 1998; 7:913–918.

18. Lieberman AP, Trojanowski JQ, Leonard DG, Chen KL, Barnett JL,

Leverenz JB, Bird TD, Robitaille Y, Malandrini A, Fischbeck KH. Ataxin

1 and ataxin 3 in neuronal intranuclear inclusion disease. Ann Neurol 1999;

46:271–273.

19. Schmidt T, Landwehrmeyer GB, Schmitt I, Trottier Y, Auburger G,

Laccone F, Klockgether T, Volpel M, Epplen JT, Schols L, Riess O. An

isoform of ataxin-3 accumulates in the nucleus of neuronal cells in

affected brain regions of SCA3 patients. Brain Pathol 1998; 8: 669–679.



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



20.



21.



22.



23.



24.

25.



26.



27.



28.



29.

30.



31.

32.



33.

34.



Goedert M. Filamentous nerve cell inclusions in neurodegenerative

diseases: tauopathies and a-synucleinopathies. Philos Trans R Soc Lond

B 1999; 354:1101–1118.

Jellinger KA. Movement disorders with tau protein cytoskeletal pathology.

Parkinson’s disease. In: Stern GM, ed. Advances in Neurology. Vol. 80.

Philadelphia: Lippincott, Williams & Wilkins, 1999:393–311.

Tolnay M, Probst A. Review: tau protein pathology in Alzheimer’s

disease and related disorders. Neuropathol Appl Neurobiol 1999; 25:

171–187.

Schweers O, Schonbrunn Hanebeck E, Marx A, Mandelkow E. Structural

studies of tau protein and Alzheimer paired helical filaments show no

evidence for beta-structure. J Biol Chem 1994; 269:24290–24297.

Delacourte A, Buee L. Normal and pathological tau proteins as factors for

microtubule assembly. Int Rev Cytol 1997; 171:167–224.

Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1

restores the functions of Alzheimer-associated phosphorylated tau protein

[see comments]. Nature 1999; 399:784–788.

Foster J, Hunter N. Transmissible spongiform encephalopathies: transmission, mechanism of disease, and persistence. Curr Opin Microbiol 1998;

1:442–447.

Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT Jr,

Caughey B. Species specificity in the cell-free conversion of prion protein to

protease-resistant forms: a model for the scrapie species barrier. Proc Natl

Acad USA 1995; 92:3923–3927.

Kellershohn N, Laurent M. Species barrier in prion diseases: a kinetic

interpretation based on the conformational adaptation of the prion

protein. Biochem J 1998; 334:539–545.

Cohen FE, Prusiner SB. Pathologic conformations of prion proteins. Annu

Rev Biochem 1998; 67:793–819.

Come JH, Fraser PE, Lansbury PT, Jr. A kinetic model for amyloid

formation in the prion diseases: importance of seeding. Proc Natl Acad Sci

USA 1993; 90:5959–5963.

Lansbury PT Jr. Yeast prions: inheritance by seeded protein polymerization? Curr Biol 1997; 7:R617–R619.

Saborio GP, Soto C, Kascsak RJ, Levy E, Kascsak R, Harris DA,

Frangione B. Cell-lysate conversion of prion protein into its proteaseresistant isoform suggests the participation of a cellular chaperone.

Biochem Biophys Res Commun 1999; 258:470–475.

Lansbury PT Jr, Caughey B. The chemistry of scrapie infection:

implications of the ‘ice 9’ metaphor. Chem Biol 1995; 2:1–5.

Edskes HK, Gray VT, Wickner RB. The [URE3] prion is an aggregated

form of Ure2p that can be cured by overexpression of Ure2p fragments.

Proc Natl Acad Sci USA 1999; 96:1498–1503.



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



35.



36.



37.



38.



39.



40.



41.

42.



43.



44.



45.



46.



47.



DeArmond SJ, Ironside JW. Neuropathology of prion diseases. In:

Prusiner SB, ed. Prion Biology and Diseases. Vol. 38. Cold Spring Harbor,

NY: Cold Spring Harbor Press, 1999:585–652.

Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE,

Prusiner SB. Eight prion strains have PrP(Sc) molecules with different

conformations [see comments]. Nat Med 1998; 4:1157–1165.

Caughey B, Raymond GJ, Bessen RA. Strain-dependent differences in

beta-sheet conformations of abnormal prion protein. J Biol Chem 1998;

273:32230–32235.

Keohane C. The human prion diseases. A review with special emphasis on

new variant CJD and comments on surveillance. Clin Exp Pathol 1999;

47:125–132.

