Tải bản đầy đủ - 0 (trang)
Appendix A. Properties, Purification, and Use of Organic Solvents

Appendix A. Properties, Purification, and Use of Organic Solvents

Tải bản đầy đủ - 0trang

0.0

À12.6

2.5

À97.7

À3.8

À7.8

À4.3

À6.2

À85.1

30.6

À114.5

10.5

16.7

À126.2

À15.3

À88.6

À78.2

À117.2

À108.2

À88.0

25.1

À114.7

À50

À28.6

À54.5

À8

À43.8

18.5

À6.0

28.4

À73.1

À92.8

25.6

À60.4



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)



Water

1,2-Ethanedioli)

Formamide

Methanolk)

N-Methylformamide

Diethylene glycol

Triethylene glycol

Tetraethylene glycol

2-Methoxyethanol

N-Methylacetamidel)

Ethanolk)

2-Aminoethanol

Acetic acid

1-Propanolm)

Benzyl alcohol

1-Butanol

1-Pentanol

3-Methyl-1-butanol

2-Methyl-1-propanol

2-Propanolm)

Cyclohexanol

2-Butanol

2-Pentanol

Nitromethanen)

Propylene carbonatel)

3-Pentanol

Acetonitrilel)

Dimethyl sulfoxidel)

Aniline

Sulfolanel)

Acetic anhydride

Propanenitrile

2-Methyl-2-propanolm)

N,N-Dimethylformamide (DMF)l)



t mp / C



Solvents

100.0

197.5

210.5

64.5

200

245.7

288.0

327.3

124.6

206.7

78.3

170.9

117.9

97.2

205.4

117.7

138.0

130.5

107.9

82.2

161.1

99.5

119.0

101.2

241.7

115.3

81.6

189.0

184.4

287.3

140.0

97.3

82.3

153.1



t bp / Cd)

78.36

37.70

109.50

32.66

182.40

31.69 (20  C)

23.69 (20  C)

19.7

16.93

191.3 (32  C)

24.55

37.72

6.17 (20  C)

20.45

12.7

17.51

13.9

15.19

17.93

19.92

15.0

16.56

13.71

35.87

64.92

13.35

35.94

46.45

6.98

43.3 (30  C)

20.63

28.26

12.47

36.71



er e)

6.2

7.7

11.2

5.9

12.9

7.7

10.0

10.8

6.8

12.8

5.8

7.6

5.6

5.5

5.5

5.8

5.7

6.1

6.0

5.5

6.2

5.5

5.5

12.0

16.5

5.5

13.0

13.5

5.0

16.0

9.4

13.4

5.5

12.7



m Á 10 30 /Cmf)

1.3330

1.4318

1.4475

1.3284

1.4319

1.4475

1.4558

1.4577

1.4021

1.4253 (35  C)

1.3614

1.4545

1.3719

1.3856

1.5404

1.3993

1.4100

1.4072

1.3959

1.3772

1.4648 (25  C)

1.3971

1.4064

1.3819

1.4215

1.4104

1.3441

1.4793

1.5863

1.4816 (30  C)

1.3904

1.3658

1.3877

1.4305



nD 20 g)



1.000

0.790

0.775

0.762

0.722

0.713

0.682

0.664

0.657

0.657

0.654

0.651

0.648

0.617

0.608

0.586

0.568

0.565

0.552

0.546

0.509

0.506

0.488

0.481

0.472

0.463

0.460

0.444

0.420

0.410

0.407

0.398

0.389

0.386



E TN h)



Table A-1. Compilation of one-hundred important organic solvents together with their physical constantsa), arranged in order of decreasing E TN

value, as empirical parameter of solvent polarityb).



550

Appendix



166.1

225.5

202

56.1

246.5

116.9

191.1

83.5

79.6

210.9

102.3

102.0

129.0

175.3

233

94.9

39.6

202.0

115.3

155.7

117.5

57.4

237.2

102.0

61.2

105.9

56.9

216

125.3

162.0

84.6

77.2

180.5

168.2

188.9



À20.1

8.2

À24.4

À94.7

À23.8

11.3

À12.7

À35.7

À86.7

5.8

À76.9

À8.8

À4.8

À1.2

7.3

À92.2

À94.9

19.7

À41.5

À32.1

À84.2

À97.0

À14.9

À39.0

À63.6

À52.5

À98.1

À45

À69.0

À64.0

À69.2

À83.6

À17.1

À46.0

À44.3



(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)



N,N-Dimethylacetamide (DMAC)

1,3-Dimethylimidazolidin-2-one, (DMEU)o)

1-Methylpyrrolidin-2-onep)

Acetonen)

1,3-Dimethyl-2-oxohexahydropyrimidine (DMPU)o)

1,2-Diaminoethanel)

Cyanobenzeneq)

1,2-Dichloroethaneq)

2-Butanone

Nitrobenzene

2-Pentanone

2-Methyl-2-butanol

Morpholine

Tetramethylureao)

Hexamethylphosphoric triamide (HMPT)l)

3-Methyl-2-butanone

Dichloromethaneq)

Acetophenone

Pyridinel)

Cyclohexanone

4-Methyl-2-pentanone

1,1-Dichloroethaneq)

Quinoline

3-Pentanone

Trichloromethane

3,3-Dimethyl-2-butanone

Methyl acetate

Triethylene glycol dimethyl ether

2,4-Dimethyl-3-pentanone

Diethylene glycol dimethyl ether

1,2-Dimethoxyethaner)

Ethyl acetate

1,2-Dichlorobenzene

2,6-Dimethyl-4-heptanone

Diethylene glycol diethyl ether



t bp / Cd)



t mp / Cc)



