Tải bản đầy đủ - 0 (trang)
vii. Other Metal Containing Polymers with Potential Photovoltaic Applications

vii. Other Metal Containing Polymers with Potential Photovoltaic Applications

Tải bản đầy đủ - 0trang

Metal Containing Polymers in Solar Cells



183



complex.96 The polymer exhibits broad absorption band spanning from 400 to

600 nm, which was explained to be due to the efficient delocalization of p-electrons

on the main chain. Electrochemical experiments also revealed electronic interactions between the conjugated backbone and the ruthenium complexes.

Triphenylamine derivatives are known to be efficient hole transport

materials and are widely used in organic light-emitting devices. Thelakkat et al.

reported the synthesis of a 2,2-bipyridine ligand capped with poly(vinyltriphenylamine) at both ends.97 The polymer chain was synthesized by

the atom transfer radical polymerization of 4-bromostyrene using 4,4-bis

(chloromethyl)bipyridine as the initiator (Scheme 18). The bromide groups

were then replaced by diphenylamine in the presence of palladium catalyst.

Polymer 33 was then obtained by the metalation reaction.

Schubert98 proposed the potential use of several ruthenium containing

polymers in photovoltaic devices. A ruthenium containing poly(ethylene glycol)

derivative 34 was synthesized by the functionalization of 4-(3-aminopropyl)-4methyl-2,2-bipyridine with poly(ethylene glycol) (Mn52800, PDI51.05), which

was activated with N,N-carbonyldiimidazole (Scheme 19).99 Applications in

solid electrolytes for DSSC was proposed. Polyester 35 was incorporated with



SCHEME 18.



184



Applications of Metal Containing Polymers in Organic Solar Cells



ruthenium complex and was synthesized by the ring opening polymerization of

ε-caprolactone.100 In another report, methacrylate copolymers 36À38 with pendant ruthenium complexes were synthesized by radical chain copolymerization

between the metal complex monomers and methyl methacrylate (Scheme 20).101

All these polymers exhibit absorption originated from the MLCT transition of the



SCHEME 19.



SCHEME 20.



References



185



Ru complexes, and it was suggested that they are potential candidates for active

photovoltaic devices. However, the absence of charge transport units in the

polymer also means that bilayer or multilayer polymers are required in the fabrication of the devices. Details of the photovoltaic properties were not presented.



V. SUMMARY

The application of metal containing polymers in dye-sensitized and organic

thin film solar cells were reviewed. To date, the efficiencies of organic solar cells are

still lower than those of the inorganic counterparts. The performance of organic

solar cells is limited by several principal factors, such as spectral mismatch between

the solar light spectrum and the absorption spectrum of polymers, lower charge

carrier mobilities, and high charge recombination rate. At present, both DSSC and

all organic solar cells have their own limitations. In DSSC, the nanocrystalline

semiconductor facilitates the charge separation and transport process, but the

rigidity of inorganic semiconductor and presence of electrolyte in the cell may

impose a long-term stability problem. All-polymer solar cells provide large versatility and flexibility on the device fabrications. However, the long-term stability

of organic molecules under exposure to sunlight may also be another critical issue

to be considered. Development of new materials for the active layers, design of new

device architecture, and fabrication of ordered electrode surface by nanotechnology may be the possible solutions to overcome these potential problems. Metal

containing polymers possess both the advantages of molecular transition metal

complexes and organic polymeric materials and are promising candidates for the

multifunctional materials in the electrode modifying layer, charge transport layer,

and sensitizing layers. Work done in this area is still sparse and more interdisciplinary research between science and engineering will be essential in the future.



VI. ACKNOWLEDGMENTS

Financial support from the Research Grants Council of The Hong Kong

Special Administrative Region, China (project number 7008/07P and HKU7005/

08P) is gratefully acknowledged.



VII. REFERENCES

1. N. S. Sariciftci, Mater. Today, 7, 36 (2004).

2. R. A. J. Janssen, J. C. Hummelen, N. S. Saricifti, MRS Bull., 30, 33 (2005).

3. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001).



186



4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.



Applications of Metal Containing Polymers in Organic Solar Cells



C. Tang, Appl. Phys. Lett., 48, 183 (1986).

P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys., 93, 3693 (2003).

C. Brabec, Sol. Energy Mater. Sol. Cells, 83, 273 (2004).

S. Guănes, H. Neugebauer, N. S. Sariciftci, Chem. Rev., 107, 1324 (2007).

M. Graătzel, Nature, 414, 338 (2001).

B. Oregan, M. Graătzel, Nature, 353, 737 (1991).

A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Von Zelewsky, Coord.