Farrer M, Gwinn-Hardy K, Hutton M, Hardy J. The genetics of disorders

with synuclein pathology and parkinsonism. Hum Mol Genet 1999;

8:1901–1905.

Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A,

Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa

S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM,

Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the

alpha-synuclein gene identified in families with Parkinson’s disease. Science

1997; 276:2045–2047.

Polymeropoulos MH. Autosomal dominant Parkinson’s disease and alphasynuclein. Ann Neurol 1998; 44:S63–S64.

Wakabayashi K, Hansen LA, Vincent I, Mallory M, Masliah E. Neurofibrillary tangles in the dentate granule cells of patients with Alzheimer’s

disease, Lewy body disease and progressive supranuclear palsy. Acta

Neuropathol Berl 1997; 93:7–12.

Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski

JQ, Iwatsubo T. Aggregation of alpha-synuclein in Lewy bodies of

sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol

1998; 152:879–884.

Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PT, Goedert

M. Filamentous a-synuclein inclusions link multiple system atrophy with

Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998;

251:205–208.

Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr. NACP, a

protein implicated in Alzheimer’s disease and learning, is natively unfolded.

Biochemistry 1996; 35: 13709–13715.

Han H, Weinreb PH, Lansbury PT Jr. The core Alzheimer’s peptide NAC

forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a

common trigger or target in neurodegenerative disease? Chem Biol 1995;

2:163–169.

Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL. a-



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



48.



49.



50.



51.

52.



53.



54.

55.



56.



57.



58.



59.



60.



Synuclein fibrillogenesis is nucleation-dependent. Implications for the

pathogenesis of Parkinson’s disease. J Biol Chem 1999; 274:19509–19512.

Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman

SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron

M. Both familial Parkinson’s disease mutations accelerate alpha-synuclein

aggregation. J Biol Chem 1999; 274:9843–9846.

Durham HD, Roy J, Dong L, Figlewicz DA. Aggregation of mutant Cu/

Zn superoxide dismutase proteins in culture model of ALS. J Neuropathol

Exp Neurol 1997; 56:523–530.

Chou SM, Wang HS, Taniguchi A. Role of SOD-1 and nitric oxide/cyclic

GMP cascade on neurofilament aggregation in ALS/MND. J Neurol Sci

1996; 139 suppl:16–26.

Cleveland DW. From Charcot to SOD1: mechanisms of selective motor

neuron death in ALS. Neuron 1999; 24:525–520.

Vidal R, Fragione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J. A

stop-codon mutation in the BRI gene associated with familial British

dementia. Nature 1999; 399:776–781.

Davis RL, Shimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins

GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F, Krasnewich D,

Muenke M, Lawrence DA, Yerby MS, Shaw CM, Gooptu B, Elliott PR,

Finch JT, Carrell RW, Lomas DA. Famillial dementia caused by

polymerization of mutant neuroserpin. Nature 1999; 401:376–379.

Carrell RW, Lomas DA. Conformational disease. Lancet 1997; 350:134–138.

Baures PW, Peterson SA, Kelly JW. Discovering transthyretin amyloid

fibril inhibitors by limited screening. Bioorg Med Chem 1998; 6:

1389–1401.

Caughey WS, Raymond LD, Horiuchi M, Caughey B. Inhibition of

protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci USA 1998; 95:12117–12122.

Peterson SA, Klabunde T, Lashuel HA, Purkey H, Sacchettini JC, Kelly

JW. Inhibiting transthyretin conformation changes that lead to amyloid

fibril formation. Proc Natl Acad Sci USA 1998; 95:12956–12960.

Tagliavini F, McArthur RA, Canciani B, Giaccone G, Porro M, Bugiani

M, Lievens PM, Bugiani O, Peri E, Dall’Ara P, Rocchi M, Poli G,

Forloni G, Bandiera T, Varasi M, Suarato A, Cassutti P, Cervini MA,

Lansen J, Salmona M, Post C. Effectiveness of anthracycline against

experimental prion disease in Syrian hamsters. Science 1997; 276:1119–

1122.

Oza VB, Petrassi HM, Purkey HE, Kelly JW. Synthesis and evaluation of

anthranilic acid-based transthyretin amyloid fibril inhibitors. Bioorg Med

Chem Lett 1999; 9:1–6.

Oosawa F, Akakura S. Kinetics of Polymerization. Thermodynamics of the

Polymerization of Protein. New York: Academic Press, 1975:41–55.



