Tải bản đầy đủ - 0 (trang)
4 Question 4: How Does Directed Transport of DC-SIGN Clusters in the Plane of the Plasma Membrane Occur and What Is Its Role...

4 Question 4: How Does Directed Transport of DC-SIGN Clusters in the Plane of the Plasma Membrane Occur and What Is Its Role...

Tải bản đầy đủ - 0trang

Plasma Membrane DC-SIGN Clusters and Their Lateral Transport: Role in the. . .



341



In all, the investigation of DC-SIGN and its relation to DENV entry has proved

to be a fertile ground for those interested in the continuing mysteries of the plasma

membrane and its associated structures.

Acknowledgements This work was supported by NIH grant GM40402 (K.J. & N.L.T.) and

RO1-AI107731 (A.M.dS.).



References

1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature

392:245–252

2. Weiss JM et al (1998) CD44 variant isoforms are essential for the function of epidermal

Langerhans cells and dendritic cells. Cell Adhes Commun 6:157–160

3. Bhatt S et al (2013) The global distribution and burden of dengue. Nature 496:504–507

4. Katzelnick LC et al (2015) Dengue viruses cluster antigenically but not as discrete serotypes.

Science 349:1338–1343

5. Geijtenbeek TB et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that

enhances trans-infection of T cells. Cell 100:587–597

6. Tassaneetrithep B et al (2003) DC-SIGN (CD209) mediates dengue virus infection of human

dendritic cells. J Exp Med 197:823–829

7. Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell

Microbiol 7:481–488

8. Guo Y et al (2004) Structural basis for distinct ligand-binding and targeting properties of the

receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11:591–598

9. Bernhard OK, Lai J, Wilkinson J, Sheil MM, Cunningham AL (2004) Proteomic analysis of

DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association

with CD4. J Biol Chem 279:51828–51835

10. Feinberg H, Guo Y, Mitchell DA, Drickamer K, Weis WI (2005) Extended neck regions

stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J Biol Chem 280:1327–35

11. Tabarani G et al (2009) DC-SIGN neck domain is a pH-sensor controlling oligomerization:

SAXS and hydrodynamic studies of extracellular domain. J Biol Chem 284:21229–21240

12. Liu et al (2016) Beyond attachment: roles of DC-SIGN in dengue virus infection. Traffic

(in revision)

13. Cambi A et al (2004) Microdomains of the C-type lectin DC-SIGN are portals for virus entry

into dendritic cells. J Cell Biol 164:145–155

14. Koopman M et al (2004) Near-field scanning optical microscopy in liquid for high resolution

single molecule detection on dendritic cells. FEBS Lett 573:6–10

15. Neumann AK, Thompson NL, Jacobson K (2008) Distribution and lateral mobility of

DC-SIGN on immature dendritic cells–implications for pathogen uptake. J Cell Sci

121:634–643

16. Liu P et al (2014) Low copy numbers of DC-SIGN in cell membrane microdomains: implications for structure and function. Traffic 15:179–196

17. Itano MS et al (2011) DC-SIGN and influenza hemagglutinin dynamics in plasma membrane

microdomains are markedly different. Biophys J 100:2662–2670

18. Itano MS et al (2012) Super-resolution imaging of C-type lectin and influenza hemagglutinin

nanodomains on plasma membranes using blink microscopy. Biophys J 102:1534–1542

19. Liu P et al (2012) The formation and stability of DC-SIGN microdomains require its extracellular moiety. Traffic 13:715–726

20. Jaqaman K et al (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat

Methods 5:695–702



342



K. Jacobson et al.



21. Manzo C et al (2012) The neck region of the C-type lectin DC-SIGN regulates its surface

spatiotemporal organization and virus-binding capacity on antigen-presenting cells. J Biol

Chem 287:38946–38955

22. Liu P et al (2015) How dengue virus enters cells via the receptor DC-SIGN. Poster presented at

the American Society for Cell Biology Meeting, San Diego

23. Garcia-Parajo MF, Cambi A, Torreno-Pina JA, Thompson N, Jacobson K (2014)

Nanoclustering as a dominant feature of plasma membrane organization. J Cell Sci

127:4995–5005

24. Betts L et al (2015) A proteomics study of membrane microdomains of the dengue virus

attachment factor DC-SIGN reveals novel binding partners. Poster presented at American