Chem. Rev., 84, 85 (1988).

K. Kalyanasundaram, Coord. Chem. Rev., 46, 156. (1982).

U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer,

M. Graătzel, Nature, 395, 583 (1998).

M. Graătzel, J. Photochem. Photobio. C-Photochem. Rev., 4, 145 (2003).

M. Graătzel, MRS Bull., 30, 23 (2005).

M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker,

P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon,

C. A. Bignozzi, M. Graătzel, J. Am. Chem. Soc., 123, 1613 (2001).

P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, M. Graătzel, Adv. Mater.,

15, 2101 (2003).

P. Wang, S. M. Zakeeruddin, J. E. Moser, R. P. Humphry-Baker, V. A. Comte,

A. Hagfeldt, M. K. Nazeeruddin, M. Graătzel, Adv. Mater., 16, 1806 (2004).

C. Klein, M. K. Nazeeruddin, P. Liska, D. Di Censo, N. Hirata, E. Palomares,

J. R. Durrant, M. Graătzel, Inorg. Chem., 44, 178 (2005).

M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito,

B. Takeru, M. Graătzel, J. Am. Chem. Soc., 127, 16835 (2005).

Graătzel, M. Inorg. Chem. 2005, 44, 6841.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl,

Appl. Phys. Lett., 62, 585 (1993).

J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend,

S. C. Moratti, A. B. Holmes, Nature, 376, 498 (1995).

R. S. Smith, P. T. Jones, 34, 16 (2009).

J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett.,

68, 3120 (1996).

M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend,

Nature, 395, 257 (1998).

J. G. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett., 84, 3013 (2004).

S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater., 17, 1377 (2007).

M. Koppe, M. Scharber, C. Brabec, W. Duffy, M. Heeney, I. McCulloch, Adv. Funct.

Mater., 17, 1371 (2007).

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant,

D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nature Mater., 5, 197 (2006).

W. L. Wang, H. B. Wu, C. Y. Yang, C. Luo, Y. Zhang, J. W. Chen, Y. Cao, Appl. Phys.

Lett., 90, 183512 (2007).

M. Reyes-Reyes, K. Kim, D. L. Carroll, Appl. Phys. Lett., 87, 083506 (2005).

F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater., 13, 85 (2003).

Q. Zhou, Q. Hou, L. Zhang, X. Deng, G. Yu, Y. Cao, Appl. Phys. Lett., 84, 1653 (2004).

S. M. Tuladhar, D. Poplavskyy, S. A. Choulis, J. R. Durrant, D. D. C. Bradley,

J. Nelson, Adv. Funct. Mater., 15, 1171 (2005).



References



187



36. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen,

Appl. Phys. Lett., 78, 841 (2001).

37. C. J. Brabec, C. Winder, N. S. Sariciftci, J. C. Hummelen, A. Dhanabalan, P. A. van

Hal, R. A. J. Janssen, Adv. Funct. Mater., 12, 709 (2002).

38. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nature

Mater., 6, 497 (2007).

39. C. Soci, I.-W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec,

A. J. Heeger, Adv. Funct. Mater., 17, 632 (2007).

40. D. Muăhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana,

C. C. Brabec, Adv. Mater., 18, 2884 (2006).

41. Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec,

Macromolecules, 40, 1981 (2007).

42. J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater.,

18, 572 (2006).

43. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger,

Science, 317, 222 (2007).

44. J. Boucle, P. Ravirajan, J. Nelson, J. Mater. Chem., 17, 3141 (2007).

45. V. Duprez, M. Biancardo, H. Spanggaard, F. C. Krebs, Macromolecules, 38, 10436

(2005).

46. V. Duprez, M. Biancardo, F. C. Krebs, Sol. Energy Mater. Sol. Cells, 91, 230 (2007).

47. S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, C. A. Bignozzi, J. Am. Chem. Soc.,

124, 11215 (2002).

48. F. C. Krebs, M. Biancardo, Sol. Energy Mater. Sol. Cells, 90, 142(2006).

49. W. Lee, K. H. Hyung, Y. H. Kim, G. Cai, S. H. Han, Electrochem. Commun., 9, 729

(2007).

50. K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida, Chem. Lett., 471 (1997).

51. T. Kitamura, M. Maitani, M. Matsuda, Y. Wada, S. Yanagida, Chem. Lett., 9, 1054

(2001).