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



61. Oosawa F, Higashi S. Statistical thermodynamics of polymerization and

polymorphism of protein. In: Snell FM, ed. Progress in Theoretical

Biology. New York: Academic Press, 1967:79–164.

62. Bishop MF, Ferrone FA. Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway.

Biophys J 1984; 46:631–644.

63. Flyvbjerg H, Jobs E, Leibler S. Kinetics of self-assembling microtubules:

an ‘‘inverse problem’’ in biochemistry. Proc Natl Acad Sci USA 1996;

93:5975–5979.

64. Endres GF, Ehrenpreis S, Scheraga HA. Covalent bonding in the reversible polymerization of fibrin monomer. Biochim Biophys Acta 1965;

104:620–623.

65. Bark N, Foldes Papp Z, Rigler R. The incipient stage in thrombin-induced

fibrin polymerization detected by FCS at the single molecule level. Biochem

Biophys Res Commun 1999; 260:35–41.

66. Mosesson MW. Fibrinogen and fibrin polymerization: appraisal of the

binding events that accompany fibrin generation and fibrin clot assembly.

Blood Coagul Fibrinol 1997; 8:257–267.

67. Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U. The

structure of crystalline profilin-beta-actin. Nature 1993; 365:810–816.

68. Weeds AG, Gooch J, McLauglin P, Pope B, Bengtsdotter M, Karlsson R.

Identification of the trapped calcium in the gelsolin segment 1–actin

complex: implications for the role of calcium in the control of gelsolin

activity. FEBS Lett 1995; 360:227–230.

69. Lowe J. Crystal structure determination of FtsZ from Methanococcus

jannaschii. J Struct Biol 1998; 124:235–243.

70. Ferrone FA, Hofrichter J, Eaton WA. Kinetics of sickle hemoglobin

polymerization II. A double nucleation mechanism. J Mol Biol 1985;

183:611–633.

71. Ferrone FA, Hofrichter J, Eaton WA. Kinetics of sickle hemoglobin

polymerization. I: Studies using temperature jump and laser photolysis

techniques. J Mol Biol 1985; 183:591–610.

72. Eaton WA, Hofrichter J. The biophysics of sickle cell hydroxyurea therapy.

Science 1995; 268:1142–1143.

73. Lashuel HA, Lai Z, Kelly JW. Characterization of the transthyretin acid

denaturation pathways by analytical ultracentrifugation: implications for

wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 1998;

37:17851–17864.

74. Lai Z, Colon W, Kelly JW. The acid-mediated denaturation pathway of

transthyretin yields a conformational intermediate that can self-assemble

into amyloid. Biochemistry 1996; 35:6470–6482.

75. Kelly JW, Colon W, Lai Z, Lashuel HA, McCulloch J, McCutchen SL,

Miroy GJ, Peterson SA. Transthyretin quaternary and tertiary structural



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



76.



77.



78.



79.



80.



81.



82.



83.

84.



85.



86.



87.



changes facilitate misassembly into amyloid. Adv Protein Chem 1997;

50:161–181.

Bonifacio MJ, Sakaki Y, Saraiva MJ. ‘‘In vitro’’ amyloid fibril formation

from transthyretin: the influence of ions and the amyloidogenicity of TTR

variants. Biochim Biophys Acta 1996; 1316:35–42.

Yamada T, Kluve Beckerman B, Liepnieks JJ, Benson MD. Fibril formation

from recombinant human serum amyloid A. Biochim Biophys Acta 1994;

1226:323–329.

Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E. Rapid assembly

of Alzheimer-like paired helical filaments from microtubule-associated

protein tau monitored by flourescence in solution. Biochemistry 1998;

37:10223–10230.

Schweers O, Mandelkow EM, Biernat J, Mandelkow E. Oxidation of

cysteine-322 in the repeat domain of microtubule-associated protein tau

controls the in vitro assembly of paired helical filaments. Proc Natl Acad

Sci USA 1995; 92:8463–8467.

Wilson DM, Binder LI. Free fatty acids stimulate the polymerization of

tau and amyloid beta peptides. In vitro evidence for a common effector of

pathogenesis in Alzheimer’s disease. Am J Pathol 1997; 150:2181–2195.

Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W,

Kapurniotu A. Conformational transitions of islet amyloid polypeptide

(IAPP) in amyloid formation in vitro. J Mol Biol 1999; 287:781–796.

