Tải bản đầy đủ - 0 (trang)
4 Conclusion: Systems Chemistry may have Implications in Other Fields

4 Conclusion: Systems Chemistry may have Implications in Other Fields

Tải bản đầy đủ - 0trang

CONCLUSION: SYSTEMS CHEMISTRY MAY HAVE IMPLICATIONS IN OTHER FIELDS



H



O



R3



N

R2



469



N

H



CO2H



Selective

pressure



Ibest



Carbonic

anhydrase



R1

Hydrolysis of

poorer

inhibitors



H

R2



O



Membrane



R3



N

OH



+



H2 N



CO2H



R1

1 R1 = SO2NH2 R2 = H



Figure 15.7 An illustration of how carbonic anhydrase selectively binds and protects the

peptides from exposure to a protease. (Reprinted with permission. Copyright American

Chemical Society: Ref. 30.)



However, research is by its nature optimistic and research in new, untested fields

is necessarily the most optimistic of all. As we have shown above, regardless

of whether systems chemistry is able to start answering the “big questions,” it

already holds significant, practical promise in niche areas, like sensor technology,

autocatalysis, chiral symmetry breaking, complex behaviors in molecular systems,

and chemical self-organization, to name but a few.22

For these reasons, we believe that it does and will, in future, prove to be an

increasingly important aspect of biomimicry and bioinspiration. The suggestion of,

for example, Darwinian behavior on the molecular scale is, frankly, breathtaking

and extraordinary.20 Who could not consider it to be worthy of attention?

A very important point about studies in systems chemistry is that they may

potentially generate information and implications that go beyond mere chemistry

and influence a host of other fields. For example, studies in self-replication and

amplification may yield valuable information in developing “self-improving” computer programs in information technology. Lehn has recently equated self-assembly

in biology and chemistry with an “interactional algorithm” that drives the formation of novel chemical entities.33 The implication is that algorithms in information

technology could one day learn something from the way that biological or chemical



470



CONCLUSION AND FUTURE PERSPECTIVES



Synthesis chamber



Hydrolysis chamber



Screening chamber



HO2C



O



NH2



F

F



N

H



O

H

N

F



O



CO2Et



F



R



X



X



HO2C



NH2



Carbonic anhydrase–dipeptide complex



CA



X

O

HO2C



N

H



HO2C



NH2



O

H

N

HO



CO2Et

R



Pronase



X



H

N



O

HO2C



N

H



O



H

N



CO2Et

R



1 KDa MWCO dialysis membrane



X



12KDa MWCO dialysis membrane



X



CO2Et



HO2C



R



N

H



H

N

CO2Et

R



Figure 15.8 The three chamber experimental setup used by Gleason and Kazlauskas in

their demonstration of a nonequilibrium-like DCL. (Reprinted with permission. Copyright

Wiley-VCH: Ref. 31.)



self-assembly runs its course. Several other complex systems could perhaps eventually draw inspiration or insights from chemical and biological complex systems,

including social interactions and human behavior (e.g., criminology, sociology,

ethics) and economics (the phenomenon of “economic growth”).1 As such, systems

chemistry offers the prospect of playing a role in unifying science and improving

the human experience generally.1 And that could well prove the best reason to

study it in the future.



REFERENCES

1. (a) von Kiedrowski, G.; Otto, S.; Herdewijn, P. J. Syst. Chem. 2010, 1, 1; (b)

Peyralans, J.J. P.; Otto, S. Curr. Opin. Chem. Biol . 2009, 13, 705.

2. (a) http://en.wikipedia.org/wiki/Bacterial_growth; (b) Levinthal, C. J.

Chim. Phys. 1968, 65, 44.

3. Mechanical Catalysis (Ed. Swiegers, G. F.), John Wiley & Sons, Hoboken, NJ, 2008.

4. Vidonne, A.; Philp, D. Eur. J. Org. Chem. 2009, 5, 583.

5. Patzke, V.; von Kiedrowski, G. ARKIVOC 2007, (v ), 293–310.

6. Nguyen, R.; Allouche, L.; Buhler, E.; Giuseppone, N. Angew. Chem. Int. Ed . 2009,

48, 1093.