Solvents



Table A-1. (Continued)



37.78

37.60

32.2

20.56

36.12

12.9

25.20

10.36

18.11

34.78

15.38 (20  C)

5.78

7.42

23.60

29.30

15.87 (30  C)

8.93

17.39

12.91

15.50

13.11 (20  C)

10.0 (18  C)

8.95

17.00 (20  C)

4.89

12.60

6.68

7.6

17.2 (20  C)

5.8

7.20

6.02

9.93

9.91 (20  C)

5.70



er e)

12.4

13.6

13.6

9.0

14.1

6.3

13.9

6.1

9.2

14.0

9.0

5.7

5.2

11.6

18.5

9.2

3.8

9.8

7.9

10.3

9.0

6.1

7.3

9.4

3.8

9.2

5.6

7.4

9.1

6.6

5.7

5.9

8.3

8.9

6.6



m Á 10 30 /Cmf)

1.4384

1.4707 (25  C)

1.4700

1.3587

1.4881 (25  C)

1.4568

1.5282

1.4448

1.3788

1.5562

1.3908

1.4050

1.4542

1.4493 (25  C)

1.4588

1.3880

1.4242

1.5342

1.5102

1.4510

1.3958

1.4164

1.6273

1.3923

1.4459

1.3952

1.3614

1.4224

1.3999

1.4078

1.3796

1.3724

1.5515

1.4122

1.4115



nD 20 g)

0.377

0.364

0.355

0.355

0.352

0.349

0.333

0.327

0.327

0.324

0.321

0.318

0.318

0.315

0.315

0.315

0.309

0.306

0.302

0.281

0.269

0.269

0.269

0.265

0.259

0.256

0.253

0.253

0.247

0.244

0.231

0.228

0.225

0.225

0.210



ETN h)



Appendix



551



66.0

153.7

84.8

31.6

131.7

126.9

156.0

169.9

188.4

74.1

101.3

87.2

106.3

55.5

258.1

55.2

34.5

80.1

90.1

110.6

138.4

140.3

46.3

76.7

88.9

214.1

195.8

98.5

68.7

36.1

80.8



À108.4

À37.5

À42.2

À122.6

À45.6

À74.3

À30.9

À29.6

À31.4

À30.4

11.8

À86.4

À10.5

À49.8

26.9

À108.6

À116.3

5.6

À123.2

À95.0

13.3

À95.2

À111.6

À22.9

À114.7

À70.0

À43.1

À90.6

À95.4

À129.8

6.8



(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)



Tetrahydrofurans)

Methoxybenzene

Fluorobenzene

1,1-Dichloroethene

Chlorobenzene

Diethyl carbonatet)

Bromobenzene

Ethoxybenzene

Iodobenzene

1,1,1-Trichloroethane

1,4-Dioxanes)

Trichloroethene

Piperidine

Diethylamine

Diphenyl ether

t-Butyl methyl ether

Diethyl ether

Benzeneu)

Di-n-propyl ether

Tolueneu)

1,4-Dimethylbenzene

Di-n-butyl ether

Carbon disulfidev)

Tetrachloromethane

Triethylamine

Tri-n-butylamine

cis-Decahydronaphthalene

n-Heptane

n-Hexane

n-Pentane

Cyclohexane



t bp / Cd)



t mp / Cc)



Solvents



Table A-1. (Continued)



7.58

4.33

5.42

4.82 (20  C)

5.62

2.82 (20  C)

5.40

4.22 (20  C)

4.49 (20  C)

7.25 (20  C)

2.21

3.42 (16  C)

5.8 (20  C)

3.78

3.60

4.5 (20  C)

4.20

2.27

3.39 (26  C)

2.38

2.27 (20  C)

3.08 (20  C)

2.64 (20  C)

2.24

2.42 (20  C)

2.29

2.20 (20  C)

1.92 (20  C)

1.88

1.84 (20  C)

2.02 (20  C)



er e)

5.8

4.2

4.9

4.3

5.6

3.0

5.2

4.5

4.7

5.7

1.5

2.7

4.0

4.0

3.9

4.1

3.8

0.0

4.4

1.0

0.0

3.9

0.0

0.0

2.2

2.6

0.0

0.0

0.0

0.0

0.0



m Á 10 30 /Cmf)

1.4072

1.5170

1.4684 (15  C)

1.4247

1.5248

1.3837

1.5568

1.5074

1.6200

1.4380

1.4224

1.4773

1.4525

1.3846

1.5763 (30  C)

1.3690

1.3524

1.5011

1.3805

1.4969

1.4958

1.3992

1.6275

1.4602

1.4010

1.4291

1.4810

1.3876

1.3749

1.3575

1.4262



nD 20 g)



0.207

0.198

0.194

0.194

0.188

0.185

0.182

0.182

0.170

0.170

0.164

0.160

0.148

0.145

0.142

0.124

0.117

0.111

0.102

0.099

0.074

0.071

0.065

0.052

0.043

0.043

0.015

0.012

0.009

0.009

0.006



ETN h)



552

Appendix



a) The physical constants were taken from the following references: (1) R. C. Weast, M. J. Astle: CRC Handbook of Data on Organic Compounds,

Vols. I and II, CRC Press, Boca Raton/FL, USA, 1985; (2) D. R. Lide (Ed.): Handbook of Chemistry and Physics. 89th ed., CRC Press, Boca Raton/

FL. USA, 2008; (3) J. A. Riddick, W. B. Bunger, T. K. Sakano: Organic Solvents, Physical Properties and Methods of Purification. 4th edition, in: A.