Charge SB, de Koning EJ, Clark A. Effect of pH and insulin on

fibrillogenesis of islet amyloid polypeptide in vitro. Biochemistry 1995;

34:14588–14593.

Wetzel R. Domain stability in immunoglobulin light chain deposition

disorders. Adv Protein Chem 1997; 50:183–242.

Helms LR, Wetzel R. Specificity of abnormal assembly in immunoglobulin light chain deposition disease and amyloidosis. J Mol Biol 1996;

257:77–86.

Stevens PW, Raffen R, Hanson DK, Deng YL, Berrios Hammond M,

Westholm FA, Murphy C, Eulitz M, Wetzel R, Solomon A, et al.

Recombinant immunoglobulin variable domains generated from synthetic

genes provide a system for in vitro characterization of light-chain amyloid

proteins. Protein Sci 1995; 4:421–432.

Hollenbach B, Scherzinger E, Schweiger K, Lurz R, Lehrach H, Wanker

EE. Aggregation of truncated GST-HD exon 1 fusion proteins containing

normal range and expanded glutamine repeats. Philos Trans R Soc Lond B

Biol Sci 1999; 354:991–994.

Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A,

Yates J, Cotman C, Glabe C. Assembly and aggregation properties of

synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 1992;

267:546–554.



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



88. Fraser PE, McLachlan DR, Surewicz WK, Mizzen CA, Snow AD, Nguyen

JT, Kirschner DA. Conformation and fibrillogenesis of Alzheimer A beta

peptides with selected substitution of charged residues. J Mol Biol 1994;

244:64–73.

89. Garzon-Rodriguez W, Sepulveda-Becerra M, Milton S, Glabe CG. Soluble

amyloid Abeta-(1–40) exists as a stable dimer at low concentrations. J Biol

Chem 1997; 272:21037–21044.

90. Soto C, Castano EM, Kumar RA, Beavis RC, Frangione B. Fibrillogenesis

of synthetic amyloid-beta peptides is dependent on their initial secondary

structure. Neurosci Lett 1995; 200:105–108.

91. Soto C, Castano EM, Frangione B, Inestrosa NC. The alpha-helica to

beta-strand transition in the amino-terminal fragment of the amyloid betapeptide modulates amyloid formation. J Biol Chem 1995; 270:3063–3067.

92. Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT Jr.

Apolipoprotein E is a kinetic but not a thermodynamic of amyloid

formation: implications for the pathogenesis and treatment of Alzheimer

disease. Proc Natl Acad Sci USA 1995; 92:763–767.

93. Harper JD, Wong SS, Lieber CM, Lansbury PT Jr. Assembly of A amyloid

protofibrils: an in vitro model for a possible early event in Alzheimer’s

disease. Biochemistry 1999; 38:8972–8980.

94. Harper JD, Lieber CM, Lansbury PT Jr. Atomic force microscopic

imaging of seeded fibril formation and fibril branching by the Alzheimer’s

disease amyloid-beta protein. Chem Biol 1997; 4:951–959.

95. Harper JD, Lansbury PT Jr. Models of amyloid seeding in Alzheimer’s

disease and scrapie: mechanistic truths and physiological consequences of

the time-dependent solubility of amyloid proteins. Annu Rev Biochem

1997; 66:385–407.

96. Jarrett JT, Lansbury PT Jr. Amyloid fibril formation requires a

chemically discriminating nucleation event: studies of an amyloidogenic

sequence from the bacterial protein OsmB. Biochemistry 1992; 31:

12345–12352.

97. LeVine H III. Screening for pharmacologic inhibitors of amyloid fibril

formation. Methods Enzymol 1999; 309:467–476.

98. Lomakin A, Teplow DB, Kirschner DA, Benedek GB. Kinetic theory of

fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci USA 1997;

94:7942–7947.

99. Shen CL, Scott GL, Merchant F, Murphy RM. Light scattering analysis of

fibril growth from the amino-terminal fragment beta(1–28) of beta-amyloid

peptide. Biophys J 1993; 65:2383–2395.

100. Tomski SJ, Murphy RM. Kinetics of aggregation of synthetic betaamyloid peptide. Arch Biochem Biophys 1992; 294:630–638.

101. Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB. On the

nucleation and growth of amyloid beta protein fibrils: detection of nuclei



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



102.



103.



104.



105.



106.



107.



108.



109.



110.

111.



112.



113.

114.



115.



and quantitation of rate constants. Proc Natl Acad Sci USA 1996;

93:1125–1129.