52. Y. Saito, T. Azechi, T. Kitamura, Y. Hasegawa, Y. Wada, S. Yanagida, Coord. Chem.

Rev., 248, 1469 (2004).

53. A. J. Mozer, Y. Wada, K. J. Jiang, N. Masaki, S. Yanagida, S. N. Mori, Appl. Phys.

Lett., 89 (2006).

54. J. Faiz, A. I. Philippopoulos, A. G. Kontos, P. Falaras, Z. Pikramenou, Adv. Funct.

Mater., 17, 54 (2007).

55. P. W. Cyr, E. J. D. Klem, E. H. Sargent, I. Manners, Chem. Mater. 17, 5770 (2005).

56. P. D. Harvey, Coord. Chem. Rev., 219, 17 (2001).

57. D. Fortin, M. Drouni, M. Turcotte, P. D. Harvey, J. Am. Chem. Soc., 119, 531 (1997).

58. P. D. Harvey, D. Fortin, Coord. Chem. Rev., 171, 351 (1998).

59. J. K. Lee, D. Yoo, M. F. Rubner, Chem. Mater., 9, 1710 (1997).

60. C. T. Wong, W. K. Chan, Adv. Mater., 11, 455 (1999).

61. W. K. Chan, P. K. Ng, X. Gong, S. J. Hou, J. Mater. Chem., 9, 2103 (1999).

62. W. Y. Ng, W. K. Chan, Adv. Mater., 9, 716 (1997).

63. W. K. Chan, X. Gong, W. Y. Ng, Appl. Phys. Lett., 71, 2919 (1997).

64. P. K. Ng, X. Gong, S. H. Chan, L. S. M. Lam, W. K. Chan, Chem. J. Eur., 7, 4358

(2001).

65. S. C. Yu, X. Gong, W. K. Chan, Macromolecules, 31, 5639 (1998).

66. S. C. Yu, S. J. Hou, W. K. Chan, Macromolecules, 32, 5251 (1999).

67. S. C. Yu, S. J. Hou, W. K. Chan, Macromolecules, 33, 3259 (2000).

68. W. Y. Ng, X. Gong, W. K. Chan, Chem. Mater., 11, 1165 (1999).



188



Applications of Metal Containing Polymers in Organic Solar Cells



69. S. H. Chan, L. S. M. Lam, C. W. Tse, K. Y. K. Man, W. T. Wong, A. B. Djurisic, W. K.

Chan, Macromolecules, 36, 5482 (2003).

70. G. Decher, J. D. Hong, J. Schmitt, Thin Solid Films, 210211, 831 (1992).

71. G. Decher, Science, 277, 1232 (1997).

72. H. Mattoussi, M. F. Rubner, F. Zhou, J. Kumar, S. K. Tripathy, L. Y. Chiang, Appl.

Phys. Lett., 77, 1540 (2000).

73. J. K. Mwaura, M. R. Pinto, D. Witker, N. Ananthakrishnan, K. S. Schanze,

J. R. Reynolds, Langmuir, 21, 10119 (2005).

74. K. Y. K. Man, H. L. Wong, W. K. Chan, C. Y. Kwong, A. B. Djurisic, Chem. Mater.,

16, 365 (2004).

75. K. Y. K. Man, H. L. Wong, W. K. Chan, A. B. Djurisic, E. Beach, S. Rozeveld,

Langmuir, 22, 3368. (2006).

76. H. L. Wong, L. S. M. Lam, K. W. Cheng, K. Y. K. Man, W. K. Chan, C. Y. Kwong,

A. B. Djurisic, Appl. Phys. Lett., 84, 2557 (2004).

77. H. L. Wong, C. S. K. Mak, W. K. Chan, A. B. Djurisic, Appl. Phys. Lett., 90 (2007).

78. K. Y. K. Man, C. W. Tse, K. W. Cheng, A. B. Djurisic, W. K. Chan, J. Inorg. Organometal. Polym. Mater., 17, 223 (2007).

79. M. Zhang, P. Lu, X. M. Wang, H. Xia, W. Zhang, B. Yang, L. L. Liu, L. Yang,

M. Yang, Y. G. Ma, J. K. Feng, D. J. Wang, Thin Solid Films, 477, 193 (2005).

80. C. W. Tse, K. W. Cheng, W. K. Chan, A. B. Djurisic, Macromol. Rapid Commun., 25,

1335 (2004).