Society for Cell Biology Annual Meeting, San Diego

25. Itano MS et al (2014) Super-resolution imaging of C-type lectin spatial rearrangement within

the dendritic cell plasma membrane at fungal microbe contact sites. Front Phys 2:14



Index



A

ACDAN, 198, 200, 204–209

Acetylcholine, 35, 36

Actin, 278

Active acousto-optic modelocking, 166

6-Acyl-2-(dimethylamino)naphthalene, 197

Adenine, 9

Allosteric regulation, 217–245

Allostery, 235

Alzheimer’s disease, 181, 193

Androgen receptors (AR), 240

Anilinonaphthalene sulfonate (ANS), 5, 96,

256, 260

Anisotropy, 51, 53, 60, 69, 275, 293

based assays, 95

decay, 61, 81, 89, 290

Antioxidants, 179, 193

Apoflavodoxin, 83

Association-induction (A-I) hypothesis

(G. Ling), 211

ATP, 197, 203, 205, 224

ATTO647N, 318



B

Bianthryl, 118

Biosensor probes, 154

Bovine serum albumin, 5, 199, 294

Brand, L., 7



C

Carbohydrate recognition domain (CRD), 333

Cavity dumping, 168–171

CD7(6), 125



Cdc42, GTP-bound, 281

Cells, 4, 125, 143, 287, 332

Charge transfer (CT), 62, 91, 118,

130, 198

Cholesterol, 179–193

Chromatin, 287

Chrysenebutyric acid, 218

Chymotrypsin, 274

Coherent antiStokes Raman spectroscopy

(CARS), 175

Collimation, 165

Combretastatin A4 disodium phosphate

(CA4P), 192

Continuous-wave (CW) STED, 311, 319

Cornea transplant, 12

Coupling free energy, 217, 220, 228

Cross-correlation, 174

Cytochrome c, 2



D

D’Alessio, J.T., 22, 30, 33, 38, 42, 48

DANCA, 8, 199

Dansyl chloride, 4, 271–277

1,8-Dansyl sulfonic acid, 273

DAS, 255

DC-SIGN, 331

Dead time, 68, 77

Decay-associated spectra (DAS), 257

Dehydroergosterol (DHE), 182

Dendritic cells, 332

Dengue virus (DENV), 331

Dielectric relaxation, 113, 118, 122, 127, 258

4’-(Diethylamino)-3-hydroxyflavone, 121

Diffusion, 287



D.M. Jameson (ed.), Perspectives on Fluorescence: A Tribute to Gregorio Weber,

Springer Ser Fluoresc (2016) 17: 343–346, DOI 10.1007/978-3-319-41328-0,

© Springer International Publishing Switzerland 2016



343



344

2-Diisopropylamino-6-lauroylnaphthalene

(LAURISAN), 199

Diketone PHADAN (DKPHADAN), 180

2-(Dimethylamino)-6-acylnaphthalenes, 34,

198

Dimethylaminobenzonitrile (DMABN), 120,

130

1-Dimethylaminonaphthalene-5sulfonamidoethyl-trimethylammonium,

34

1,8-Dimethylaminonaphthalene sulfonic acid,

273

Dimethylaminonaphthalene sulfonyl chloride

(Dansyl-Cl), 271

1,4-Diphenyl-1,3-butadiene, 120

1,6-Diphenyl-1,3,5-hexatriene (DPH), 181

Directed transfer, 123

Dixon, M., 2, 25, 45, 147

DNA density, 297–300

DNETMA (dansyl-choline), 34

D2O, 207

6-Dodecanoyl-2-[N-methyl-N(carboxymethyl)amino]naphthalene

(C-LAURDAN), 199

Drickamer, H.G., 9, 59

Duty cycle, 77



E

Enhanced cyan FP (ECFP), 154

Entropy domination, 217

Estrogen receptors (ER), 240

Excited-state intramolecular proton transfer

(ESIPT), 121



F

FAD, 4, 9, 63

Femtosecond laser, 163, 317

Ferris, F., 8

Fibrinogen, 18, 30, 31

Flavin mononucleotide, 273, 278, 284

Flavins, 2, 57–64, 147, 268

Flavinyl tryptophan methyl esters, 58

Flavodoxins, 59

Flavoproteins, 2, 51, 57, 147

FLIM, 54, 57, 64, 143, 158, 318, 322

FLIMbox, 67, 69, 75

Fluorescence anisotropy (FA), 60–64, 69,