Weissberger (Ed.): Techniques of Chemistry, Vol. II, Wiley-Interscience, New York, 1986; (4) A. L. McClellan: Tables of Experimental Dipole Moments, Vols. 1–3, Freeman, San Francisco, 1963; Rahara Enterprises, El Cerrito/CA, USA, 1974 and 1989; (5) A. A. Maryott, E. R. Smith: Table of

Dielectric Constants of Pure Liquids, NBS Circular 514, Washington DC, 1951; (6) Y. Marcus: The Properties of Solvents, Wiley, Chichester, 1998;

(7) G. Wypych (Ed.): Handbook of Solvents (ỵSolvent Database on CD-ROM), Chem Tec Publishing, Toronto, and William Andrew Publishing,

New York, 2001; (8) M. J. O’Neil et al. (Eds.): The Merck Index – An Encyclopedia of Chemicals, Drugs, and Biologicals. 14th ed., Merck and Co.,

Whitehouse Station/NJ, USA, 2006.

b) C. Reichardt, Chem. Rev. 94, 2319 (1994); Pure Appl. Chem. 80, 1415 (2008); cf. also Table 7-3 in Chapter 7.

c) Melting point.

d) Boiling point at 1013 hPa.

e) Relative permittivity (‘‘dielectric constant’’) of the pure liquid at 25  C, unless followed by another temperature in parentheses.

f) Dipole moment in Coulombmetre (Cm), measured in benzene, tetrachloromethane, 1,4-dioxane, or n-hexane at 20 . . . 30  C. 1 Debye ¼

3:336 Á 10À30 Cm.

g) Refractive index at the average D-line of sodium (16969 cmÀ1 ) at 20  C, unless followed by another temperature in parentheses.

h) Normalised E TN values, derived from the transition energy at 25  C of the long-wavelength visible absorption of a standard pyridinium N-phenolate betaine dye, E T ð30Þb); cf. Eqs. (7-27) and (7-29) in Section 7.4.

i) Y. Marcus, Pure Appl. Chem. 62, 139 (1990) (1,2-Ethanediol and 2,2,2-Trifluoroethanol).

k) Y. Marcus, S. Glikberg, Pure Appl. Chem. 57, 855, 860 (1985) (Methanol and Ethanol); for the dipole moments see, however, R. J. W. Le Fe`vre,

A. J. Williams, J. Chem. Soc. 108 (1960).

l) J. F. Coetzee (Ed.): Recommended Methods for the Purification of Solvents and Tests for Impurities, Pergamon Press, Oxford, 1982. (Acetonitrile,

Sulfolane, Propylene carbonate, Dimethyl sulfoxide, N,N-Dimethylformamide, Hexamethylphosphoric triamide, Pyridine, 1,2-Diaminoethane, NMethylacetamide, and N-Methylpropionamide).

m) Y. Marcus, Pure Appl. Chem. 58, 1411 (1986) (1-Propanol, 2-Propanol, and 2-Methyl-2-propanol).

n) J. F. Coetzee, T.-H. Chang, Pure Appl. Chem. 58, 1535, 1541 (1986) (Acetone and Nitromethane).

o) B. J. Barker, J. Rosenfarb, J. A. Caruso, Angew. Chem. 91, 560 (1979); Angew. Chem. Int. Ed. Engl. 18, 503 (1979) (DMEU, DMPU, and Tetramethylurea).

p) M. Bre´ant, Bull. Soc. Chim. Fr. 725 (1971) (1-Methylpyrrolidin-2-one).

q) K. M. Kadish, J. E. Anderson, Pure Appl. Chem. 59, 703 (1987) (Benzonitrile, Dichloromethane, 1,1-Dichloroethane, and 1,2-Dichloroethane).

r) C. Agami, Bull. Soc. Chim. Fr. 1205 (1968) (1,2-Dimethoxyethane).

s) J. F. Coetzee, T.-H. Chang, Pure Appl. Chem. 57, 633 (1985) (THF, 1,4-Dioxane).

t) S. M. Ding, K. Xu, S. Zhang, T. R. Jow, J. Electrochem. Soc. 148, A299 (2001); K. Xu, Chem. Rev. 104, 4303 (2004): Table 1.

u) K. M. Kadish, X. Mu, J. E. Anderson, Pure Appl. Chem. 61, 1823 (1989) (Benzene and Toluene).

v) A. D. Dunn, W.-D. Rudorf: Carbon Disulfide in Organic Chemistry, Ellis Horwood, Chichester, and Wiley, New York, 1989.

Appendix



553



554



Appendix



Table A-2. Selection of thirty-four chiral solvents and cosolvents (in alphabetical order)a).

Solvents

(1) 2-Amino-1-butanol



t fp = C

À2



t bp = C (hPa)



178

(1013)

(2) 2-Amino-1-propanol (Alaninol) –

174.5

(1013)

(3) 1-Amino-2-propanol

24 . . . 26 160

(1013)

(4) 1,4-Bis(dimethylamino)43

68 . . . 70

butane-2,3-diol (DBD)c)

(0.7)

(5) 1,4-Bis(dimethylamino)-2,3–

62 . . . 64

dimethoxybutane (DDB)d)

(4)

(6) 1,3-Butanediol

<À50

207.5

(1013)

(7) 2,3-Butanediol

16

183

(1013)

(8) 2-Butanol

À114

99.5

(1013)

(9) 2-Chlorobutane

À131

68

(1013)

(10) Diethyl tartratee)

18

280

(1013)

(11) 2,3-Dimethoxybutanef,g)

À84

109 . . . 110

(1000)

(12) 1-Dimethylamino-1–

81

phenylethaneh)

(16)

(13) 2,3-Dimethylpentane

À135

90

(1013)

(14) Ethyl lactate

À25

154

(1013)

(15) 2-Heptanol



160

(1013)

(16) 3-Heptanol

À70

157

(1013)

(17) 2-(Hydroxymethyl)oxirane



167 (dec.)