81. C. W. Tse, Y. H. Leung, K. H. Tam, W. K. Chan, A. B. Djurisic, Nanotechnology, 17,

3563 (2006).

82. C. W. Tse, K. Y. K. Man, K. W. Cheng, C. S. K. Mak, W. K. Chan, C. T. Yip, Z. T. Liu,

A. B. Djurisic, Chem. Eur. J., 13, 328 (2007).

83. C. W. Tse, K. W. Cheng, W. K. Chan, J. Inorg. Organometal. Polym. Mater., 18, 59

(2008).

84. K. W. Cheng, C. S. K. Mak, W. K. Chan, A. M. C. Ng, A. B. Djurisic, J. Polym. Sci.

Part A: Polym. Chem., 46, 1305 (2008).

85. C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard,

C. H. Lee, Polymer, 28, 553 (1987).

86. P. L. Porter, S. Guha, K. Kang, C. C. Frazier, Polymer, 32, 1756 (1991).

87. P. Siemsen, U. Gubler, C. Bosshard, P. Guănter, F. Diederich, Chem. Eur. J., 7, 1333

(2001).

88. N. Chawdhury, A. Kohler, R. H. Friend, M. Younus, N. J. Long, P. R. Raithby,

J. Lewis, Macromolecules, 31, 722 (1998).

89. J. Lewis, P. R. Raithby, W.-Y. Wong, J. Organomet. Chem., 556, 219 (1998).

90. W. Y. Wong, S. M. Chan, K. H. Choi, K. W. Cheah, W. K. Chan, Macromol. Rapid

Commun., 21, 453 (2000).

91. Y. Liu, S. Jiang, K. Glusac, D. H. Powell, D. F. Anderson, K. S. Schanze, J. Am. Chem.

Soc., 124, 12412 (2002).

92. K. Glusac, M. E. Kose, H. Jiang, K. S. Schanze, J. Phys. Chem. B, 111, 929 (2007).

93. F. Q. Guo, K. Ogawa, Y. G. Kim, E. O. Danilov, F. N. Castellano, J. R. Reynolds,

K. S. Schanze, Phys. Chem. Chem. Phys., 9, 2724 (2007).

94. W. Y. Wong, X. Z. Wang, Z. He, A. B. Djurisic, C. T. Yip, K. Y. Cheung, H. Wang,

C. S. K. Mak, W. K. Chan, Nature Mater., 6, 521 (2007).

95. W. Y. Wong, Macromol. Chem. Phys., 209, 14 (2008).

96. W. Y. Wong, Dalton Trans., 4495 (2007).

97. L. Trouillet, A. De Nicola, S. Guillerez, Chem. Mater., 12, 1611 (2000).

98. K. Peter, M. Thelakkat, Macromolecules, 36, 1779 (2003).



References



189



99. V. Marin, E. Holder, R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev., 36, 618

(2007).

100. V. Marin, E. Holder, M. A. R. Meier, R. Hoogenboom, U. S. Schubert, Macromol.

Rapid Commun., 25, 793 (2004).

101. V. Marin, E. Holder, R. Hoogenboom, U. S. Schubert, J. Polym. Sci. Part A: Polym.

Chem., 42, 4153 (2004).

102. V. Marin, E. Holder, U. S. Schubert, J. Polym. Sci. Part A: Polym. Chem., 42, 374

(2004).



CHAPTER 5



Functional Silole-Containing

Polymers

Junwu Chen,1 Yong Cao,1 and Ben Zhong Tang2

1



Institute of Polymer Optoelectronic Materials & Devices, South

China University of Technology, Guangzhou, China, 510640



2



Department of Chemistry, The Hong Kong University of Science &

Technology, Clear Water Bay, Kowloon, Hong Kong, China



CONTENTS

I. INTRODUCTION

II. ELECTRONIC TRANSITION AND BAND GAP



192

193



III. LIGHT EMISSION

A. Photoluminescence

B. Electroluminescence



194

194

196



IV. BULK-HETEROJUCTION PHOTOVOLTAIC CELLS



199



V. FIELD EFFECT TRANSISTORS

VI. AGGREGATION-INDUCED EMISSION

VII. CHEMOSENSORS

VIII. CONDUCTIVITY

IX. OPTICAL LIMITING



199

200

201

201

201



Macromolecules Containing Metal and Metal-like Elements,

Volume 10: Photophysics and Photochemistry of Metal-Containing Polymers,

Edited by Alaa S. Abd-El Aziz, Charles E. Carraher Jr., Pierre D. Harvey, Charles U. Pittman Jr., Martel Zeldin.