81–91, 238, 247, 275, 278, 293

Fluorescence correlation spectroscopy (FCS),

57, 63, 242, 287

Fluorescence cross-correlation spectroscopy

(FCCS), 242–246

Fluorescence decay time, 67



Index

Fluorescence lifetime imaging microscopy

(FLIM), 54, 57, 64, 81, 143, 146, 158,

318, 322

Fluorescence polarization, 57, 81, 95, 217, 271

Fluorescence recovery after photobleaching

(FRAP), 290, 293, 296, 300, 336

Fluorescent probes, 179, 197

Fluorescent proteins (FPs), 144

5-Fluorotryptophan, 263

FMN, 9, 60

F€

orster distance, 148

Free energy coupling, 235

Frequency domain, 54, 67–79, 150

FRET, 52, 57, 82, 143, 146, 149, 158, 274, 279,

318

Fructose bis-phosphate (FBP), 243

FSS, 255



G

Gated CW-STED microscopy, 319

Gaviola, E., 29, 42, 46–53, 97, 145–147, 150

Gene expression, 235

Generalized polarization (GP), 202

Giant unilamellar vesicles (GUVs), 184

Global analysis, 81

Glucocorticoid receptors (GR), 240

Gluconeogenesis, 243

Glycerol, 63, 97, 112, 119, 200, 259, 275

Glycolysis, 197, 202

Gratton–Limkeman multifrequency domain

fluorometer, 72

Green fluorescent protein (GFP), 153, 287,

289, 301

GTP-bound Cdc42, 281

Guanidine hydrochloride (GuHCl), 81

Gunsalus, I.C., 7, 51



H

Heterogeneity, 91, 113, 128, 172, 199, 255,

257, 294, 326, 334

High-pressure fluorescence, 57

Homotransfer, 57

Houssay, B., 2, 18, 28, 30, 42, 47

Hughes, D., 4, 5

Hydrogels, 203, 204, 209–212

3-Hydroxyflavone (3HF), 121

2-Hydroxy-6-lauroylnaphthalene (LAURNA),

199



I

IAEDANS, 7, 273

Inhomogeneous broadening, 95, 102



Index

Intracellular environment, 203

Intramolecular charge transfer (ICT), 119

Isoalloxazine, 9

Isorelaxation point, 111, 116



J

Jameson, D., 13, 15, 151, 181, 218, 219



K

Kasha’s rule, 98, 104, 132

Kerr lens modelocking, 171

K1 multifrequency phase fluorometer, 73

Krebs, H., 4, 11, 58



L

Lac repressor, 237

Lambda Cro repressor, 237

Lardy, H., 218–221

Lasers, 163

Lateral mobility, 331, 337

LAURDAN, 7, 181, 197

Leloir, L.F., 18

Lifetime, 81, 143, 146

decay, 67

Light-induced rotation, 116

Lignum nephriticum, 50

Ling, G., 197, 211

Lipoamide dehydrogenase, 63

Liposomes, 179, 180, 184, 191–193

Lippert equation, 256

Lloyd, D., 4, 7, 11

L20, ribosomal proetin, 241

Luciferases, 64, 279

Lumazine-binding protein (LUMP), 271, 279

Lysozyme, 331



M

Matlaline, 50

MCerulean, 154

Membranes, lateral organization, 179, 181

nanodomains, 331

rafts, 190

Metabolism, oscillatory, 197

2-Methoxy-6-lauroylnaphthalene

(LAURMEN), 199

6-Methoxyquinoline, 130

Microspectroscopy, 57

Molecular crowding, 197

Molecular relaxation, 109



345

Monardes, N., 50

Multifrequency, 67

Multiple scan-speed image correlation

spectroscopy (msICS), 291

Myosin, 278



N

N-Acetyl-L-tryptophanamide (NATA), 81, 83

NADH, 4, 203, 268, 278

Nanosecond dynamics, 69, 311

Nanosecond time-resolved fluorescence, 255

Nuclear pore complex (NPC), 287, 290, 301,

306

Nuclear receptors (NR), 240

Nucleus, diffusion, 300



O

Oligomerization, 221, 235, 306

Oscillatory metabolism, 197, 202



P

1-Palmitoyl-2-oleoyl-sn-glycerolphosphocholine (POPC), 183

6-Palmitoyl-2-[[(2-trimethylammonium)ethyl]