(Glycidol)

(1013)

(18) 2-Methyl-1-butanol

À70

129

(1013)

(19) 3-Methyl-2-butanol



113

(1013)

(20) 3-Methylhexane

À119

92

(1013)

(21) 4-Methyl-2-pentanol

À90

132

(1013)

(22) N-Methyl-(1-phenylethyl)amine –

184

(973)

(23) 2-Methyltetrahydrofurani,j)

À137

80

(1013)

(24) 1-(1-Naphthyl)ethylaminek)



153

(11)

(25) 2-Octanoll)

À32

180

(1013)

(26) 2-Pentanol

73

119

(1013)

(27) 1-Phenylethanolm,n)

20

204

(1013)



ẵaD 20 b)



Conguration



10 (neat)

ỵ10 (neat)

18 (neat)

ỵ18 (neat)

18 (water)

ỵ18 (water)

ỵ34 (benzene)

35 (benzene)

15 (neat)

ỵ15 (neat)

31 (ethanol)

ỵ30 (ethanol)

13 (neat; 23  C)

ỵ13 (neat; 23  C)

13 (neat)

ỵ13 (neat)

31 (neat)

ỵ31 (neat)

ỵ8.5 (neat)

8.5 (neat)

ỵ3.7 (neat)f)



Rị

Sị

Rị

Sị

Rị

Sị

2R; 3Rị

2S; 3Sị

2R; 3Rị

2S; 3Sị

Rị

Sị

2R; 3Rị

2S; 3Sị

Rị

Sị

Rị

Sị

2R; 3Rị

2S; 3Sị

2R; 3Rị



ỵ62 (neat; 26  C)

64 (neat)

11 (neat)



Rị

Sị

Sị



ỵ11 (neat)

11 (neat)

9.5 (neat)

ỵ10 (neat; 24  C)

ỵ5 (neat; 25  C)



Rị

Sị

Rị

Sị

Sị



ỵ15 (neat; 23  C)

15 (neat)

6 (neat)



Rị

Sị

Sị



ỵ5 (neat)



Sị



ỵ9 (neat)



Sị



21 (neat)

ỵ21 (neat)

ỵ70 (CHCl3 )

75 (CHCl3 )

27 (neat)

ỵ27 (neat)

ỵ83 (neat; 17  C)

81 (neat; 25  C)

9.5 (neat; 17  C)

ỵ9.5 (neat)

13 (neat; 25  C)

ỵ13 (neat; 25  C)

ỵ44 (neat)

44 (neat)



Rị

Sị

Rị

Sị

Rị

Sị

Rị

Sị

Rị

Sị

Rị

Sị

Rị

Sị



Appendix



555



Table A-2. (Continued)

Solvents

(28) (1-Phenylethyl)amineo,p)

(29) N-(1-Phenylethyl)formamideq,r)

(30) 1-Phenyl-1-propanol

(31) 1,2-Propanediol

(32) 1,2,3,4-Tetramethoxybutanes)

(33) 2,2,2-Trifluoro-1-(1-naphthyl)ethanolt)

(34) 2,2,2-Trifluoro-1phenylethanolu)



tfp = C

À10



t bp = C (hPa)



187

(1013)

46 . . . 47 175 . . . 178

(20)



218 . . . 220

(1013)

À60

188

(1013)



70

(19)

52 . . . 53 83 . . . 85

(0.03)

20

73 . . . 76

(9)



ẵaD 20 b)



Conguration



ỵ40 (neat)

40 (neat)

ỵ180 (neat)

172 (neat)

ỵ48 (hexane)

47 (hexane)

15 (neat; 24  C)

ỵ17 (neat)

6 (neat)



Rị

Sị

Rị

Sị

Rị

Sị

Rị

Sị

2S; 3Sị



26 (ethanol)



Rị



41 (neat; 25  C)

ỵ31 (neat)



Rị

Sị



a) The physical constants are taken from the following references: (1) Beilstein’s Handbuch der

organischen Chemie, 4 th ed., Springer, Berlin; (2) J. A. Riddick, W. B. Bunger, T. Sakano: Organic

Solvents, Physical Properties and Methods of Purification, in: A. Weissberger (Ed.): Techniques of

Chemistry, Vol. II, Wiley-Interscience, New York, 1986; (3) Fluka Chemie AG: Chiral Compounds

Chemistry, Buchs/Switzerland, 1994; (4) Sigma-Aldrich Co.: Chiral Nonracemic Compounds,

Milwaukee/WI, USA, 1998; (5) Merck KGaA: Chemikalien und Reagentien. Darmstadt/Germany,

2005–2007.

b) Specific rotation (dimension 10À1 Á deg Á cm 2 Á gÀ1 ), measured at the average D-line of sodium

(16969 cmÀ1 ) at 20  C, unless followed by another temperature in parentheses. Because of diÔerent

enantiomeric purities of the solvents studied, the literature values of ½aŠD often vary; therefore, only

rounded values are given.

c) D. Seebach, H. Daum, Chem. Ber. 107, 1748 (1974).

d) D. Seebach, H.-O. Kalinowski, W. Langer, G. Crass, E.-M. Wilka, Org. Synth. 61, 24, 42 (1983).

e) H. Plieninger, H. P. Kraemer, Angew. Chem. 88, 230 (1976); Angew. Chem. Int. Ed. Engl. 15,

243 (1976).

f) H. L. Cohen, G. F. Wright, J. Org. Chem. 18, 432 (1953); N. AllentoÔ, G. F. Wright, ibid. 22, 1

(1957).

g) J. D. Morrison, R. W. Ridgeway, Tetrahedron Lett. 569 (1969).

h) W. H. Pirkle, M. S. Hoekstra, J. Magn. Reson. 18, 396 (1975).

i) D. C. I¿and, J. E. Davis, J. Org. Chem. 42, 4150 (1977).

j) D. Gagnaire, A. Butt, Bull. Soc. Chim. Fr. 312 (1961); E. R. Novak, T. S. Tarbell, J. Am.

