Tải bản đầy đủ - 0 (trang)
Molecular Schizophrenics: Switchable Materials with Multiple Functions

Molecular Schizophrenics: Switchable Materials with Multiple Functions

Tải bản đầy đủ - 0trang

630



Chapter 21 Bioinspired Block Copolymer-Based Hybrid Materials



Although the precise cutoff may vary depending on enthalpic considerations and NP

concentration, this heuristic provides a guideline for NP size.

Casting a film of a macroscopically homogeneous solution of aged NPs and block

copolymer resulted in a homogeneous, shiny black solid, which was weak and brittle

(Fig. 21.24a). Analysis of samples by TEM (Fig. 21.24b) revealed that a mesostructure

had formed. The order could be improved, however, by annealing at 1308C for 2 days

under vacuum, as confirmed by TEM (Fig. 21.24c). The representative TEM image in

Figure 21.24c revealed an inverse hexagonal mesostructure with grain sizes on the



Figure 21.24 Photograph (a) and bright-field TEM images (b) to (g) of materials produced after each

stage of the synthesis. (a) Pieces of unannealed inverse hexagonal hybrid film. The grid paper has 5 mm

markings. (b) Unannealed inverse hexagonal hybrid. (c) An annealed inverse hexagonal hybrid. (d)

Examination of the hybrid from (c) at higher magnification resolved individual PtNPs, seen as dark spots in

the bright-field image. (Inset) A typical convergent-beam electron diffraction pattern (seen with an

ultra-high-vacuum scanning transmission electron microscope) from a single PtNP, demonstrating its

crystallinity. (e) An annealed lamellar hybrid. (f) Pyrolysis of an annealed inverse hexagonal hybrid yields a

mesoporous Pt-C composite. (Inset) Selected area electron diffraction, showing Pt expected face-centered

cubic scattering profile. (g) Removal of carbon with an Ar-O plasma yielded mesoporous inverse hexagonal

Pt.86 (Reprinted with permission from S. C. Warren et al., Science 2008, 320, 1748–1752. Copyright AAAS.)



21.3 Nanostructured Polycrystalline Hybrid Materials



631



order of a few micrometers. Examination of the mesostructure at higher magnification

(Fig. 21.24d) revealed that individual PtNPs composed the walls of the mesostructure,

with three to five NPs spanning the thickness of the wall. Besides inverse hexagonal

mesostructures, samples with lamellar morphology were produced. Annealing at

1308C led to a well-developed mesostructure as confirmed by TEM (Fig. 21.24e).

These results suggest that as in the cases discussed earlier of oxide structures, metal

NP –block copolymer hybrid morphologies can be tailored by simply adjusting the

NP volume fraction.14

A rapid pyrolysis process75,90 was used to convert inverse hexagonal hybrids to

ordered mesoporous Pt-carbon composites. Samples were heated at 108C min21

under N2 or Ar to at least 4108C, followed by immediate cooling. Under these conditions, the sp 2-hybridized carbons of the PI block decompose into an amorphous

carbon-rich material with slight graphitic character.75 Characterization of the resulting

materials by TEM (Fig. 21.24f) indicated that the inverse hexagonal structure was preserved. Analysis of a particular sample by PXRD and application of the Scherrer

equation indicated that the Pt nanocrystals’ domain size was 4.1 + 0.4 nm, representing a substantial increase from the parent aged NPs. Nitrogen physisorption (data not

shown) on this sample indicated that the mesopores were open and that 26% of the

sample’s volume (micropores and mesopores) was open space, as expected for an

inverse hexagonal nanocomposite that has pores lined with carbon. The BET surface

area was 18 m2 g21, and the pore diameter 17 nm.

For many applications, such as fuel cells, it is desirable for the metal surface to be

completely exposed. The carbon was removed from microtomed thin films ($50 nm

thick) of the nanocomposites using an Ar-oxygen plasma. The mesoporous Pt was

structurally similar to the Pt-carbon nanocomposites, as determined by TEM

(Fig. 21.24g). Close inspection of the pores in TEM images revealed that the grainy

texture indicative of the carbon had disappeared. Alternatively, for thicker films (10

to 100 mm thick), a sulfuric acid:nitric acid 3 : 1 (v/v) etch at 708C91 successfully

removed most carbon. Electrochemical data from acid-etched samples indeed confirmed that the metal surface was exposed, showing current densities nearly identical

to that of bulk Pt (Fig. 21.25a). Energy-dispersive spectroscopy (EDS) on the metalcarbon nanocomposites (Fig. 21.25b) showed a composition of 74 wt% Pt, 18 wt%

C, 7 wt% O, and 1 wt% S. In contrast, after the plasma treatment, EDS revealed

that .98 wt% of the sample was Pt, with only trace contributions from carbon and

oxygen (Fig. 21.25c).