methyl]amino] naphthalene

(PATMAN), 199

Parallel fluorometer, 67, 74

Parametric gain, 171

Passive modelocking, 168

Perrin, F., 2, 14, 33

Perrin–Weber equation, 275, 281

Perylene, 331

PHADAN (6-phenylacetyl-2dimethylaminonaphthalene), 180

Phasor plots, 152

Phenylalanine, 82

1-Phenylnaphthylamine, 113

Phosphofructokinase (PFK), 217

Phospho(enol)pyruvate (PEP), 228

Photocytotoxicity, 278

Photoinduced electron transfer (PET), 118

Photon counting multifrequency parallel

fluorometer, 78

Photon histograms, 75

Photoselection, 102

Picosecond, 163

PRODAN, 7, 34, 197

Proteins, 1, 143

denaturant, 81

dynamics, 225



346

Proteins (cont.)

fluorescence, 153, 255

hydrodynamics, 275

interactions, 143

oligomerization, 235

relaxation, 255

Pseudo-TDFFS, 255

Pulsed sources, 73

Pyrenebutyric acid, 7

Pyrene butyric acid (PBC), 36

1-Pyrenebutyric acid N-hydroxysuccinimide

ester, 273



R

Reactive oxygen species (ROS), 193

Red edge, 57, 60, 95–131, 259

Relaxation, 109, 197

dielectric, 113, 118, 122, 127, 258

molecular, 109, 117

proteins, 255

solvent, 51, 100, 127, 172, 205,

255, 259

water, 197, 210

Ribityl-lumazine, 273, 279, 281

Riboflavin, 4, 50

RNA polymerase, 247



S

Sanger, F., 12, 43

Semiconductor saturable absorber

modelocking (SESAM), 169

Separation of photons by lifetime tuning

(SPLIT)-STED microscopy, 311, 318,

322

Shifts, 125

Single particle tracking (SPT), 290, 301

Single-point fluorescence correlation

spectroscopy (spFCS), 290

Solvation dynamics, 95

Solvent relaxation, 51, 100, 127, 172, 205, 255,

259

Spectral bleedthrough (SBT), 149

Spectral overlap integral, 148

Spencer and Weber cross-correlation

frequency domain fluorometer, 70

Static fluorescence quenching, 57

Sterols, membranes, superlattices, 179–193

Stimulated emission depletion (STED), 290,

311

Superresolution microscopy, 175,

311, 331



Index

T

TDFFS, 255

TDSS, 255

Teale, J., 5, 82, 272

Time-correlated single photon counting

(TCSPC), 59, 67, 81, 84, 168

Time-dependent spectral shifts, 255

Time resolution, 63, 68, 78, 112, 267, 301

Time-resolved emission spectra (TRES), 255,

257

Toluidino naphthalene sulfonate (TNS), 259

Total internal reflection fluorescence

microscopy (TIRFM), 331, 334

Transcription, 235

Transferrin receptor, 294

Translation, 235

Tropomyosin, 277

Troshin’s sorption theory, 211

Trp repressor, 238

Tryptophan, 4, 6, 8, 36, 52, 58–60, 81, 91, 97,

112, 127, 131, 172, 228, 237–240, 255

Tunable lasers, 163, 168, 171

Tunable timescales, 291–296, 306

Turquoise-5aa-Venus (T5V), 155

Turquoise-46aa-Venus, 155

Twisted intramolecular charge transfer (TICT),

120, 130

Two-photon excitation, 311

Two-state excited-state interactions, 258

Tyrosine, 4, 6, 61, 82, 97, 154, 262



U

Ultrafast fluorescence spectroscopy, 57, 63,

163, 173, 306



V

Visser, A., 12



W

Water, 172, 175, 199, 289

relaxation, 197, 210

Wavelength-selective effects, 114

Weber free energy coupling, 245

Weber, Gregorio, 1, 17, 49, 67, 261, 272, 288,

326, 331

Weber number, 42, 52



Y

Yellow FP (EYFP), 154



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

4 Question 4: How Does Directed Transport of DC-SIGN Clusters in the Plane of the Plasma Membrane Occur and What Is Its Role...

Tải bản đầy đủ ngay(0 tr)

×