Chem. Soc. 89, 73 (1967).

k) T. G. Burlingame, W. H. Pirkle, J. Am. Chem. Soc. 88, 4294 (1966).

l) E. Axelrod, G. Barth, E. Bunnenberg, Tetrahedron Lett. 5031 (1969).

m) J. C. Jochims, G. Taigel, A. Seeliger, Tetrahedron Lett. 1901 (1967).

n) A. J. H. Houssa, J. Kenyon, J. Chem. Soc. 2260 (1930); E. Downer, J. Kenyon, ibid. 1156

(1939).

o) W. Theilacker, H. G. Winkler, Chem. Ber. 87, 690 (1954); W. H. Pirkle, J. Am. Chem. Soc. 88,

1837 (1966).

p) A. T. Fischer, R. N. Compton, R. M. Pagni, J. Phys. Chem. A 110, 7067 (2006); 111, 8187

(2007).

q) P. Abley, F. J. McQuillin, J. Chem. Soc., Chem. Commun. 477 (1969); J. Chem. Soc., Part C

844 (1971).

r) R. Huisgen, C. Ruăchardt, Liebigs Ann. Chem. 601, 21 (1956).

s) D. Seebach et al., Helv. Chim. Acta 60, 301 (1977).

t) W. H. Pirkle, M. S. Hoekstra, J. Org. Chem. 39, 3904 (1974); J. Am. Chem. Soc. 98, 1832 (1976).

u) W. H. Pirkle, S. D. Beare, T. G. Burlingame, J. Org. Chem. 34, 470 (1969), W. H. Pirkle, P. L.

Rinaldi, J. Org. Chem. 42, 3217 (1977).



556



Appendix



A.2 Purification of Organic Solvents

Normally it is necessary to purify a solvent before use. Naturally, the purity that can be

achieved depends on the nature of the impurities [14, 15] and the desired purity is

determined by the intended use [16]. The following is a practical definition of the purity

of a solvent: ‘‘A material is su‰ciently pure if it does not contain impurities of such

nature and in such quantity as to interfere with the use for which it is intended’’ [1].

Detailed prescriptions for purification are available in standard texts [1, 17, 104, 105].

The most frequently found impurity in organic solvents is water. A water content of

only 20 mg/g (20 ppm) is equivalent to the total amount of solute in a 10À3 molar solution! Since water interferes undesirably with many reactions, its removal is one of the

basic laboratory operations. Drying agents may bind water either physically or chemically [18, 19]. The best method depends in each case on the chemical nature of the solvent and the desired degree of dryness [20]. All organic solvents possessing a relative

permittivity of less than 15 can be freed almost completely from water, alcohols, peroxides, and traces of acid, by simple adsorptive filtration through aluminium oxide

(activity I) or silica gel (activity I), e.g. using a chromatographic column 2 . . . 5 cm in

diameter and 40 . . . 150 cm long [19, 21–24].

Another safe and nonhazardous, general, large-scale procedure for the purification of solvents without distillation for their use in air- and moisture-sensitive reactions

has been developed by Grubbs et al. [137]. The solvent, slightly pressurized with nitrogen, is passed through two sequential purification columns. The first contains activated

alumina (removing water, peroxides, and inhibitors), and the second, optional, column

contains a supported copper redox catalyst as an oxygen scavenger. A simplified

modification of this distillation-free solvent purification system has also been described

[138].

Comparative studies of the drying e‰ciencies of a number of common desiccants

for diÔerent types of organic solvents have been carried out by Burfield and coworkers

[106–117]. Using a new and very sensitive tritiated water tracer method for determining

water content, they obtained rather unexpected results concerning the drying e‰ciencies

of commonly used desiccants. The results of this study, together with other recommended physical and chemical drying methods [1, 17, 18, 104, 105], are compiled in

Table A-3. In particular, Burfield’s results draw attention to the almost universal applicability of zeolite molecular sieves as desiccants, which are capable of drying even the

most di‰cult organic solvents [107].

The classical method for the determination of low water contents in organic

solvents is the nonaqueous iodometric titration introduced by Karl Fischer in 1935,

using a solution of sulfur dioxide, iodine, and pyridine in a benzene/methanol mixture

[139, 140]. By replacing some of the toxic ingredients (pyridine, benzene, methanol), this

titration method has more recently been developed into a simple and environmentally

safe standard procedure [141].

Another UV/Vis spectroscopic method for the determination of water in organic

solvents involves the use of solvatochromic dyes (such as the pyridinium N-phenolate

betaine dye (44) in Chapter 7.4), and is based on the observation that water has a very

high polarity compared with most organic solvents [142–145]. Even small amounts of

water cause a strong hypsochromic band shift of the dissolved solvatochromic dye,



Appendix



557



which can be related to the water content by a calibration curve. A typical detection

limit of this method is of the order of 1 mg water in 1 mL solvent for routine spectrophotometers [142]. An analogous solvatochromic method has been developed for the

determination of aqueous ethanol mixtures [146].