We measured the electrical conductivity of Pt-C nanocomposites using two-point

measurements. In a representative example the NP-polymer hybrid had a conductivity

of 2.5 mS cm21, which increased to 400 S cm21 upon pyrolysis. Despite the presence

of carbon, to the best of our knowledge this value represented the highest electrical

conductivity yet measured for ordered mesoporous materials derived from block

copolymers. This discovery creates a potential pathway to a new class of ordered

mesoporous metals made from nanoparticles of different elements and/or distinct

compositions. Such nano-heterogeneous mesoporous metals may have a range of

exceptional electrical, optical, and catalytic properties.



632



Chapter 21 Bioinspired Block Copolymer-Based Hybrid Materials



Figure 21.25 (a) Polarization curves of the H2 oxidation reaction in H2-saturated 0.1 M H2SO4 solution

(at 2000 rpm and 10 mV s21). Dashed line, mesoporous Pt-C nanocomposite; grey curve, mesoporous

Pt; black curve, planar Pt electrode. E, potential; sat., saturated. (b) EDS of pyrolized sample. The pie

chart displays elemental weight fractions. The sample was on a Si substrate and the primary energy

was 10 keV. Pt ¼ 74 wt%, C ¼ 18 wt%, O ¼ 7 wt%, and S ¼ 1 wt%. (c) EDS of acid-treated sample.

Pt ¼ 98 wt%, C ¼ 1 wt%, and O ¼ 0.5 wt%.86 (Reprinted with permission from S. C. Warren et al.,

Science 2008, 320, 1748– 1752. Copyright AAAS.)



21.4 CONCLUSIONS

Copying strategies used in nature to structure organic (polymer) – inorganic hybrids is

a rich and fascinating area. In this chapter we have only discussed entirely synthetic

material approaches that did not include any bio(macro)molecules. In particular, we

have focused on the field of nanoparticle – block copolymer hybrid systems, which

has tremendous scientific as well as technological promise. Since the start of the

use of block copolymers to structure direct amorphous silica-type materials, we

have gained a lot of fundamental understanding about these systems and their formation mechanisms. In the meantime, the concept has been successfully generalized

towards other macromolecular architectures of the structure-directing agents, for

example, dendritic blocks and ABC triblock copolymers elevating the complexity

of the resulting structures significantly. Moreover, on the inorganic side, beyond amorphous materials powerful approaches towards building mesoporous polycrystalline

structures have been developed.

Through the choice of the appropriate synthetic block copolymer systems as well

as nanoparticles, unprecedented morphological control on the nano- and mesoscales is



References



633



obtained in the block copolymer-directed synthesis of hybrid materials. For systems

with favorable enthalpic interactions between one block of the copolymer and the inorganic, that is, with a negative interaction parameter, x, experiments suggest a critical

size of the nanoparticles where the self-assembly behavior of polymers and particles

changes fundamentally. This critical size is the result of competing entropic effects

(translation versus conformation). Competing interactions is a feature also found in

complex biological systems. Below the critical size, the nanoparticles can be regarded

as small molecular weight additives or solvents that are selectively added to one of the

blocks, thereby swelling it, resulting in rational design criteria for controlled hybrid

mesostructure formation.

The potential of this approach for new materials, with multiple nanoscale functional features for applications in nanotechnology and beyond, lies in the versatility

of the polymer chemistry as well as that of the nanoparticle chemistry that can be

exploited in the materials synthesis. Experiments described in this chapter and work

of many others in the field so far probably only scratch the surface of things to come.

In the long run, such powerful bottom-up strategies will develop into alternatives to,

or converge with, various top-down approaches, thereby revolutionizing the precision

with which materials will be fabricated over length scales from the molecular all the

way to the macroscopic length scales. This may lead to the design of entirely new

classes of materials with properties that have no analog in the natural world.



REFERENCES

1. J. AIZENBERG, J. C. WEAVER, M. S. THANAWALA, V. C. SUNDAR, D. E. MORSE, P. FRATZL, Science 2005,

309, 275– 278.