7. Zepik, H.H.; Blăochliger, E.; Luisi, P. L. Angew. Chem. Int. Ed. Engl . 2001, 113, 205.



REFERENCES



471



8. Suzuki, K., Hatase, K.; Nishiyama, D.; Kawasaki, T.; Soai, K. J. Syst. Chem. 2010,

1, 5.

9. Tsogoeva, S. J. Syst. Chem. 2010, 1, 8.

10. Mauksch, M.; Tsogoeva, S. B.; Martynova, I. M.; Wei, S. Angew. Chem. Int. Ed .

2007, 119, 397.

11. Bolli, M.; Micura, R.; Eschenmoser, A. Chem. Biol . 1997, 4, 309.

12. Feringa, B. L.; van Delden, R. A. Angew. Chem. Int. Ed . 1999, 38, 3418.

13. von Kiedrowski, G. Angew. Chem. Int. Ed. Engl . 1986, 25, 932.

14. Nowick, J. S.; Feng, Q.; Tjivikua, T.; Ballester, P.; Rebek J. J. Am. Chem. Soc. 1991,

113, 8831.

15. Tjivikua, T.; Ballester, P.; Rebek, J. J. Am. Chem. Soc. 1990, 112, 1249.

16. Ludlow, R. F.; Otto, S. Chem. Soc. Rev . 2008, 37, 101.

17. Issac, R.; Chmielewski, J. J. Am. Chem. Soc. 2002, 124, 6808.

18. Levy, M.; Ellington, A. D. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6416.

19. Powner, M. W.; Gerland, B.; Sutherland, J. D. Nature 2009, 459, 239.

20. Pross, A. J. Syst. Chem. 2011, 2, 1.

21. Eschenmoser, A. Orig. Life Evol. Biosphere 2007, 37, 309.

22. Kuhn, H. J. Syst. Chem. 2010, 1, 3.

23. Joyce, G. F. Nature 1989, 338, 217.

24. Whitesides, G. M.; Ismagilov, R. M. Science 1999, 284, 89.

25. Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.;

Otto, S. Chem. Rev . 2006, 106, 3652.

26. Newth, D.; Finnigan, J. Aust. J. Chem. 2006, 59, 841.

27. Severin, K. Chem. Eur. J . 2004, 10, 2565.

28. Buryak, A.; Severin, K. Angew. Chem. Int. Ed . 2005, 44, 7935.

29. Buryak, A.; Severin, K. J. Comb. Chem. 2006 , 8, 540.

30. Cheeseman, J. D.; Corbett, A. D.; Shu, R.; Croteau, J.; Gleason, J. L.; Kazlauskas,

R. J. J. Am. Chem. Soc. 2002, 124, 5692.

31. Corbett, A. D.; Cheeseman, J. D.; Kazlauskas, R. J.; Gleason, J. L. Angew. Chem.

Int. Ed . 2004, 43, 2432.

32. Carnall, J. M. A.; Waudby, C. A.; Belenguer, C. A.; Stuart, M. C. A.; Peyralans, J.

J.-P.; Otto, S. Science 2010, 327, 1502.

