Tải bản đầy đủ - 0 (trang)
PHỤ LỤC TÍNH TOÁN

# PHỤ LỤC TÍNH TOÁN

Tải bản đầy đủ - 0trang

79

1 .. 1), 2 .. 15); phis9 := -evalm(`&*`(inverse(B9), B91)); phi9 := stackmatrix(vector([1]), phis9);

B10 := delcols(delrows(b10, 1 .. 1), 1 .. 1); B101 := delcols(delrows(b10, 1 .. 1), 2 .. 15); phis10 :=

-evalm(`&*`(inverse(B10), B101)); phi10 := stackmatrix(vector([1]), phis10); B11 :=

delcols(delrows(b11, 1 .. 1), 1 .. 1); B111 := delcols(delrows(b11, 1 .. 1), 2 .. 15); phis11 :=

-evalm(`&*`(inverse(B11), B111)); phi11 := stackmatrix(vector([1]), phis11); B12 :=

delcols(delrows(b12, 1 .. 1), 1 .. 1); B121 := delcols(delrows(b12, 1 .. 1), 2 .. 15); phis12 :=

-evalm(`&*`(inverse(B12), B121)); phi12 := stackmatrix(vector([1]), phis12); B13 :=

delcols(delrows(b13, 1 .. 1), 1 .. 1); B131 := delcols(delrows(b13, 1 .. 1), 2 .. 15); phis13 :=

-evalm(`&*`(inverse(B13), B131)); phi13 := stackmatrix(vector([1]), phis13); B14 :=

delcols(delrows(b14, 1 .. 1), 1 .. 1); B141 := delcols(delrows(b14, 1 .. 1), 2 .. 15); phis14 :=

-evalm(`&*`(inverse(B14), B141)); phi14 := stackmatrix(vector([1]), phis14); B15 :=

delcols(delrows(b15, 1 .. 1), 1 .. 1); B151 := delcols(delrows(b15, 1 .. 1), 2 .. 15); phis15 :=

-evalm(`&*`(inverse(B15), B151)); phi15 := stackmatrix(vector([1]), phis15); phi := concat(phi1,

phi2, phi3, phi4, phi5, phi6, phi7, phi8, phi9, phi10, phi11, phi12, phi13, phi14, phi15); A :=

matrix(15, 1, [a, a, a, a, a, a, a, a, a, a, a, a, a, a, a]); F := evalm(`&*`(M, A)); F1 :=

evalm(`&*`(transpose(phi1), F)); F2 := evalm(`&*`(transpose(phi2), F)); F3 :=

evalm(`&*`(transpose(phi3), F)); F4 := evalm(`&*`(transpose(phi4), F)); F5 :=

evalm(`&*`(transpose(phi5), F)); F6 := evalm(`&*`(transpose(phi6), F)); F7 :=

evalm(`&*`(transpose(phi7), F)); F8 := evalm(`&*`(transpose(phi8), F)); F9 :=

evalm(`&*`(transpose(phi9), F)); F10 := evalm(`&*`(transpose(phi10), F)); F11 :=

evalm(`&*`(transpose(phi11), F)); F12 := evalm(`&*`(transpose(phi12), F)); F13 :=

evalm(`&*`(transpose(phi13), F)); F14 := evalm(`&*`(transpose(phi14), F)); F15 :=

evalm(`&*`(transpose(phi15), F)); M1 := evalm(`&*`(evalm(`&*`(transpose(phi1), M)), phi1)); M2 :=

evalm(`&*`(evalm(`&*`(transpose(phi2), M)), phi2)); M3 := evalm(`&*`(evalm(`&*`(transpose(phi3),

M)), phi3)); M4 := evalm(`&*`(evalm(`&*`(transpose(phi4), M)), phi4)); M5 :=

evalm(`&*`(evalm(`&*`(transpose(phi5), M)), phi5)); M6 := evalm(`&*`(evalm(`&*`(transpose(phi6),

M)), phi6)); M7 := evalm(`&*`(evalm(`&*`(transpose(phi7), M)), phi7)); M8 :=

evalm(`&*`(evalm(`&*`(transpose(phi8), M)), phi8)); M9 := evalm(`&*`(evalm(`&*`(transpose(phi9),