2. J. AIZENBERG, A. TKACHENKO, S. WEINER, L. ADDADI, G. HENDLER, Nature 2001, 412, 819–822.

3. M. KAMPERMAN, U. WIESNER, in Block Copolymers in Nanoscience (Eds. M. LAZZARI, G. LIU,

S. LECOMMANDOUX), Weinheim: Wiley-VCH, 2006.

4. (a) C. SANCHEZ, C. BOISSIERE, D. GROSSO, C. LABERTY, L. NICOLE, Chem. Mater. 2008, 20, 682–737; (b)

Y. WAN, D. Y. ZHAO, Chem. Rev. 2007, 107, 2821–2860; (c) S. W. BOETTCHER, J. FAN, C. K. TSUNG, Q. H.

SHI, G. D. STUCKY, Acc. Chem. Res. 2007, 40, 784–792; (d) A. C. BALAZS, T. EMRICK, T. P. RUSSELL,

Science 2006, 314, 1107–1110; (e) A. HARYONO, W. H. BINDER, Small 2006, 2, 600–611; (f) M. R.

BOCKSTALLER, R. A. MICKIEWICZ, E. L. THOMAS, Adv. Mater. 2005, 17, 1331– 1349; (g) M. PAGLIARO,

R. CIRIMINNA, M. W. C. MAN, S. CAMPESTRINI, J. Phys. Chem. B 2006, 110, 1976– 1988; (h) D. A.

OLSON, L. CHEN, M. A. HILLMYER, Chem. Mater. 2008, 20, 869– 890; (i) J. FAN, S. W. BOETTCHER,

C. K. TSUNG, Q. SHI, M. SCHIERHORN, G. D. STUCKY, Chem. Mater. 2008, 20, 909 –921.

5. (a) K. SHIMIZU, J. CHA, G. D. STUCKY, D. E. MORSE, Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 62346238; (b)

H. COăLFEN, S. MANN, Angew. Chem. Int. Ed. 2003, 42, 23502365; (c) N. KROăGER, R. DEUTZMANN, M.

SUMPER, Science 1999, 286, 1129–1132; (d) E. G. VRIELING, T. P. M. BEELEN, R. A. VAN SANTEN, W. W.

C. GIESKES, Angew. Chem. Int. Ed. 2002, 41, 1543–1546; (e) M. SUMPER, Science 2002, 295, 2430–2433.

6. N. KROGER, S. LORENZ, E. BRUNNER, M. SUMPER, Science 2002, 298, 584–586.

7. (a) T. YANAGISAWA, T. SHIMIZU, K. KURODA, C. KATO, Bull. Chem. Soc. Jpn. 1990, 63, 1535–1537;

(b) C. T. KRESGE, M. E. LEONOWICZ, W. J. ROTH, J. C. VARTULI, J. S. BECK, NATURE 1992, 359,

710–712; (C) Q. HUO, D. I. MARGOLESE, U. CIESLA, P. FENG, T. E. GIER, P. SIEGER, R. LEON, P. M.

PETROFF, F. SCHUETH, G. D. STUCKY, Nature 1994, 368, 317–321; (d) I. A. AKSAY, M. TRAU,

S. MANNE, I. HONMA, N. YAO, L. ZHOU, P. FENTER, P. M. EISENBERGER, S. M. GRUNER, Science 1996,

273, 892– 898; (e) H. YANG, N. COOMBS, G. A. OZIN, Nature 1997, 386, 692 –695; (f) G. J. DE A. A.

SOLER-ILLIA, C. SANCHEZ, B. LEBEAU, J. PATARIN, Chem. Rev. 2002, 102, 4093– 4138.



634



Chapter 21 Bioinspired Block Copolymer-Based Hybrid Materials



8. (a) S. A. BAGSHAW, E. PROUZET, T. J. PINNAVAIA, Science 1995, 269, 1242– 1244; (b) D. Y. ZHAO, J. L.

FENG, Q. S. HUO, N. MELOSH, G. H. FREDRICKSON, B. F. CHMELKA, G. D. STUCKY, Science 1998,

279, 548 –552.

9. Y. LU, H. FAN, A. STUMP, T. L. WARD, T. RIEKER, C. J. BRINKER, Nature 1999, 398, 223–226.

10. S. C. WARREN, F. J. DISALVO, U. WIESNER, Nature Mater. 2007, 6, 156– 161.

11. A. JAIN, U. WIESNER, Macromolecules 2004, 37, 5665– 5670.

12. S. GUPTA, Q. L. ZHANG, T. EMRICK, A. C. BALAZS, T. P. RUSSELL, Nature Mater. 2006, 5, 229–233.

13. M. E. MACKAY, A. TUTEJA, P. M. DUXBURY, C. J. HAWKER, B. VAN HORN, Z. B. GUAN, G. H. CHEN,

R. S. KRISHNAN, Science 2006, 311, 1740–1743.

14. M. TEMPLIN, A. FRANCK, A. DUCHESNE, H. LEIST, Y. M. ZHANG, R. ULRICH, V. SCHADLER, U. WIESNER,

Science 1997, 278, 1795– 1798.