33. Lehn, J.-M. J. Chem. Sci . 1994, 106, 915.



INDEX



Absorbance (bioinspired light-harvesting),

400–401, 404, 409

Acid-base switch, 375–376

Activation, energy (bioinspired catalysis),

168–170, 174–176, 180, 188, 190, 192, 195

Adhesion, anisotropic, 253

of membranes, 209, 212, 216–223, 245–246

switchable, 274

Adhesive

bioinspired, 251, 253

wet and dry, 252–253

Agelastatin A, 435–437

Aldolases, 438

Algorithm, interactional (bioinspired complex

systems), 469

Alkaloids

daphniphyllium, 432–433

indole (bioinspired organic chemistry),

429–430

Allosterism (bioinspired receptors), 368–369,

388–391

Amphiphile, synthetic, 209–210, 212

Amphiphilic, polymer (bioinspired polymer

chemistry), 337–340, 344

Amplification (bioinspired complex systems),

456–460, 462, 469

Anisotropic, adhesion, 253

Antenna (bioinspired light-harvesting), 397, 399

Approach, trajectory of catalyst-bound reactants

(bioinspired catalysis), 201

Aragonite, 141, 146

Architecture, polymeric, 327, 334, 338,

342–343, 349, 358

Artificial

cells (biomimetic amphiphiles/ vessicles), 239,

242, 244, 246

glycocalix (biomimetic amphiphiles/vessicles),

218

Aspect ratio, high (bioinspired adhesives), 251,

253–258, 265, 269, 272, 276, 285



Assembly

layer-by-layer (bioinspired nanocomposites),

122, 129, 130

supramolecular (self-assembled structures), 18,

33

Asymmetric, autocatalysis (bioinspired complex

systems), 462–463

ATPase (molecular machines), 72, 77, 80–83

ATRP, 327–329, 333, 348

Autocatalysis (bioinspired complex systems),

460–465, 469

asymmetric (bioinspired complex systems),

462–463

Autonomous, agents (bioinspired complex

systems), 457, 459, 465

Autonomy (bioinspired complex systems), 457,

459, 465

Aza-cryptand (bioinspired receptors), 378

Bacteria, magnetotatic (biomineralization), 140

Base-pairing (self-assembled structures), 34–35,

37–38

Benzyl ether (bioinspired light-harvesting),

404–407, 412

Bidirectional, catalysis, 173, 205

Binding (molecular machines), 79–84, 89–91,

99, 101, 103

intermolecular (principles of self-assembly),

48, 50, 52, 58

intramolecular (principles of self-assembly),

48, 55–56, 58

Bioderivation, 4

Bioextraction, 4

Biogenic, minerals, 141, 146

Biohybrids (bioinspired nanocomposites), 121,

127, 128

Bioinspired

adhesive, 251, 253

frameworks (self-assembled structures), 38–39

Biointerface (bioinspired nanocomposites), 127



Bioinspiration and Biomimicry in Chemistry: Reverse-Engineering Nature, First Edition.

Edited by Gerhard F. Swiegers.

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.



473



474



INDEX



Biomimetic

bone materials (biomineralization), 147

carrier (bioinspired nanocomposites), 127

membranes (biomimetic amphiphiles/

vessicles), 210–211

scaffold (biomineralization), 148, 151

Biomineralization, 139, 160

Bionanocomposite (bioinspired nanocomposites),

121–128

foam (bioinspired nanocomposites), 122, 124

Bionics, 4–5

Biopolymers (bioinspired nanocomposites),

122–125

Bioutilization, 4

Bistable, 74, 86–87, 90

Block, copolymer, 336, 338–343, 350–351

Bone (biomineralization), 143, 145–148, 151,

155–156

biomimetic (bioinspired nanocomposites),

121–122, 124–127, 133

biomimetic materials (biomineralization), 147

“Bottom-up”