M)), phi9)); M10 := evalm(`&*`(evalm(`&*`(transpose(phi10), M)), phi10)); M11 :=

evalm(`&*`(evalm(`&*`(transpose(phi11), M)), phi11)); M12 :=

evalm(`&*`(evalm(`&*`(transpose(phi12), M)), phi12)); M13 :=

evalm(`&*`(evalm(`&*`(transpose(phi13), M)), phi13)); M14 :=

evalm(`&*`(evalm(`&*`(transpose(phi14), M)), phi14)); M15 :=

evalm(`&*`(evalm(`&*`(transpose(phi15), M)), phi15)); omega1 := f1^(1/2); omega2 := f2^(1/2);

omega3 := f3^(1/2); omega4 := f4^(1/2); omega5 := f5^(1/2); omega6 := f6^(1/2); omega7 := f7^(1/2);

80

omega8 := f8^(1/2); omega9 := f9^(1/2); omega10 := f10^(1/2); omega11 := f11^(1/2); omega12 :=

f12^(1/2); omega13 := f13^(1/2); omega14 := f14^(1/2); omega15 := f15^(1/2); `ϖ1` :=

f1^(1/2)*(-xi^2+1)^(1/2); `ϖ2` := f2^(1/2)*(-xi^2+1)^(1/2); `ϖ3` := f3^(1/2)*(xi^2+1)^(1/2); `ϖ4` := f4^(1/2)*(-xi^2+1)^(1/2); `ϖ5` := f5^(1/2)*(-xi^2+1)^(1/2);

`ϖ6` := f6^(1/2)*(-xi^2+1)^(1/2); `ϖ7` := f7^(1/2)*(-xi^2+1)^(1/2); `ϖ8` :=

f8^(1/2)*(-xi^2+1)^(1/2); `ϖ9` := f9^(1/2)*(-xi^2+1)^(1/2); `ϖ10` := f10^(1/2)*(xi^2+1)^(1/2); `ϖ11` := f11^(1/2)*(-xi^2+1)^(1/2); `ϖ12` := f12^(1/2)*(-xi^2+1)^(1/2);

`ϖ13` := f13^(1/2)*(-xi^2+1)^(1/2); `ϖ14` := f14^(1/2)*(-xi^2+1)^(1/2); `ϖ15` :=

f15^(1/2)*(-xi^2+1)^(1/2); Kd1 := (int(sin(r*x+`ϕ`)*exp(-omega1*xi*(t-x))*sin(`ϖ1`*(tx)), x = 0 .. t))/`ϖ1`; Kd2 := (int(sin(r*x+`ϕ`)*exp(-omega2*xi*(t-x))*sin(`ϖ2`*(tx)), x = 0 .. t))/`ϖ2`; Kd3 := (int(sin(r*x+`ϕ`)*exp(-omega3*xi*(t-x))*sin(`ϖ3`*(tx)), x = 0 .. t))/`ϖ3`; Kd4 := (int(sin(r*x+`ϕ`)*exp(-omega4*xi*(t-x))*sin(`ϖ4`*(tx)), x = 0 .. t))/`ϖ4`; Kd5 := (int(sin(r*x+`ϕ`)*exp(-omega5*xi*(t-x))*sin(`ϖ5`*(tx)), x = 0 .. t))/`ϖ5`; Kd6 := (int(sin(r*x+`ϕ`)*exp(-omega6*xi*(t-x))*sin(`ϖ6`*(tx)), x = 0 .. t))/`ϖ6`; Kd7 := (int(sin(r*x+`ϕ`)*exp(-omega7*xi*(t-x))*sin(`ϖ7`*(tx)), x = 0 .. t))/`ϖ7`; Kd8 := (int(sin(r*x+`ϕ`)*exp(-omega8*xi*(t-x))*sin(`ϖ8`*(tx)), x = 0 .. t))/`ϖ8`; Kd9 := (int(sin(r*x+`ϕ`)*exp(-omega9*xi*(t-x))*sin(`ϖ9`*(tx)), x = 0 .. t))/`ϖ9`; Kd10 := (int(sin(r*x+`ϕ`)*exp(-omega10*xi*(tx))*sin(`ϖ10`*(t-x)), x = 0 .. t))/`ϖ10`; Kd11 := (int(sin(r*x+`ϕ`)*exp(omega11*xi*(t-x))*sin(`ϖ11`*(t-x)), x = 0 .. t))/`ϖ11`; Kd12 :=

(int(sin(r*x+`ϕ`)*exp(-omega12*xi*(t-x))*sin(`ϖ12`*(t-x)), x = 0 .. t))/`ϖ12`;

Kd13 := (int(sin(r*x+`ϕ`)*exp(-omega13*xi*(t-x))*sin(`ϖ13`*(t-x)), x = 0 ..

t))/`ϖ13`; Kd14 := (int(sin(r*x+`ϕ`)*exp(-omega14*xi*(t-x))*sin(`ϖ14`*(t-x)), x =