15. P. F. W. SIMON, R. ULRICH, H. W. SPIESS, U. WIESNER, Chem. Mater. 2001, 13, 3464–3486.

16. J. HUH, V. V. GINZBURG, A. C. BALAZS, Macromolecules 2000, 33, 8085– 8096.

17. M. ANTONIETTI, C. GOăLTNER, Angew. Chem. Int. Ed. 1997, 36, 910 –928.

18. B. K. CHO, A. JAIN, S. M. GRUNER, U. WIESNER, Science 2004, 305, 1598– 1601.

19. B. K. CHO, A. JAIN, J. NIEBERLE, S. MAHAJAN, U. WIESNER, S. M. GRUNER, S. TURK, H. J. RADER,

Macromolecules 2004, 37, 4227– 4234.

20. S. MAHAJAN, B. K. CHO, A. ALLGAIER, L. J. FETTERS, G. W. COATES, U. WIESNER, Macromol. Rapid

Commun. 2004, 25, 1889– 1894.

21. C. J. HAWKER, J. M. J. FRECHET, J. Am. Chem. Soc. 1990, 112, 7638– 7647.

22. D. A. TOMALIA, H. BAKER, J. DEWALD, M. HALL, G. KALLOS, S. MARTIN, J. ROECK, J. RYDER, P. SMITH,

Polymer J. 1985, 17, 117–132.

23. (a) S. M. GRAYSON, J. M. J. FRECHET, Chem. Rev. 2001, 101, 3819– 3867; (b) A. W. BOSMAN, H. M.

JANSSEN, E. W. MEIJER, Chem. Rev. 1999, 99, 1665–1688; (c) X. B. ZENG, G. UNGAR, Y. S. LIU,

V. PERCEC, S. E. DULCEY, J. K. HOBBS, Nature 2004, 428, 157– 160; (d) J. C. M. VANHEST, D. A. P.

DELNOYE, M. W. P. L. BAARS, M. H. P. VANGENDEREN, E. W. MEIJER, Science 1995, 268, 1592–1595.

24. I. GITSOV, K. L. WOOLEY, C. J. HAWKER, P. T. IVANOVA, J. M. J. FRECHET, Macromolecules 1993, 26,

5621– 5627.

25. J. IYER, K. FLEMING, P. T. HAMMOND, Macromolecules 1998, 31, 8757– 8765.

26. (a) J. L. HEDRICK, C. J. HAWKER, R. D. MILLER, R. TWIEG, S. A. SRINIVASAN, M. TROLLSAS,

Macromolecules 1997, 30, 7607– 7610; (b) J. W. KRIESEL, T. D. TILLEY, Chem. Mater. 1999, 11,

1190– 1193; (c) E. RUCKENSTEIN, W. S. YIN, J. Polym. Sci. Part A Polym. Chem. 2000, 38,

1443– 1449; (d) R. VELARDE-ORTIZ, G. LARSEN, Chem. Mater. 2002, 14, 858– 866.

27. B. K. CHO, A. JAIN, S. MAHAJAN, H. OW, S. M. GRUNER, U. WIESNER, J. Am. Chem. Soc. 2004, 126,

4070– 4071.

28. B. K. CHO, A. JAIN, S. M. GRUNER, U. WIESNER, Chem. Mater. 2007, 19, 3611– 3614.

29. M. JAYARAMAN, J. M. J. FRECHET, J. Am. Chem. Soc. 1998, 120, 12996–12997.

30. (a) Y. MATSUSHITA, H. CHOSHI, T. FUJIMOTO, M. NAGASAWA, Macromolecules 1980, 13, 1053– 1058;

(b) C. AUSCHRA, R. STADLER, Macromolecules 1993, 26, 2171– 2174.

31. F. S. BATES, G. H. FREDRICKSON, Phys. Today 1999, 52, 32– 38.

32. Z. WEI, Z. G. WANG, Macromolecules 1995, 28, 7215–7223.

33. T. H. EPPS, E. W. COCHRAN, T. S. BAILEY, R. S. WALETZKO, C. M. HARDY, F. S. BATES, Macromolecules

2004, 37, 8325–8341.