self-assembly (photonic devices), 297

self-assembly (self-assembled structures),

17–18, 41

Brownian motion (molecular machines), 82–84,

110

“Butterfly effect”, 456

C3 symmetry (bioinspired receptors), 385

Cadmium

selenide (biomineralization), 151–154

sulfide (biomineralization), 151–154

Cage (self-assembled structures), 19–18, 32–33,

36–38

Calcite (biomineralization), 141, 145–146

Calcium carbonate

amorphous (biomineralization), 141

biogenic, 141, 144, 147

bioinspired (biomineralization), 141, 145–146,

148, 150

Calcium phosphate (biomineralization), 143,

148–149

Capsule

bioinspired nanocomposites, 131–133

self-assembled structures, 19, 21–25, 27

Carbon

nanotubes (bioinspired adhesives), 254, 278,

280, 282, 284–285

mesoporous (bioinspired nanocomposites),

130–131

Carbonic anhydrase (self-assembled structures),

28–30

Carrier, biomimetic (bioinspired

nanocomposites), 127



Cartilage (bioinspired polymer chemistry),

346–348, 355

Cascade (bioinspired complex systems), 457–459

Cassie-Baxter, equation / model (contact angle),

302

Catalysis (molecular machines), 77, 108,

165–174

heterogeneous (bioinspired catalysis), 165,

168–169, 177, 187, 192–193, 198, 201,

203, 206

homogeneous (bioinspired catalysis),

168–169, 177, 187–188, 192–193, 198,

201, 203–204, 206

mechanical, 174, 206

Catalysts

chromium epoxidation (bioinspired catalysis),

178, 181

cofacial cobalt diporphyrin (bioinspired

catalysis), 202–203

cubane, 194, 196, 198, 200–201, 208

ferrocenophanes (bioinspired catalysis),

188–191

manganese porphyrin oxidation (bioinspired

catalysis), 182–183, 185

‘‘statistical proximity”, 194, 201, 202–203

Catenane (molecular machines), 74, 76, 103

Cationic, polyene cyclization (bioinspired

organic chemistry), 420–422

Cavitand

bioinspired receptors, 368

self-assembled structures, 21

Cavity, hydrophobic (bioinspired receptors), 377,

379, 383, 385

Cell

adhesion molecules (biomimetic

amphiphiles/vessicles), 216

artificial (biomimetic amphiphiles/vessicles),

239, 242, 244, 246

Cerasome, 129, 130, 133

Chameleon, 309–310

Chaos, theory of, 457

“Chaotic”, 457

Charge-dipole, interactions (bioinspired

receptors), 383

Charge, transfer, 399, 405–408, 410, 413

Charidotella egregia (leaf beetle), 309–310

Chelate, effect (principles of self-assembly), 52,

55

CH-π gnteractions (bioinspired receptors), 371,

374, 379, 383, 385

Chromium, epoxidation catalysts (bioinspired

catalysis), 178, 181

Chromophores (bioinspired light-harvesting),

397–391, 403–406, 409



INDEX

Clay, polymer nanocomposite (bioinspired

nanocomposites), 122–128

Cleft, molecular (self-assembled structures), 19,

21, 23, 25, 27

Click, -chemistry (bioinspired polymer

chemistry), 333, 357, 358

Coenzyme B12, 442–443

Cofacial, cobalt diporphyrin catalysts

(bioinspired catalysis), 202–203

Collision (bioinspired catalysis), 68, 169, 172,

174–182, 187–189, 190, 192–193,

195–196, 201

frequency, 169, 175–177, 187

theory (bioinspired catalysis), 168, 172

Compartments, nano and subcompartments

(biomimetic amphiphiles/vessicles), 210,

216–217, 231, 237–238, 239–246

“Comparative anatomy” (bioinspired organic

chemistry), 426–427, 429

Complementarity, functional, 184, 186

Complex systems, 455–459, 465, 470

Complex systems science, 455–456

Conjugated, dendrimers, 400–401, 405

Convergence, functional, 184–186

Cooperativity (bioinspired receptors), 381, 383

Cooperativity (principles of self-assembly),

47–48, 50–52, 55, 57–67

Cooperativity

allosteric (principles of self-assembly), 48,

50–51, 55, 58, 61–67

chelate (principles of self-assembly), 48, 55,

57, 58–57

Cooperativity factor, 50, 58–59, 61–62, 66

interannular, 48, 60–63, 66–67

negative, 47, 51–52

positive, 47, 51–52, 55

Copolymer, block, 336, 338–343, 350–351

Coupled, protein motions, 172, 174

Cover, scale of Morpho butterfly (structural

color), 294–295, 301

Critical, solution temperature, lower, 344, 355

Cross-catalytic (bioinspired complex systems),

460–462, 464

Cryptand (self-assembled structures), 21

Cubane, catalysts, 194, 196, 198, 200–201, 208

Cyclization, cationic polyene (bioinspired

organic chemistry), 420–422

Cyclophilin A (bioinspired catalysis), 173

Cytochrome P450, 444, 446

Daisy-chain, dimer, 97–98

Damselfish, 309–310

Daphniphyllium, alkaloids, 432–433

Darwin, Charles (bioinspired complex systems),

464



475



DCL, dynamic combinatorial library (bioinspired

complex systems), 465–467, 470

Defects (photonic devices), 298–301

Dendrimer

conjugated, 400–401, 405

unsymmetrically branched, 404

Dendron, 409–413

Dendron-rod-coil, 410, 412–413

Deposition

electrophoretic (photonic devices), 297

layer-by-layer (photonic devices), 299