0 .. t))/`ϖ14`; Kd15 := (int(sin(r*x+`ϕ`)*exp(-omega15*xi*(t-x))*sin(`ϖ15`*(t-x)),

x = 0 .. t))/`ϖ15`; r := .6*omega1; U := matrix(15, 1, [evalm(-F1*Kd1/M1), evalm(F2*Kd2/M2), evalm(-F3*Kd3/M3), evalm(-F4*Kd4/M4), evalm(-F5*Kd5/M5), evalm(-F6*Kd6/M6),

evalm(-F7*Kd7/M7), evalm(-F8*Kd8/M8), evalm(-F9*Kd9/M9), evalm(-F10*Kd10/M10), evalm(F11*Kd11/M11), evalm(-F12*Kd12/M12), evalm(-F13*Kd13/M13), evalm(-F14*Kd14/M14),

evalm(-F15*Kd15/M15)]); no := evalm(`&*`(phi, U)); x15 := evalm(no[15, 1]); xd := x15[1, 1]; x1 :=

evalm(no[1, 1]); xc := x1[1, 1]; with(Optimization); toi*uu*chuyen*vi*dinhTypesetting[delayDotProduct](momen*chan*cot, B, true)-xetcan; xdmi1 := NLPSolve(xd, m = .49839

.. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 0 .. 0); xdmi2 :=

NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 ..

.5, t = .1 .. .1); xdmi3 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a =

2.4 .. 4.8, `ϕ` = .5 .. .5, t = .2 .. .2); xdmi4 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 ..

81

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .3 .. .3); xdmi5 := NLPSolve(xd, m = .

49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .4 .. .4);

xdmi6 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .5 .. .5); xdmi7 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi =

0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .6 .. .6); xdmi8 := NLPSolve(xd, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .7 .. .7); xdmi9 :=

NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 ..

.5, t = .8 .. .8); xdmit := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4

.. 4.8, `ϕ` = .5 .. .5, t = .9 .. .9); xdmie := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915,

xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.0 .. 1.0); xdmie1 := NLPSolve(xd, m = .49839

.. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.1 .. 1.1);

xdmie2 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.2 .. 1.2); xdmie3 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi

= 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.3 .. 1.3); xdmie4 := NLPSolve(xd, m = .

49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.4 .. 1.4);

xdmie5 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.5 .. 1.5); xdmie6 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi

= 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.6 .. 1.6); xdmie7 := NLPSolve(xd, m = .

49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.7 .. 1.7);

xdmie8 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.8 .. 1.8); xdmie9 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi

= 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.9 .. 1.9); xdmiet := NLPSolve(xd, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 2.0 .. 2.0); xdm1 :=

NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 ..

.5, t = 0 .. 0, maximize); xdm2 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .

1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .1 .. .1, maximize); xdm3 := NLPSolve(xd, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .2 .. .2, maximize);

xdm4 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .3 .. .3, maximize); xdm5 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 ..

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .4 .. .4, maximize); xdm6 :=

NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 ..

.5, t = .5 .. .5, maximize); xdm7 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 ..

.1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .6 .. .6, maximize); xdm8 := NLPSolve(xd, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .7 .. .7, maximize);

xdm9 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

82

`ϕ` = .5 .. .5, t = .8 .. .8, maximize); xdmt := NLPSolve(xd, m = .49839 .. .60915, E = 2385 ..

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .9 .. .9, maximize); xdme :=

NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 ..

.5, t = 1.0 .. 1.0, maximize); xdme1 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi =

0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.1 .. 1.1, maximize); xdme2 := NLPSolve(xd, m = .

49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.2 .. 1.2,

maximize); xdme3 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 ..

4.8, `ϕ` = .5 .. .5, t = 1.3 .. 1.3, maximize); xdme4 := NLPSolve(xd, m = .49839 .. .60915, E =

2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.4 .. 1.4, maximize); xdme5 :=

NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 ..

.5, t = 1.5 .. 1.5, maximize); xdme6 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi =

0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.6 .. 1.6, maximize); xdme7 := NLPSolve(xd, m = .

49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.7 .. 1.7,

maximize); xdme8 := NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 ..

4.8, `ϕ` = .5 .. .5, t = 1.8 .. 1.8, maximize); xdme9 := NLPSolve(xd, m = .49839 .. .60915, E =

2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.9 .. 1.9, maximize); xdmet :=

NLPSolve(xd, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 ..

.5, t = 2.0 .. 2.0, maximize); xcmi1 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 ..

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 0 .. 0); xcmi2 := NLPSolve(91.374*E*xc,

m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .1 .. .1);

xcmi3 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 ..