34. U. KRAPPE, R. STADLER, I. VOIGTMARTIN, Macromolecules 1995, 28, 4558–4561.

35. T. GOLDACKER, V. ABETZ, R. STADLER, I. ERUKHIMOVICH, L. LEIBLER, Nature 1999, 398, 137–139.

36. G. E. S. TOOMBES, S. MAHAJAN, M. WEYLAND, A. JAIN, P. DU, M. KAMPERMAN, S. M. GRUNER,

D. A. MULLER, U. WIESNER, Macromolecules 2008, 41, 852– 859.

37. G. E. S. TOOMBES, S. MAHAJAN, M. THOMAS, P. DU, M. W. TATE, S. M. GRUNER, U. WIESNER, Chem.

Mater. 2008, 20, 3278– 3287.

38. R. B. GRUBBS, Macromol. Chem. Phys. 2005, 206, 625– 627.

39. (a) J. Z. DU, Y. M. CHEN, J. Polym. Sci. Part A Polym. Chem. 2004, 42, 2263–2271; (b) Y. L. CAI, S. P.

ARMES, Macromolecules 2004, 37, 7116–7122; (c) B. ANGOT, D. TATON, Y. GNANOU, Macromolecules



References



40.

41.

42.

43.

44.

45.

46.

47.



48.

49.

50.

51.

52.

53.

54.

55.

56.

57.



58.

59.

60.

61.

62.



63.

64.



65.

66.

67.

68.

69.

70.

71.



635



2000, 33, 5418–5426; (d) K. MATYJASZEWSKI, J. H. XIA, Chem. Rev. 2001, 101, 2921–2990; (e)

M. KAMIGAITO, T. ANDO, M. SAWAMOTO, Chem. Rev. 2001, 101, 3689– 3745.

L. J. FETTERS, D. J. LOHSE, D. RICHTER, T. A. WITTEN, A. ZIRKEL, Macromolecules 1994, 27, 4639– 4647.

S. S. ROGERS, L. MANDELKERN, J. Phys. Chem. 1957, 61, 985 –990.

T. S. BAILEY, H. D. PHAM, F. S. BATES, Macromolecules 2001, 34, 6994–7008.

S. RENKER, S. MAHAJAN, D. T. BABSKI, I. SCHNELL, A. JAIN, J. GUTMANN, Y. M. ZHANG, S. M. GRUNER,

H. W. SPIESS, U. WIESNER, Macromol. Chem. Phys. 2004, 205, 1021–1030.

S. LUDWIGS, A. BOKER, V. ABETZ, A. H. E. MULLER, G. KRAUSCH, Polymer 2003, 44, 6815– 6823.

U. BREINER, U. KRAPPE, T. JAKOB, V. ABETZ, R. STADLER, Polymer Bull. 1998, 40, 219–226.

U. BREINER, U. KRAPPE, V. ABETZ, R. STADLER, Macromol. Chem. Phys. 1997, 198, 1051–1083.

(a) A. KELLER, E. PEDEMONT, F. M. WILLMOUT, Nature 1970, 225, 538– 539; (b) R. M. KANNAN, J. A.

KORNFIELD, Macromolecules 1994, 27, 1177– 1186; (c) H. LEIST, D. MARING, T. THURN-ALBRECHT,

U. WIESNER, J. Chem. Phys. 1999, 110, 8225– 8228; (d) S. STANGLER, V. ABETZ, Rheol. Acta 2003,

42, 569– 577.

V. L. FINKENSTADT, R. P. MILLANE, Acta Crystallogr. Sect. A 1998, 54, 240–248.

(a) G. COULON, T. P. RUSSELL, V. R. DELINE, P. F. GREEN, Macromolecules 1989, 22, 2581–2589;

(b) K. FUKUNAGA, H. ELBS, R. MAGERLE, G. KRAUSCH, Macromolecules 2000, 33, 947–953.

P. A. MIDGLEY, M. WEYLAND, Ultramicroscopy 2003, 96, 413– 431.

H. S. SOZUER, J. P. DOWLING, J. Mod. Opt. 1994, 41, 231– 239.

M. OKEEFFE, S. ANDERSSON, Acta Crystallogr. Sect. A 1977, 33, 914– 923.

(a) Y. MOGI, H. KOTSUJI, Y. KANEKO, K. MORI, Y. MATSUSHITA, I. NODA, Macromolecules 1992, 25,

5408– 5411; (B) S. BRINKMANN, R. STADLER, E. L. THOMAS, Macromolecules 1998, 31, 6566– 6572.

(a) S. V. MEILLE, S. BRUCKNER, W. PORZIO, Macromolecules 1990, 23, 4114– 4121; (b) N. L. ROSI, J.

KIM, M. EDDAOUDI, B. L. CHEN, M. O’KEEFFE, O. M. YAGHI, J. Am. Chem. Soc. 2005, 127, 1504– 1518.