Diatoms (biomineralization), 139–140, 158

“Dipping”, method (photonic devices), 303

Drug, delivery (molecular machines), 77

Dynamic

combinatorial chemistry (bioinspired complex

systems), 465

combinatorial library (DCL) (bioinspired

complex systems), 465, 467–468

covalent chemistry (self-assembled structures),

22

‘‘kinetic stability” (bioinspired complex

systems), 465

mechanical devices (bioinspired catalysis), 173

polymer (bioinspired polymer chemistry),

330–331, 336

Effective molarity (principles of self-assembly),

48, 52, 55, 66, 68

Electrophoretic, deposition (photonic devices),

297

Emergence (bioinspired complex systems), 457,

458, 464

Encapsulation (bioinspired polymer chemistry),

340–341, 357–358

Endiandric, acids, 430

Energy

gradient (bioinspired light-harvesting),

399–400, 403

transfer (bioinspired light-harvesting),

405–408, 412–413

unidirectional transfer (bioinspired

light-harvesting), 400, 403–404

Entropy, trap, 172

Enzyme, mimics (self-assembled structures),

28–29

Evolution (bioinspired complex systems),

457–458, 464–465

Feedback (bioinspired complex systems),

457–451

Ferrocenophane, catalysts (bioinspired catalysis),

188–191

Fluorescence, quenching (bioinspired

light-harvesting), 406, 412



476



INDEX



Fluorescence, -based photonic crystal sensors,

304

Foam, bionanocomposite (bioinspired

nanocomposites), 122, 124

Framework, bioinspired (self-assembled

structures), 38–39

Freeze-drying (bioinspired nanocomposites), 122,

124–125

FRET (bioinspired light-harvesting), 404, 406

Fuel (molecular machines), 82, 86, 90, 96, 114

Functional

complementarity, 184, 186

convergence, 184–186

Funnel, complexes, 368, 370–371, 372–375,

378, 391

Fusion, of membranes, 209, 212, 216–224,

237–238, 245–246

Galanthamine, 424, 426

Gecko, feet, 251–253, 269, 281

Glycocalix, artificial (biomimetic

amphiphiles/vessicles), 218

Graphene (bioinspired nanocomposites),

131–132

Ground, -scale of Morpho butterfly (structural

color), 294–295, 301

Helicates (principles of self-assembly), 63,

66–67

Helix (bioinspired polymer chemistry), 330–332

Heteroditopic, receptors, 381, 388

Heterogeneous, catalysis (bioinspired catalysis),

165, 168–169, 177, 187, 192–193, 198,

201, 203, 206

Hierarchical structure (bioinspired

nanocomposites), 121–122, 124,

129–131

multilevel (bioinspired adhesives),

265

High, aspect ratio (bioinspired adhesives), 251,

253–258, 265, 269, 272, 276, 285

Hill, plot, 52, 66–67

Holographic, lithography (photonic devices),

297

Homeostasis (bioinspired complex systems), 461

Homogeneous, catalysis (bioinspired catalysis),

168–169, 177, 187–188, 192–193, 198,

201, 203–204, 206

Host-guest, chemistry, 373–375, 379–380,

382–383, 389–391

Hydrogen-bonding interactions (bioinspired

receptors), 379–380, 385, 389

evolution (bioinspired light-harvesting),

497–499



Hydrophilic, superhydrophilic (structural color),

301–304

Hydrophobic

cavity (bioinspired receptors), 377, 379, 383,

385

superhydrophobic (structural color), 301–304

superhydrophobic, self-cleaning of surfaces

(structural color), 304

Hydroxyapatite (biomineralization), 143,

149–150

Imprinting (bioinspired polymer chemistry),

353–354

Indole, alkaloids (bioinspired organic chemistry),

429–430

Induced-fit (bioinspired receptors), 373–374,

387, 389, 391

theory of (bioinspired catalysis), 170

Information, theory (bioinspired complex

systems), 464

Integration (molecular machines), 75–78, 102,

109, 115

Interactional, algorithm (bioinspired complex

systems), 469

Interactions

charge dipole (bioinspired receptors), 383

CH-π (bioinspired receptors), 371, 374, 379,

383, 385

H-bonding (bioinspired receptors), 379–380,

385, 389

OH-π (bioinspired receptors), 373–374, 376

Interface (molecular machines), 73, 82, 105,

115–116

Interlocked, molecules, 74

Intermolecular, binding (principles of

self-assembly), 48, 50, 52, 58

Intramolecular, binding (principles of

self-assembly), 48, 55–56, 58

Inverse, opal (structural color), 300, 303–305,

308–310

Ion-channel, mimics of (self-assembled

structures), 32–33

Ionic, liquid (bioinspired nanocomposites),

131–132

Isoprene, rule, 426, 448

Kinesin (molecular machines), 72–73, 77,

79–72, 86, 106, 108, 114

Kinetic, process (bioinspired complex systems),

460

“Knowledge”, term (bioinspired complex

systems), 464

“Label-free”, photonic crystal sensors, 304–305,

309



INDEX

Laser

-guided, stereolithography (photonic devices),

297

-induced, polymerization (photonic devices),

299

Layer-by-layer

assembly (bioinspired nanocomposites), 122,

129–130

deposition (photonic devices), 299

Levinthal, paradox, 459

Library, dynamic combinatorial (DCL)