Copyright r 2010 John Wiley & Sons, Inc.



191



192



Functional Silole-Containing Polymers



X. SUMMARY



202



XI. ACKNOWLEDGMENTS



202



XII. REFERENCES



203



I. INTRODUCTION

Semiconducting polymers have drawn broad attention due to their

important applications in polymeric light-emitting diodes (PLEDs),1,2 photovoltaic cells (PVCs),3 field-effect transistors (FETs),4 and chemosensing abilities to various targets.5 Solution processing of the semiconducting polymers,

such as spin coating and printing, is the attracting advantage for the fabrications of large area optoelectronic devices. Semiconducting polymers are the

best candidates to be used to fabricate flexible optoelectronic devices.6

A notable feature of semiconducting polymers also lies in the enormous versatility of synthetic methodology, which affords wide space to construct new

polymers with improved properties.

Siloles7,8 or silacyclopentadienes are a group of five-membered silacyclics

that possess σ*2π* conjugation arising from the interaction between the σ*

orbital of two exocyclic σ-bonds on the silicon atom and the π* orbital of the

butadiene moiety.9 The calculated LUMO level of a silole ring is lower than

those of other heterocyclopentadienes, such as pyrrole, furan, and thiophene.7,9

The unique aromaticity and the low-lying LUMO level endue siloles with

intriguing optoelectronic properties. Siloles, in terms of their structures, may be

simply and arbitrarily classified as two types, substituted siloles 1 and siloles

fused with other aromatic rings (Fig. 1).10 Up to six substituents can be

attached to the silole ring of 1, which opens a big room to tune the optoelectronic properties; 2,3,4,5-tetraarylsiloles, normally possessing noncoplanar

geometry, are the widely studied and the most important group of 1.11À17

Many important photophysical properties, such as aggregation-induced

emission (AIE),11,12 blue shift of PL emission in the crystal state relative to that

of amorphous solid,13 extremely high photoluminescence (PL) quantum yields

R4

R3



R



R5

R6



Si

R1



R2

1



R



R



Si

Si

R



R

2



R

Si



Si

R



R



3



FIGURE 1. Chemical structures of siloles.



S



S

4



Electronic Transition and Band Gap



π-Conjugated SCP



193



σ-Conjugated SCP



Dendritic SCP



Pendanted SCP

= silole



FIGURE 2. Schematic constructions of SCPs.



even in a crystalline form,13 high external quantum efficiency (ηEL) up to 8% in

electroluminescence (EL) devices,14 high electron mobility of 2 3 1024 cm2/

(V s),15 and fluorescent chemosensor for explosives and organic solvent

vapors,16,17 have been reported for 2,3,4,5-tetraarylsiloles. As shown in Figure 1,

dibenzosilole or 9-silafluorene 2,18 bis-silicon-bridged stilbene 3,19 and dithienosilole or silicon-bridged bithiophene 4,20 with enlarged coplanar skeletons, are

the typical examples of siloles fused with other aromatic rings.

The incorporation of siloles in polymers is of interest and importance in

chemistry and functionalities. Some optoelectronic properties, impossible to

obtain in silole small molecules, may be realized with silole-containing polymers (SCPs). The first synthesis of SCPs was reported in 1992.21 Since then,

different types of SCPs, such as main chain type π-conjugated SCPs catenated

through the aromatic carbon of a silole, main chain type σ-conjugated SCPs

catenated through the silicon atom of a silole, SCPs with silole pendants, and

hyperbranched or dendritic SCPs (Fig. 2), have been synthesized.10 In this

chapter, the functionalities of SCPs, such as band gap, photoluminescence,

electroluminescence, bulk-heterojunction solar cells, field effect transistors,

aggregation-induced emission, chemosensors, conductivity, and optical limiting, are summarized.



II. ELECTRONIC TRANSITION AND BAND GAP

Polydibenzosiloles are wide band gap SCPs. Poly(3,6-dibenzosilole)s 5

(Fig. 3) show absorptions peaks (λab) at B283 nm and absorption edges at

B310 nm in solutions as well as in thin films.22 The calculated optical band

gaps of poly(3,6-dibenzosilole)s are 4.0 eV, which is the widest band gap so far



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

vii. Other Metal Containing Polymers with Potential Photovoltaic Applications

Tải bản đầy đủ ngay(0 tr)

×