E. L. THOMAS, D. J. KINNING, D. B. ALWARD, C. S. HENKEE, Macromolecules 1987, 20, 2934– 2939.

G. M. GRASON, Phys. Rep. 2006, 433, 1– 64.

(a) Y. F. LU, Y. YANG, A. SELLINGER, M. C. LU, J. M. HUANG, H. Y. FAN, R. HADDAD, G. LOPEZ,

A. R. BURNS, D. Y. SASAKI, J. SHELNUTT, C. J. BRINKER, Nature 2001, 410, 913– 917; (b) T. ASEFA,

M. J. MACLACHLAN, N. COOMBS, G. A. OZIN, Nature 1999, 402, 867 –871; (c) S. INAGAKI, S. GUAN,

T. OHSUNA, O. TERASAKI, Nature 2002, 416, 304– 307.

P. YANG, D. ZHAO, D. I. MARGOLESE, B. F. CHMELKA, G. D. STUCKY, Nature 1998, 396, 152–155.

S. H. JOO, S. J. CHOI, I. OH, J. KWAK, Z. LIU, O. TERASAKI, R. RYOO, Nature 2001, 412, 169–172.

C. B. W. GARCIA, Y. M. ZHANG, F. DISALVO, U. WIESNER, Angew. Chem. Int. Ed. 2003, 42, 1526– 1530.

C. B. W. GARCIA, Y. M. ZHANG, S. MAHAJAN, F. DISALVO, U. WIESNER, J. Am. Chem. Soc. 2003, 125,

13310– 13311.

(a) G. WIRNSBERGER, K. GATTERER, H. P. FRITZER, W. GROGGER, B. PILLEP, P. BEHRENS, M. F. HANSEN,

C. B. KOCH, Chem. Mater. 2001, 13, 1453–1466; (b) Y. Q. WANG, L. X. YIN, A. GEDANKEN,

Ultrason. Sonochem. 2002, 9, 285–290.

M. J. MACLACHLAN, M. GINZBURG, N. COOMBS, T. W. COYLE, N. P. RAJU, J. E. GREEDAN, G. A. OZIN,

I. MANNERS, Science 2000, 287, 1460– 1463.

(a) F. DELMONTE, M. P. MORALES, D. LEVY, A. FERNANDEZ, M. OCAN˜A, A. ROIG, E. MOLINS, K. OGRADY,

C. J. SERNA, Langmuir 1997, 13, 3627– 3634; (b) G. ENNAS, A. MUSINU, G. PICCALUGA, D. ZEDDA,

D. GATTESCHI, C. SANGREGORIO, J. L. STANGER, G. CONCAS, G. SPANO, Chem. Mater. 1998, 10,

495–502; (c) C. CANNAS, M. F. CASULA, G. CONCAS, A. CORRIAS, D. GATTESCHI, A. FALQUI,

A. MUSINU, C. SANGREGORIO, G. SPANO, J. Mater. Chem. 2001, 11, 3180–3187.

M. F. CASULA, A. CORRIAS, G. PASCHINA, J. Non-Cryst. Solids 2001, 293, 25– 31.

M. FROBA, R. KOHN, G. BOUFFAUD, O. RICHARD, G. VAN TENDELOO, Chem. Mater. 1999, 11, 2858– 2865.

L. ZHANG, G. C. PAPAEFTHYMIOU, J. Y. YING, J. Phys. Chem. B 2001, 105, 7414–7423.

X. HE, D. ANTONELLI, Angew. Chem. Int. Ed. 2002, 41, 214 –229.

C. ROYCHOWDHURY, F. MATSUMOTO, V. B. ZELDOVICH, S. C. WARREN, P. F. MUTOLO, M. BALLESTEROS,

U. WIESNER, H. D. ABRUNA, F. J. DISALVO, Chem. Mater. 2006, 18, 3365–3372.

D. NIZNANSKY, N. VIART, J. L. REHSPRINGER, J. Sol-Gel Sci. Technol. 1997, 8, 615–618.

B. OHTANI, Y. OGAWA, S. NISHIMOTO, J. Phys. Chem. B 1997, 101, 3746– 3752.



636



Chapter 21 Bioinspired Block Copolymer-Based Hybrid Materials



72. D. M. ANTONELLI, J. Y. YING, Angew. Chem. Int. Ed. 1996, 35, 426–430.

73. U. CIESLA, S. SCHACHT, G. D. STUCKY, K. K. UNGER, F. SCHUETH, Angew. Chem. Int. Ed. 1996, 35,

541–543.