(bioinspired complex systems), 465,

467–468

“Lifting”, method (photonic devices), 297–298,

303–304

Lipid

membrane (bioinspired polymer chemistry),

340

rafts (biomimetic amphiphiles/vessicles), 220

Liposomes

biomimetic amphiphiles/vessicles, 210, 212,

216, 217, 220, 222

self-assembled structures, 30

Lithography (bioinspired adhesives), 254–257,

262–263, 265, 267, 269–270

holographic (photonic devices), 297

Living, polymerization (bioinspired polymer

chemistry), 326–327, 338, 347

Lock-and-key, theory (bioinspired catalysis), 170

Lorenz, Edward, 456

Lower, critical solution temperature, 344, 355

Lubrication (bioinspired polymer chemistry),

324, 346, 348

Lumazine synthase, 20–21

Magnetite, biogenic (biomineralization), 140,

141, 145–146, 148

Magnetotatic, bacteria (biomineralization), 140

Manganese, porphyrin oxidation catalysts

(bioinspired catalysis), 182–183, 185

Mannich, reaction, 462, 463

Maxwell’s Demon, 89, 93

Mechanical

catalysis, 174, 206

process (bioinspired complex systems), 460

Mechanosensitive, self-replication (bioinspired

complex systems), 457–458, 460–464, 468,

469

Membrane

adhesion, 209, 212, 216–223, 245–246

biomimetic, 210–211

fusion of, 209, 212, 216–224, 237–238,

245–246

lipid (bioinspired polymer chemistry), 340

model, 217



477



Mesoporous

carbon (bioinspired nanocomposites), 130–131

silica (bioinspired nanocomposites), 132, 133

Metalloenzymes (bioinspired receptors), 368

Metallosupramolecular, chemistry

(self-assembled structures), 18, 20, 24–25,

33, 37–38

Michaelis complex (bioinspired catalysis), 168,

176, 192

Micro

-capsules (biomimetic amphiphiles/vessicles),

213

-fabrication (bioinspired adhesives), 254

-machining, “top-down” (structural color), 297

-patterns (bioinspired adhesives), 255, 267,

282

Molecular

cleft (self-assembled structures), 19, 21, 23,

25, 27

receptors, 367, 377

recognition (bioinspired receptors), 374, 379,

389, 392

switch (bioinspired receptors), 383, 384

Mollusc, shells, 141, 145–146

Morpho, butterfly, 294–296, 301–303

Motility, 72, 77, 109

Motor (molecular machines), 71–72, 77, 79–80,

82, 83–85, 96, 102–105

Multilevel

complex structure (bioinspired adhesives),

263, 266

hierarchical structure (bioinspired adhesives),

265

Multipoint, recognition (bioinspired receptors),

374

Multivalency (principles of self-assembly), 55

Muscle (molecular machines), 72–73, 77–79,

82–83, 86, 93–98, 101–106, 114–116

Myosin (molecular machines), 72–73, 77–83,

86, 90, 106, 114, 116

Nacre, artificial (bioinspired nanocomposites),

121–123, 133

NADH, -mimetics (bioinspired organic

chemistry), 441

Nano

-compartments, and subcompartments

(biomimetic amphiphiles/vessicles) , 210,

216–217, 231, 237–238, 239–246

-composite, polymer clay (bioinspired

nanocomposites), 122–128

-hairs, polymer (bioinspired adhesives),

254–251, 265–266, 269, 285

-reactors (biomimetic amphiphiles/vessicles),

209, 231, 238, 246



478



INDEX



Nano (Continued)