Stine WB Jr, Snyder SW, Ladror US, Wade WS, Miller MF, Perun TJ,

Holzman TF, Krafft GA. The nanometer-scale structure of amyloid-beta

visualized by atomic force microscopy. J Protein Chem 1996; 15:193–

203.

Harper JD, Wong SS, Lieber CM, Lansbury PT. Observation of

metastable Abeta amyloid protofibrils by atomic force microscopy. Chem

Biol 1997; 4:119–125.

Kowalewski T, Holtzman DM. In situ atomic force microscopy study of

Alzheimer’s beta-amyloid peptide on different substrates: new insights

into mechanism of beta-sheet formation. Proc Natl Acad USA 1999;

96:3688–3693.

Walsh DM, Hartley DM, Kusomoto Y, Fezoui Y, Condron MM,

Lomakin A, Benedek GB, Selkoe DJ, Teplow DB. Amyloid h-protein

fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 1999; 274:25949–25952.

Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB.

Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 1997; 272:22364–22372.

Blake CC, Serpell LC, Sunde M, Sandgren O, Lundgren E. A molecular

model of the amyloid fibril. CIBA Found Symp 1996; 199:6–15; discussion

15–21, 40–16.

Inouye H, Fraser PE, Kirschner DA. Structure of beta-crystalline

assemblies formed by Alzheimer beta-amyloid protein analogues: analysis

by X-ray diffraction. Biophys J 1993; 64:502–519.

Li L, Darden TA, Bartolotti L, Kominos D, Pederson LG. An atomic

model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys J 1999; 76:2871–2878.

Sunde M, Blake C. The structure of amyloid fibrils by electron microscopy

and X-ray diffraction. Adv. Protein Chem. 1997; 50:123–159.

Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC.

Common core structure of amyloid fibrils by synchrotron X-ray

diffraction. J Mol Biol 1997; 273:729–739.

Nguyen JT, Inouye H, Baldwin MA, Fletterick RJ, Cohen FE, Prusiner

SB, Kirschner DA. X-ray diffraction of scrapie prion rods and PrP

peptides. J Mol Biol 1995; 252:412–422.

Lazo ND, Downing DT. Beta-helical fibrils from a model peptide.

Biochem Biophys Res Commun 1997; 235:675–679.

Goldsbury C, Kistler J, Aebi U, Arvinte T, Cooper GJ. Watching amyloid

fibrils grow by time-lapse atomic force microscopy. J Mol Biol 1999;

285:33–39.

Wall J, Schell M, Murphy C, Hrncic R, Stevens FJ, Solomon A.



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



116.

117.

118.



119.



120.



121.



122.

123.

124.



125.



126.



127.



128.



Thermodynamic instability of human E6 light chains: correlation with

fibrillogenicity. Biochemistry 1999; 38:14101–14108.

Ferrone F. Analysis of protein aggregation kinetics. Methods Enzymol

1999; 309:256–274.

Naiki H, Nakakuki K. First-order kinetic model of Alzheimer’s betaamyloid fibril extension in vitro. Lab Invest 1996; 74:374–383.

Maggio JE, Stimson ER, Ghilardi JR, Allen CJ, Dahl CE, Whitcomb DC,

et al. Reversible in vitro growth of Alzheimer disease h-amyloid plaques by

deposition of labeled amyloid peptide. Proc Natl Acad Sci USA 1992;

89:5462–5466.

Esler WP, Stimson ER, Ghilardi JR, Felix AM, Lu Y-A, Vinters HV,

Mantyh PJ, Maggio JE. Ah deposition inhibitor screen using synthetic

amyloid. Nat Biotechnol 1997; 15:258–263.

Esler WP, Stimson ER, Ghilardi JR, Lu YA, Felix AM, Vinters HV,

Mantyh PW, Lee JP, Maggio JE. Point substitution in the central

hydrophobic cluster of a human beta-amyloid congener disrupts

peptide folding and abolishes plaque competence. Biochemistry 1996;

35:13914–13921.

Lee JP, Stimson ER, Ghilardi JR, Mantyh PW, Lu Y-A, Felix AM,

Llanos W, Behbin A, Cummings M, Criekinge MV, Timms W, Maggio

JE. 1H NMR of Ah amyloid peptide congeners in water solution.

Conformational changes correlate with plaque competence. Biochemistry

1995; 34:5191–5200.

LeVine H III. Soluble multimeric Alzheimer beta(1–40) preamyloid

complexes in dilute solution. Neurobiol Aging 1995; 16:755–764.