74. B. LEE, D. LU, J. N. KONDO, K. DOMEN, J. Am. Chem. Soc. 2002, 124, 11256– 11257; (b) C.-W. WU, T.

OHSUNA, M. KUWABARA, K. KURODA, J. Am. Chem. Soc. 2006, 128, 4544–4545; (c) F. JIAO, P. G. BRUCE,

Angew. Chem. Int. Ed. 2004, 43, 5958–5961; (d) D. M. ANTONELLI, J. Y. YING, Angew. Chem. Int. Ed.

1995, 34, 2014–2017; (e) F. JIAO, A. HARRISON, J.-C. JUMAS, A. V. CHADWICK, W. KOCKELMANN, P. G.

BRUCE, J. Am. Chem. Soc. 2006, 128, 5468– 5474; (f) F. JIAO, J.-C. JUMAS, M. WOMES, A. V. CHADWICK,

A. HARRISON, P. G. BRUCE, J. Am. Chem. Soc. 2006, 128, 12905–12909; (g) X. LAI, X. LI, W. GENG, J.

TU, J. LI, S. QIU, Angew. Chem. Int. Ed. 2007, 46, 738–741; (h) J. ROGGENBUCK, M. TIEMANN, J. Am.

Chem. Soc. 2005, 127, 1096–1097; (i) W.-C. LI, A.-H. LU, C. WEIDENTHALER, F. SCHUETH, Chem.

Mater. 2004, 16, 5676– 5681; ( j) J. LEE, J. KIM, T. HYEON, Adv. Mater. 2006, 18, 2073–2094; (k)

R. RYOO, S. H. JOO, S. JUN, J. Phys. Chem. B 1999, 103, 7743– 7746; (l) J. LEE, S. YOON, T. HYEON,

S. M. OH, K. B. KIM, Chem. Comm. 1999, 2177–2178.

75. J. LEE, M. C. ORILALL, S. C. WARREN, M. KAMPERMAN, F. J. DISALVO, U. WIESNER, Nature Mater. 2008, 7,

222–228.

76. M. ZUKALOVA, A. ZUKAL, L. KAVAN, M. K. NAZEERUDDIN, P. LISKA, M. GRAETZEL, Nano Lett. 2005, 5,

1789– 1792.

77. K. DREW, G. GIRISHKUMAR, K. VINODGOPAL, PRASHANT V. KAMAT, J. Phys. Chem. B 2005, 109,

11851–11857.

78. T. KATOU, B. LEE, D. LU, J. N. KONDO, M. HARA, K. DOMEN, Angew. Chem. Int. Ed. 2003, 42,

2382– 2385.

79. P. K. CHINTHALA, O. G. NEERUGANTI, C. W. TING, M.-S. WONG, C. K. SHYUE, J. Phys. Chem. B 2006, 110,

5223– 5229.

80. Y. N. C. CHAN, R. R. SCHROCK, R. E. COHEN, Chem. Mater. 1992, 4, 24– 27.

81. D. E. FOGG, L. H. RADZILOWSKI, R. BLANSKI, R. R. SCHROCK, E. L. THOMAS, Macromolecules 1997, 30,

417–426.

82. B. J. KIM, G. H. FREDERICKSON, C. J. HAWKER, E. J. KRAMER, Langmuir 2007, 23, 7804–7809.

83. P. BUFFAT, J.-P. BOREL, Phys. Rev. A 1976, 13, 2287– 2298.

84. R. LI, K. SIERADZKI, Phys. Rev. Lett. 1992, 68, 1168–1171.

85. J. ERLEBACHER, M. J. AZIZ, A. KARMA, N. DIMITROV, K. SIERADZKI, Nature 2001, 410, 450–453.

86. S. C. WARREN, L. C. MESSINA, L. S. SLAUGHTER, M. KAMPERMAN, Q. ZHOU, S. M. GRUNER, F. J. DISALVO,

U. WIESNER, Science 2008, 320, 1748– 1752.

87. S. C. WARREN, M. J. BANHOLZER, L. S. SLAUGHTER, E. P. GIANNELIS, F. J. DISALVO, U. WIESNER, J. Am.

Chem. Soc. 2006, 128, 12074–12075.