-sensors (biomimetic amphiphiles/vessicles),

209

-tubes, carbon (bioinspired adhesives), 254,

278, 280, 282, 284–285

-wires (biomineralization), 151, 153, 154–155,

157

“Near-attack conformers”, 172, 205

Network, supramolecular (bioinspired polymer

chemistry), 360, 361

Neutral, molecule, recognition of (bioinspired

receptors), 368, 372, 378–379, 380,

384–385, 388, 391

NMP, 327

Noncovalent (molecular machines), 74–75

Nonequilibrium, processes (bioinspired complex

systems), 457, 459–460

Nucleophilic, carbine, 441

OH-π interactions (bioinspired receptors),

373–374, 376

Opal (structural color), 299–300, 303–305,

308–312, 316

inverse (structural color), 300, 303–305,

308–310

“Orbital steering”, 172

Organic, template (biomineralization), 145, 151,

153, 159

Organocatalysis (bioinspired organic chemistry),

439

Origin, of life, 460–464

Path-dependence

bioinspired catalysis, 173–174, 181, 185, 186,

190, 201

bioinspired complex systems, 457, 459–460

Pauling, Linus, 170–172, 174, 205

Peptidase (bioinspired receptors), 367, 369, 376

Phenolic, oxidation (bioinspired organic

chemistry), 425–426

Phenylacetylene (bioinspired light-harvesting),

403–404

Photo

-chemical (molecular machines), 97, 104–105

-induced electron transfer (bioinspired

light-harvesting), 408

-lithography (photonic devices), 299–300

-synthetic mimic (bioinspired light-harvesting),

413

Photonic, crystal sensors

“label-free”, 304–305, 309

fluorescence-based, 304

Polymer

amphiphilic (bioinspired polymer chemistry),

337–340, 344



architecture, 327, 334, 338, 342–343, 349,

358

clay nanocomposite of (bioinspired

nanocomposites), 122–128

dynamic, 330–331, 336

nanohairs (bioinspired adhesives), 254–251,

265–266, 269, 285

self-healing (bioinspired polymer chemistry),

355–357, 359, 361

shape-memory, 349, 352

star, 327, 338, 342

Polymerization

laser-induced (photonic devices), 299

living (bioinspired polymer chemistry),

326–327, 338, 347

templated (bioinspired polymer chemistry),

325, 328, 329

Polymersome

bioinspired polymer chemistry, 338–341

biomimetic amphiphiles/vessicles, 210–211,

213–214, 216, 223, 231, 235–236, 246

“Potentially biomimetic synthesis” (bioinspired

organic chemistry), 423–424, 426–427,

429–430, 432, 436, 449

“Prebiotically plausible conditions” (bioinspired

complex systems), 464

Product-induced, solvation (bioinspired complex

systems), 461

Progesterone (bioinspired organic chemistry),

420–422

Proximity, effect, 172, 205

Purple, bacteria, 397–398

Quantum, dots (biomineralization), 151

Ratchet, 83–85, 90, 92, 102, 104

Reactors, nano (biomimetic

amphiphiles/vessicles), 209, 231, 238, 246

Receptors

heteroditopic, 381, 388

molecular, 367, 377

Recognition

molecular (bioinspired receptors), 374, 379,

389, 392

multipoint (bioinspired receptors), 374

of neutral molecule (bioinspired receptors),

368, 372, 378–380, 384–385, 388, 391

Rocaglamides, 427

ROMP, 327, 352, 357

Rotaxane (molecular machines), 74, 76, 77,

86–88, 90–91, 93–92, 105–106, 109, 111,

113–115

Rotor, 80, 104

Roughness, factor and coefficient (contact angle),

302



INDEX

Sarcomere (molecular machines), 73, 78–79, 86,

93, 101, 109, 114

Scaffold, biomimetic (biomineralization), 148,

151

Scatchard, plot, 52, 66–67