A.3 Spectroscopic Solvents

Solvents used in ultraviolet, visible, infrared, microwave, and radiowave spectroscopy

must meet the following requirements: transparency and stability toward the radiation

used, solubility and chemical stability of the substance to be examined, and a high and

reproducible purity (‘‘optical constancy’’). Normally, intermolecular interaction with the

solute should be minimal. On the other hand, important information about the solute

can be obtained from the changes in the absorption spectrum arising from such interactions.

A collection of UV/Vis, IR, as well as 1 H and 13 C NMR spectra of common

organic solvents can be found in reference [147]. A comprehensive list with ‘‘UV and IR

spectroscopic windows’’ of organic solvents is given in reference [8a].

The number of solvents useful in UV/Vis spectroscopy decreases with decreasing

wavelength (increasing wavenumber) since the absorption of all substances increases in

this direction. The cut-oÔ point depends on the chemical nature and to a large extent on

the purity of the solvent. Hence, numerous procedures for the production of optically

pure solvents have been developed [25–29]. Solvents for the measurement of uorescence spectra must often be particularly pure [30]. The cut-oÔ points of the solvents

normally used in UV/Vis spectroscopy are collected in Table A-4. Saturated hydrocarbons are among the most useful because of the weak intermolecular interactions and

the lack of excitable p-electrons. Perfluorinated hydrocarbons are recommended for the

far-UV region (<200 nm) [31–33]. The UV spectra of the more important organic solvents are reproduced in the ‘‘DMS UV Atlas of Organic Compounds’’ [34].

Solvents for infrared spectroscopy must meet the additional requirement that they

do not attack the absorption cells themselves (normally made from alkali metal halides

such as NaCl, KBr, and CsBr) [35]. The transparency regions of the IR solvents within

the mid-IR region (2 . . . 16 mm; 5000 . . . 625 cmÀ1 ) are given in Table A-5. Complete IR

spectra of organic solvents can be found in the ‘‘DMS Working Atlas of Infrared Spectroscopy’’ [36], in the ‘‘Sadtler IR Spectra Handbook of Common Organic Solvents’’

[118], as well as in ‘‘The Sprouse Collection of Infrared Spectra’’ [148]. Transmission

characteristics of organic solvents in the near-IR region (1 . . . 3 mm; 1000 . . . 3333 cmÀ1 )

are given in references [37, 38], and for the far-IR region (15 . . . 35 mm; 667 . . . 286 cmÀ1 )

in references [39, 40]. The IR spectra of deuterated organic solvents between 2.5 and

16.7 mm (4000 . . . 600 cmÀ1 ) have also been measured [41]. The number of IR absorption bands active in a covalent compound decreases with the number of atoms and with

increasing symmetry of the molecule. Therefore, small molecules of high symmetry

are particularly useful IR solvents, e.g. carbon disulfide (point group Dyh ) and tetrachloromethane (point group Td ).

In 1 H NMR spectroscopy, one uses solvents which either contain no hydrogens

(e.g. CS2 , CCl4 , Cl2 CbbCCl2 , hexachlorobutadiene) or deuterated solvents (e.g. C 6 D6 ,



ỵu



y



Ethanolad,u,v)



HMPTbe,q)



Ethyl acetatead,i,p)



ỵp,z

o



ỵq



ỵp



ỵu



y



ỵq



ỵq



ỵw



y



1,4-Dioxanea e,i,o,p,r,w,z)



1,2-Ethanediola,b,d,u)







y



ỵq



y



Dimethyl sulfoxideae,i,q)



ỵs



ỵp,q



ỵf



ỵe



ỵd















ỵq















ỵp,t,z





!



ỵd















ỵo











ỵs



ỵc



ỵc



!



ỵe



ỵd



!







ỵịu



ỵo















Na







ỵd



ỵf











ỵa



ỵd

ỵy



ỵe



ỵx,y



ỵc



ỵỵp



ỵd



ỵy



(29.4)



ỵs



ỵq



Di-i-propylamineb,d,s)



y



y



1,2-Dimethoxyethanebd)



(400)



13.0



Diethyl etherad,i,p,t,w,y,z)



N,N-Dimethylformamideae,p,q)



1.5



2.0



y



1,2-Diaminoethaneb,d,e)



Dichloromethanead,i,p,r)



0.1



Cyclohexanea,b,d,i)



1,2-Dichloroethaneb,d)



0.6



Chloroformad,i,x,y)



ỵịu



ỵu



y



120.0



ỵỵo,p



(0.63)



2-Butanonead)



tert-Butanola,b,d,g)



Benzenead,i,o,p)





ỵo



ỵo,p



y



ỵịq



ỵịq



y



Acetonitrileae,i,o,p,w)



M:S: 0:3 nmn)



Acetonead,p,q,b )



M:S: 0:4 nmn)



ỵd



M:S: 0:5 nmn)



y



Sg)H2 O

25  C



P4 O10



Acetic acida,b,d)



SolventsRef.