88. S. SIVARAMAKRISHNAN, P.-J. CHIA, Y.-C. YEO, L.-L. CHUA, P. K. H. HO, Nature Mater. 2007, 6, 149–155.

89. R. B. THOMPSON, V. V. GINZBURG, M. W. MATSEN, A. C. BALAZS, Science 2001, 292, 2469–2472.

90. C. LIANG, K. HONG, G. A. GUIOCHON, J. W. MAYS, S. DAI, Angew. Chem. Int. Ed. 2004, 43, 5785– 5789.

91. A. C. FERRARI, J. ROBERTSON, Phys. Rev. B 2000, 61, 14095–14107.



Part Five



Interfacial Chemistry,

Multifunctionality, and

Interdisciplinarity



Chapter



22



Emerging Concepts in

Interfacial Chemistry of

Hybrid Materials:

Nanocontainer-Based

Self-Healing Coatings

DMITRY G. SHCHUKIN, DARIA V. ANDREEVA,

ă HWALD

KATJA SKORB, AND HELMUTH MO

22.1 INTRODUCTION

22.2 SELF-HEALING MULTICOMPONENT COATINGS WITH

PH-TRIGGERED INHIBITOR RELEASE

22.2.1 MESOPOROUS PARTICLES WITH POLYELECTROLYTE

SHELL AS NANOCONTAINERS FOR INHIBITORS

22.2.2 SOLID PARTICLES WITH POLYELECTROLYTE SHELL

AS NANOCONTAINERS FOR INHIBITORS

22.2.3 HALLOYSITE NANOTUBES AS NANOCONTAINERS

FOR INHIBITORS



640

642

642

644

646



22.3 SELF-HEALING MULTICOMPONENT COATINGS WITH

LIGHT-INDUCED INHIBITOR RELEASE

22.3.1 ACTIVATION OF THE INHIBITOR RELEASE BY UV LIGHT

22.3.2 ACTIVATION OF THE INHIBITOR RELEASE BY IR LIGHT



648

648

649



22.4 CONCLUSIONS



651



ACKNOWLEDGMENTS



651



REFERENCES



652



The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Edited by Knut Rurack and

Ramo´n Martı´nez-Ma´n˜ez

Copyright # 2010 John Wiley & Sons, Inc.



639



640



Chapter 22 Emerging Concepts in Interfacial Chemistry of Hybrid Materials



22.1 INTRODUCTION

The development of a new generation of hybrid coatings, which act at the same time as

passive matrix material and can actively respond to changes in the local environment

of functional inclusions inside the matrix, is attracting a great deal of interest in

the field of materials sciences nowadays. Among other types of coatings, hybrid

self-healing anticorrosion coatings are extremely important for the aerospace, maritime, and automotive industries. Active corrosion protection aims to restore material

properties (functionality) if the passive coating matrix is penetrated and corrosive

species come into contact with the substrate. In addition, the partial recovery of the

main functionality of a material can also be considered as self-healing ability. The

main function of anticorrosion coatings is protection of an underlying metallic substrate against environmentally induced corrosion attacks. Thus, it is not obligatory

to recuperate all properties of the film; only the protection of the substrate has to be

guaranteed. Consequently, the coatings have to release the active and repairing

material within a short time after changes in the coating’s integrity.

Recent developments in surface science and technology offer several general

approaches to fabricate hybrid self-healing coatings. In the following section, selfhealing coatings with pH-triggered inhibitor release are discussed. In Section 22.3,

we report examples where light is used for annealing/repairing. These systems are

self-annealing/repairing if the light acts only at defect sites because of their peculiar

properties, not if, for example, the light is merely focused. The container-based coating employed for photoinduced autorepairing of polymers and polymer coatings consist of micrometer-scale containers incorporated into the polymer body.1 These

containers are filled with monomers that can be used for repairing of the coating

and with appropriate catalysts or UV-sensitive agents to initiate the polymerization

of the monomer released at the damaged spot of the polymer coating. In general,

mechanical stress exerted on the coating leads to mechanical deformation of the

microcontainers embedded therein and starts the release of the monomer from the

latter, leading to a sealing of the defects.2 Furthermore, repair of macroscopic adhesion

defects formed throughout the service life of composites can be carried out by

hollow fibers that are filled with a polymer resin; the fibers then fracture under excessive service life of the composites.3 In a related sense, Lee et al. developed a protective

ceramic composite coating based on sodium-clay and silica multilayers and epoxyamine microcapsules containing MgSO4.4 Self-repairing is achieved here by the sealing of defects with magnesium hydroxide formed after release of magnesium ions

from the capsules. Moreover, electroactive conductive polymers were found to be

effective coating systems for corrosion control due to their ability to trap oxygen

reduction that follows the corrosion process at a remote site with respect to the

metal surface.5

Another approach for hybrid self-healing coatings is based on the use of chemical

inhibitors that can be released from the coating system. However, the direct introduction of inhibitor components to the protective coatings very often leads to deactivation

of a corrosion inhibitor and degradation of the polymer matrix.6 To avoid this drawback, research activities have been shifted to the development of containers that can



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Molecular Schizophrenics: Switchable Materials with Multiple Functions

Tải bản đầy đủ ngay(0 tr)

×