Dudek SM, Johnson GV. Transglutaminase facilitates the formation of

polymers of the beta-amyloid peptide. Brain Res 1994; 651:129–133.

Rasmussen LK, Sorensen ES, Petersen TE, Gliemann J, Jensen PH.

Identification of glutamine and lysine residues in Alzheimer amyloid

beta A4 peptide responsible for transglutaminase-catalysed homopolymerization and cross-linking to alpha 2M receptor. FEBS Lett 1994;

338:161–166.

Nybo M, Svehag SE, Holm Nielsen E. An ultrastructural study of amyloid

intermediates in A beta(1–42) fibrillogenesis. Scand J Immunol 1999;

49:219–223.

Poduslo JF, Curran GL, Kumar A, Frangione B, Soto C. Beta-sheet

breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased

blood–brain barrier permeability and resistance to proteolytic degradation

in plasma. J Neurobiol 1999; 39:371–382.

Pallitto MM, Ghanta J, Heizelman P, Kiessling LL, Murphy RM.

Recognition sequence design for peptidyl modulators of beta-amyloid

aggregation and toxicity. Biochemistry 1999; 38:3570–3578.

Tjernberg LO, Lilliehook C, Callaway DJ, Naslund J, Hahne S, Thyberg J,



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



129.



130.



131.



132.



133.



134.



135.



136.



137.



138.



139.



140.



Terenius L, Nordstedt C. Controlling amyloid beta-peptide fibril formation

with protease-stable ligands. J Biol Chem 1997; 272:12601–12605.

Ghanta J, Shen CL, Kiessling LL, Murphy RM. A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem 1996; 271:

29525–29528.

Howlett DR, Perry AE, Godfrey F, Swatton JE, Jennings KH, Spitzfaden

C, Wadsworth H, Wood SJ, Markwell RE. Inhibition of fibril formation in

beta-amyloid peptide by a novel series of benzofurans. Biochem J 1999;

340:283–289.

Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M,

Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch

CE, Krafft GA, Klein WL. Diffusible, nonfibrillar ligands derived from

Abeta(1–42) are potent central nervous system neurotoxins. Proc Natl

Acad Sci USA 1998; 95:6448–6453.

Roher AE, Chaney MO, Kuo YM, Webster SD, Stine WB, Haverkamp

LJ, Woods AS, Cotter RJ, Tuohy JM, Krafft GA, Bonnell BS, Emmerling

MR. Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic

and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 1996;

271:20631–20635.

Liu Y, Schubert D. Cytotoxic amyloid peptides inhibit cellular 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MMT) reduction

by enhancing MTT formazan exocytosis. J Neurochem 1997; 69:2285–2293.

Patel AJ, Gunasekera S, Jen A, Rohan de Silva HA. h-Amyloid-mediated

inhibition of redox activity (MMT reduction) is not an indicator of

astroglial degeneration. Neuroreport 1996; 7:2026–2030.

Isobe I, Michikawa M, Yanagisawa K. Enhancement of MTT, a

tetrazolium salt, exocytosis by amyloid beta-protein and chloroquine in

cultured rat astrocytes. Neurosci Lett 1999; 266:129–132.

Abe K, Saito H. Amyloid beta protein inhibits cellular MTT reduction not

by suppression of mitochondrial succinate dehydrogenase but by

acceleration of MTT formazan exocytosis in cultured rat cortical

astrocytes. Neurosci Res 1998; 31:295–305.

Van Nostrand WE, Melchor JP, Ruffini L. Pathologic amyloid betaprotein cell surface fibril assembly on cultured human cerebrovascular

smooth muscle cells. J Neurochem 1998; 70:216–223.

Wisniewski HM, Frackowiak J, Mazur Kolecka B. In vitro production of

beta-amyloid in smooth muscle cells isolated from amylid angiopathyaffected vessels. Neurosci Lett 1995; 183:120–123.

Frackowiak J, Mazur Kolecka B, Wisniewski HM, Potempska A, Carroll

RT, Emmerling MR, Kim KS. Secretion and accumulation of Alzheimer’s

beta-protein by cultured vascular smooth muscle cells from old and young

dogs. Brain Res 1995; 676:225–230.

Crawford F, Soto C, Suo Z, Fang C, Parker T, Sawar A, Frangione B,



Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

VI. CLINICAL TRIALS FOR AD TESTING OF POSSIBLE DISEASE-MODIFYING AGENTS

Tải bản đầy đủ ngay(0 tr)

×