Sedimentation (photonic devices), 297

Self

-assembly (principles of self-assembly),

47–50, 52, 54, 56, 58, 62–67

“bottom-up” (photonic devices), 297

“bottom-up” (self-assembled structures),

17–18, 41

-cleaning

of gecko feet and adhesives, 253, 270, 272,

282, 284

of superhydrophobic surfaces (structural

color), 304

-healing of polymer (bioinspired polymer

chemistry), 355–357, 359, 361

-replication

bioinspired complex systems, 457–458,

460–463, 468–469

mechanosensitive (bioinspired complex

systems), 457, 458, 460–464, 468, 469

Sensors

nano (biomimetic amphiphiles/vessicles), 209

photonic, 298, 301, 304, 306, 309, 317–318

Sepiolite, 124–128

Shape

-memory polymer, 349, 352

-control, of vesicles (biomimetic

amphiphiles/vessicles), 209, 224

Signaling, transmembrane, 209, 234, 238, 244,

246

Silica (bioinspired nanocomposites), 121–125,

127, 130, 132–133

biogenic, 158

bioinspired, 157

hollow (biomineralization), 159–160

mesoporous (bioinspired nanocomposites),

132–133

Silicate (bioinspired nanocomposites), 121–127,

133

Slanted, structure (bioinspired adhesives), 253

Sliding (molecular machines), 72, 77–78,

86–81, 114–115

SNARE, proteins, 222

Spherands (self-assembled structures), 21

Solvation, product-induced (bioinspired complex

systems), 461

Star, polymer, 327, 338, 342

Statistical, factors (principles of self-assembly),

48, 50, 55, 61–62, 64–66, 68

“Statistical proximity”, catalysts, 194, 201–203



479



Stereolithography, laser-guided (photonic

devices), 297

Stetter, reaction, 441

Stimuli-responsive

molecular machines, 101–102

vesicles (biomimetic amphiphiles/vessicles),

209, 224, 235–236

Strain, theory, 170

Structural

assignment, biomimetic considerations as an

aid to, 447–448

hierarchy, general discussion of, 7, 9–10

Structure, slanted (bioinspired adhesives), 253

Subcompartments, nano and (biomimetic

amphiphiles/vessicles), 210, 216–217, 231,

237–236

Superhydrophilic (structural color), 301, 304

Superhydrophobic (structural color), 301–304

self-cleaning of surfaces (structural color), 304

Supramolecular (molecular machines), 74, 96,

115

assemblies (self-assembled structures), 18, 33

chemistry (principles of self-assembly), 47

network (bioinspired polymer chemistry),

360–361

polymer (bioinspired polymer chemistry), 323,

333–337, 359

Sustainability, relating to biomimicry in general,

5, 14

Switch, acid-base, 375–376

molecular machines, 74, 85–88, 97–98, 102,

104, 111, 114

molecular (bioinspired receptors), 383–384

Switchable, adhesion, 274

Symmetry

-breaking

reactions (bioinspired complex systems),

463, 469

systems (bioinspired complex systems),

464

C3 (bioinspired receptors), 385

number (principles of self-assembly), 48–50,

62, 66, 69

external (principles of self-assembly),

49–50

internal (principles of self-assembly), 49, 69

Synergistic (bioinspired complex systems), 455

Synthetic, amphiphiles, 209–210, 212

Systems biology, 13

(bioinspired complex systems), 457–458

Systems chemistry

(general discussion), 13

(bioinspired complex systems), 457

Journal of, 457



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

4 Conclusion: Systems Chemistry may have Implications in Other Fields

Tải bản đầy đủ ngay(0 tr)

×