Drying methods



Al=Hga , c , d)





ỵa,d



































LiAlH4 a )

























ỵc



















ỵỵo















CaH2

ỵq



ỵd



ỵd,u



ỵo



ỵd,e



ỵq



ỵs



ỵc



ỵd



ỵd







ỵịu



ỵỵo



ỵd











Al2 O3 BaI

















ỵb







ỵy







ỵỵo











B2 O3

ỵo



ỵq



KOH powderị

ỵq







ỵo







ỵịs







ỵe























CaCl2













ỵịw



















ỵịc,t



ỵc



ỵd







ỵd



ỵy











ỵỵo



ỵịo









ỵị



CaSO4 0:5 H2 Ow)

ỵd



ỵd



ỵịd



ỵịw



ỵc,d



ỵịw



ỵd



ỵf



ỵịf



ỵb



ỵd



ỵc



ỵịt



ỵb



ỵa



ỵc



ỵa



ỵịd

ỵd





ỵịo



ỵc



ỵị



ỵịa



ỵị



Na2 SO4



ỵịd



ỵd



ỵịw



K2 CO3





ỵe



ỵf,v



ỵe



ỵe,f



M:S: 0:4 nmn)

ỵf



ỵd







ỵd



ỵf



ỵf



ỵf



ỵf



ỵf



ỵf



ỵf



M:S: 0:5 nmn)



Dynamicl) drying with



ỵi



ỵ (i. vac. from CaH2 , under Ar)e,q)



ỵ (from P4 O10 )a)



ỵ (from Mg/I2 or as benzene azeotr.)u)



ỵ (from Mg/I2 or as benzene azeotr.)u)



ỵ (from Na under N2 )c,e)



ỵ (i. vac. from CaH2 )e,q) [fractional

freezing]



ỵ (i. vac. under N2 or as benzene

azeotr.)



ỵ (from NaOH)d)



ỵ (from Na or LiAlH4 under N2 )a)

ỵ (under N2 )c)



ỵ (from P4 O10 )



ỵ (from P4 O10 )



ỵ (from Na or M.S. 0.5 nm under

N2 )d,e)



ỵ (from Na or LiAlH4 )d,a)



ỵ (from M.S. 0.4 nmn))d)







ỵ (from Mg/I2 )d) [fractional freezing]



ỵ (from Na)a) [fractional freezing]



ỵ (from P4 O10 and then from K2 CO3 )



ỵ (from CaSO4 0:5 H2 O)



ỵ (from Ac2 O or P4 O10 )b) [fractional

freezing]







ỵi







ỵe,i











Fractional distillationm)

[Other methods]



ỵi



ỵi







ỵi



ỵi







ỵi











Al2 O3 BaIi)



Static dryingk) with



M:S: 0:3 nmn)



Table A-3. Some recommended simple physical and chemical drying methods for thirty-three common organic solvents: þþ method gives superdry

solvents with less than 1 ppm water; þ solvent su‰ciently dry for most chemical applications; ðþÞ often used but less e‰cient; À explosive hazard (!)

or other chemical reaction; no entry means not recommended or no information in the literature. For extensive compilations of more sophisticated

purification methods, see referencesaf).



Al2 O3 NaIi)



558

Appendix



Toluenead,p,r)



ỵd

!



ỵd









ỵd















!c



ỵc



ỵd



ỵỵp



ỵc,d



0.5



(0.25)



ỵd



ỵd



ỵd



ỵc



ỵi











ỵd















ỵd



ỵc



ỵe







ỵd



ỵd



ỵf







ỵd



ỵd



ỵa

ỵe



ỵf



ỵf



ỵf







ỵf



ỵf



ỵf



ỵe,d



ỵi







ỵi



ỵi



ỵe



ỵi







ỵ (from Na)d)



ỵ (from LiAlH4 or Na under N2 )e,a)



ỵ (from P4 O10 )d)



ỵ (i. vac. from CaH2 )e)



ỵ (from M.S. 0.5 nm/KOH)e)



ỵ (from Mg/I2 )a)



ỵ (i. vac.)e,d)



ỵ (from M.S. 0.4 nm)



ỵ (i. vac. or as benzene azeotrope)c)



ỵ (i. vac.)e) [fractional freezing]e)



ỵ (from Mg/I2 )u)



a) Houben-Weyl-Muăller: Methoden der organischen Chemie, 4 th edition, Thieme, Stuttgart, 1959, Vol. I/2, p. 765–868 (W. Bunge: Eigenschaften und Reinigung der wichtigsten organischen Loăsungsmittel ) and p. 869885 (H. Rickert and H.

Schwarz: Trockenmittel ).

b) J. A. Riddick, W. B. Bunger, T. K. Sakano: Organic Solvents. Physical Properties and Methods of Purification, 4 th ed., in A. Weissberger (Ed.): Techniques of Chemistry, Vol. II, Wiley-Interscience, New York, 1986.

c) B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell: Vogel’s Textbook of Practical Organic Chemistry, 5 th ed., Longman, London, New York, 1989, p. 395–413.

d) W. L. F. Armarego, C. L. L. Chai: Purification of Laboratory Chemicals. 6th ed., Butterworth-Heinemann, Oxford/UK, 2009.

e) J. F. Coetzee (Ed.): Recommended Methods for Purification of Solvents and Tests for Impurities, Pergamon Press, Oxford 1982; Pure Appl. Chem. 57, 634 (1985).

f) Merck–Eurolab GmbH: Der Laborkatalog Merck2 – Chemikalien und Reagenzien. D-64293 Darmstadt/Germany, 2001, p. 1285 (Loăsungsmittel Eigenschaften und Trocknung).

g) Maximum solubility of water in solvent in g/L, except values in parentheses which are in g/kg; y means completely miscible with water b; h; iÞ .

h) E. Fanghaănel et al.: Organikum Organisch-chemisches Grundpraktikum. 23rd ed., Wiley-VCH Verlag GmbH, Weinheim/Germany, 2009, pp. 749–770.