4.8, `ϕ` = .5 .. .5, t = .2 .. .2); xcmi4 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E =

2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .3 .. .3); xcmi5 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .4 .. .4); xcmi6 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 ..

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .5 .. .5); xcmi7 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .6 .. .6); xcmi8 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 ..

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .7 .. .7); xcmi9 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .8 .. .8); xcmit := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 ..

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .9 .. .9); xcmie :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.0 .. 1.0); xcmie1 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385

.. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.1 .. 1.1); xcmie2 :=

83

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.2 .. 1.2); xcmie3 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385

.. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.3 .. 1.3); xcmie4 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.4 .. 1.4); xcmie5 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385

.. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.5 .. 1.5); xcmie6 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.6 .. 1.6); xcmie7 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385

.. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.7 .. 1.7); xcmie8 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.8 .. 1.8); xcmie9 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385

.. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.9 .. 1.9); xcmiet :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 2.0 .. 2.0); xcm1 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 ..

2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 0 .. 0, maximize); xcm2 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .1 .. .1, maximize); xcm3 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E

= 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .2 .. .2, maximize); xcm4 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .3 .. .3, maximize); xcm5 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E

= 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .4 .. .4, maximize); xcm6 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .5 .. .5, maximize); xcm7 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E

= 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .6 .. .6, maximize); xcm8 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .7 .. .7, maximize); xcm9 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E

= 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = .8 .. .8, maximize); xcmt :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = .9 .. .9, maximize); xcme := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E

= 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.0 .. 1.0, maximize); xcme1 :=

NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8,

`ϕ` = .5 .. .5, t = 1.1 .. 1.1, maximize); xcme2 := NLPSolve(91.374*E*xc, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.2 .. 1.2, maximize);

xcme3 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 ..

4.8, `ϕ` = .5 .. .5, t = 1.3 .. 1.3, maximize); xcme4 := NLPSolve(91.374*E*xc, m = .49839 .. .

84

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.4 .. 1.4, maximize);

xcme5 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 ..

4.8, `ϕ` = .5 .. .5, t = 1.5 .. 1.5, maximize); xcme6 := NLPSolve(91.374*E*xc, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.6 .. 1.6, maximize);

xcme7 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 ..

4.8, `ϕ` = .5 .. .5, t = 1.7 .. 1.7, maximize); xcme8 := NLPSolve(91.374*E*xc, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 1.8 .. 1.8, maximize);

xcme9 := NLPSolve(91.374*E*xc, m = .49839 .. .60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 ..

4.8, `ϕ` = .5 .. .5, t = 1.9 .. 1.9, maximize); xcmet := NLPSolve(91.374*E*xc, m = .49839 .. .

60915, E = 2385 .. 2915, xi = 0.1e-1 .. .1, a = 2.4 .. 4.8, `ϕ` = .5 .. .5, t = 2.0 .. 2.0, maximize);

bd1 := evalm(xdmi1[1]); bd2 := evalm(xdmi2[1]); bd3 := evalm(xdmi3[1]); bd4 := evalm(xdmi4[1]);

bd5 := evalm(xdmi5[1]); bd6 := evalm(xdmi6[1]); bd7 := evalm(xdmi7[1]); bd8 := evalm(xdmi8[1]);

bd9 := evalm(xdmi9[1]); bdt := evalm(xdmit[1]); bde := evalm(xdmie[1]); bde1 := evalm(xdmie1[1]);

bde2 := evalm(xdmie2[1]); bde3 := evalm(xdmie3[1]); bde4 := evalm(xdmie4[1]); bde5 :=

evalm(xdmie5[1]); bde6 := evalm(xdmie6[1]); bde7 := evalm(xdmie7[1]); bde8 := evalm(xdmie8[1]);

bde9 := evalm(xdmie9[1]); bdet := evalm(xdmiet[1]); bd11 := evalm(xdm1[1]); bd22 :=

evalm(xdm2[1]); bd33 := evalm(xdm3[1]); bd44 := evalm(xdm4[1]); bd55 := evalm(xdm5[1]);

bd66 := evalm(xdm6[1]); bd77 := evalm(xdm7[1]); bd88 := evalm(xdm8[1]); bd99 :=

evalm(xdm9[1]); bdtt := evalm(xdmt[1]); bdee := evalm(xdme[1]); bdee1 := evalm(xdme1[1]);

bdee2 := evalm(xdme2[1]); bdee3 := evalm(xdme3[1]); bdee4 := evalm(xdme4[1]); bdee5 :=