i) B. P. Engelbrecht: Adsorptives Reinigen von Loăsungsmitteln fuăr die Chromatographie und Spektroskopie, GIT Fachz. Lab. 23, 681 (1979); Chem. Abstr. 91, 133523y (1979); see also ICN Biomedicals GmbH (formerly Woelm Pharma

GmbH): Loăsungsmittel-Reinigung mit ICN Adsorbentien, D-37269 Eschwege/Germany.

k) Treatment with ca. 50 . . . 100 g/L desiccant at ambient temperature for about 24 h. Gentle agitation or stirring has an accelerating eÔect on drying. Sequential drying, accomplished by decanting monosiccated solvent onto a fresh charge of

ca. 50 g/L desiccant, is more eÔective.

l) Column drying by percolating the solvent through the desiccant contained in a glass column of 2 . . . 5 cm diameter and 40 . . . 150 cm long, and collecting the eluent in a storage container protected from atmospheric moisture by a drying

tube filled with molecular sieve.

m) Fractional distillation is often combined with static drying before or after the distillation.

n) Zeolite molecular sieves (sodium and calcium aluminosilicates) of nominal pore size 0:3 . . . 0:5 nm, normally used as beads except in cases where the use of powdered molecular sieve is essential (marked with an asterisk).

o) D. R. Burfield, K.-H. Lee, R. H. Smithers, J. Org. Chem. 42, 3060 (1977).

p) D. R. Burfield, G.-H. Gan, R. H. Smithers, J. Appl. Chem. Biotechnol. 28, 23 (1978); Chem. Abstr. 89, 12551f (1978).

q) D. R. Burfield, R. H. Smithers, J. Org. Chem. 43, 3966 (1978).

r) D. R. Burfield, R. H. Smithers, J. Chem. Technol. Biotechnol. 30, 491 (1980); Chem. Abstr. 94, 66822s (1981).

s) D. R. Burfield, R. H. Smithers, A. S. C. Tan, J. Org. Chem. 46, 629 (1981).

t) D. R. Burfield, R. H. Smithers, J. Chem. Educ. 59, 703 (1982).

u) D. R. Burfield, R. H. Smithers, J. Org. Chem. 48, 2420 (1983); Y. Marcus, S. Glikberg, Pure Appl. Chem. 57, 855, 860 (1985).

v) D. R. Burfield, G. T. Hefter, D. S. P. Koh, J. Chem. Technol. Biotechnol., Chem. Technol. Part A 34, 187 (1984); Chem. Abstr. 101, 133117u (1984).

w) D. R. Burfield, J. Org. Chem. 49, 3852 (1984).

x) D. R. Burfield, J. Chem. Educ. 56, 486 (1979); D. R. Burfield, E. H. Goh, E. H. Ong, R. H. Smithers, Gazz. Chim. Ital. 113, 841 (1983).

y) D. R. Burfield, R. H. Smithers, Chem. Ind. (London) 240 (1980).

z) D. R. Burfield, J. Org. Chem. 47, 3821 (1982); Deperoxidation of ethers with self-indicating molecular sieves 0.4 nm.

a

) Caution: solutions of LiAlH4 in oxygen-containing solvents may decompose at elevated temperatures (f160  C). Therefore, distillation should never be carried out to dryness, and solvents boiling above 100  C should be distilled under

reduced pressure.

b

) J. F. Coetzee, T.-H. Chang, Pure Appl. Chem. 58, 1535 (1986).

g

) Y. Marcus, Pure Appl. Chem. 58, 1411 (1986).

d) J. F. Coetzee, T.-H. Chang, Pure Appl. Chem. 58, 1541 (1986).



Trichloroethenea,b,d,i)







ỵf







ỵs



ỵd



ỵp,z



!





ỵd



y



Tetrahydrofuranae,i,p,z)



ỵi



ỵa























ỵc













ỵu



ỵf























0.1



Tetrachloromethanead,i)



ỵc









ỵa







y



Sulfolaneae)



ỵs



d



















y



Pyridineae,i,s)



ỵe





ỵe



ỵc



y



2-Propanolad,g)



ỵf



ỵe







ỵe,s



ỵs



(83)











ỵf



19.0



y



1-Methyl-2-pyrrolidinonead)



ỵu



Nitromethanea,b,d,i, d)



y



N-Methylacetamideb,d,e)



Propylene carbonated,e)



y



Methanolad,u)



Appendix



559



Appendix

Table A-4. Ultraviolet cut-oÔ pointsaị of spectroquality solvents commonly used in UV/Vis spectroscopy, for 1 cm

pathlengths ðaccuracy ca. G5 nmÞbÞ :



560



a) The cut-oÔ point in the ultraviolet region is the wavelength at which the absorbance

approaches 1.0 using a 1-cm cell path with water as the reference. Solvents should not be used for

measurements below the cut-oÔ point, even though a compensating reference cell is employed. The

cut-oÔ points are very dependent on the purity of the solvent used. Most of the solvents listed above

are available in highly purified ‘‘spectrograde’’ quality.

b) Compiled from the following references:

(1) Eastman Kodak Company: Spectrophotometric Solvents, Dataservice Catalog JJ-282, Rochester, New York 14650, USA, 1977;

(2) E. Merck: UVASOLE1 Loăsungsmittel und Substanzen fuăr die Spektroskopie, D-64293 Darmstadt, Germany;

(3) and from the reviews of Gordon and Ford [4] (p. 167), Pestemer [25], and Hampel [34].

c) Values for solid, as used in a pellet for example.



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Appendix A. Properties, Purification, and Use of Organic Solvents

Tải bản đầy đủ ngay(0 tr)

×