evalm(xdme5[1]); bdee6 := evalm(xdme6[1]); bdee7 := evalm(xdme7[1]); bdee8 := evalm(xdme8[1]);

bdee9 := evalm(xdme9[1]); bdeet := evalm(xdmet[1]); bc1 := evalm(xcmi1[1]); bc2 :=

evalm(xcmi2[1]); bc3 := evalm(xcmi3[1]); bc4 := evalm(xcmi4[1]); bc5 := evalm(xcmi5[1]); bc6 :=

evalm(xcmi6[1]); bc7 := evalm(xcmi7[1]); bc8 := evalm(xcmi8[1]); bc9 := evalm(xcmi9[1]); bct :=

evalm(xcmit[1]); bce := evalm(xcmie[1]); bce1 := evalm(xcmie1[1]); bce2 := evalm(xcmie2[1]);

bce3 := evalm(xcmie3[1]); bce4 := evalm(xcmie4[1]); bce5 := evalm(xcmie5[1]); bce6 :=

evalm(xcmie6[1]); bce7 := evalm(xcmie7[1]); bce8 := evalm(xcmie8[1]); bce9 := evalm(xcmie9[1]);

bcet := evalm(xcmiet[1]); bc11 := evalm(xcm1[1]); bc22 := evalm(xcm2[1]); bc33 := evalm(xcm3[1]);

bc44 := evalm(xcm4[1]); bc55 := evalm(xcm5[1]); bc66 := evalm(xcm6[1]); bc77 := evalm(xcm7[1]);

bc88 := evalm(xcm8[1]); bc99 := evalm(xcm9[1]); bctt := evalm(xcmt[1]); bcee := evalm(xcme[1]);

bcee1 := evalm(xcme1[1]); bcee2 := evalm(xcme2[1]); bcee3 := evalm(xcme3[1]); bcee4 :=

evalm(xcme4[1]); bcee5 := evalm(xcme5[1]); bcee6 := evalm(xcme6[1]); bcee7 := evalm(xcme7[1]);

bcee8 := evalm(xcme8[1]); bcee9 := evalm(xcme9[1]); bceet := evalm(xcmet[1]); with(plots);

vedothi*chuyenvidinh-Typesetting[delayDotProduct](momen, B, true); data1 := [[0, bd1], [.1, bd2],

[.2, bd3], [.3, bd4], [.4, bd5], [.5, bd6], [.6, bd7], [.7, bd8], [.8, bd9], [.9, bdt], [1.0, bde], [1.1, bde1],

85

[1.2, bde2], [1.3, bde3], [1.4, bde4], [1.5, bde5], [1.6, bde6], [1.7, bde7], [1.8, bde8], [1.9, bde9], [2.0,

bdet]]; data11 := [[0, bd11], [.1, bd22], [.2, bd33], [.3, bd44], [.4, bd55], [.5, bd66], [.6, bd77], [.7,

bd88], [.8, bd99], [.9, bdtt], [1.0, bdee], [1.1, bdee1], [1.2, bdee2], [1.3, bdee3], [1.4, bdee4], [1.5,

bdee5], [1.6, bdee6], [1.7, bdee7], [1.8, bdee8], [1.9, bdee9], [2.0, bdeet]]; data2 := [[0, bc1], [.1, bc2],

[.2, bc3], [.3, bc4], [.4, bc5], [.5, bc6], [.6, bc7], [.7, bc8], [.8, bc9], [.9, bct], [1.0, bce], [1.1, bce1],

[1.2, bce2], [1.3, bce3], [1.4, bce4], [1.5, bce5], [1.6, bce6], [1.7, bce7], [1.8, bce8], [1.9, bce9], [2.0,

bcet]]; data22 := [[0, bc11], [.1, bc22], [.2, bc33], [.3, bc44], [.4, bc55], [.5, bc66], [.6, bc77], [.7,

bc88], [.8, bc99], [.9, bctt], [1.0, bcee], [1.1, bcee1], [1.2, bcee2], [1.3, bcee3], [1.4, bcee4], [1.5,

bcee5], [1.6, bcee6], [1.7, bcee7], [1.8, bcee8], [1.9, bcee9], [2.0, bceet]]; v1 := pointplot(data1, style =

line, color = blue); v11 := pointplot(data11, style = line, color = blue); display([v1, v11]); v2 :=

pointplot(data2, style = line, color = red); v22 := pointplot(data22, style = line, color = red);

display([v2, v22])

### Tài liệu bạn tìm kiếm đã sẵn sàng tải về

PHỤ LỤC TÍNH TOÁN

Tải bản đầy đủ ngay(0 tr)

×