Tải bản đầy đủ - 0 (trang)
Reductive Coupling of Aromatic Aldehydes and Ketones Using Low- Valent Titanium

Reductive Coupling of Aromatic Aldehydes and Ketones Using Low- Valent Titanium

Tải bản đầy đủ - 0trang

116



Zhi-Ping Lin and Ji-Tai Li



firstly reported that TiCl4-Zn reduced aromatic aldehydes and ketones to produce the

corresponding 1,2-diols in high yield [135], but the stereoselectivity was not reported. With

improved of the preparation of low-valent titanium, the in-depth study was underwent and

there are many reports on the synthesis of 1,2-diol using low-valent titanium complex in

recent years [22, 39, 42, 43, 51, 136]. However, in spite of their potential utility, some of the

reported methods suffer from drawbacks such as expensive catalysts and critical reduction

conditions.

McMurry et al. [33] reported that coupling reaction induced by low valent titanium gave

pinacols at 0 oC, but at reflux temperature, it gave alkenes through deoxygenation. In the

presence of ultrasonic irradiation, the coupling was carried out at room temperature, gave

pinacol in high yield, and improved the chemoselectivity and stereoselectivity. Besides, the

competing Cannizzaro reaction, giving alcohol and carboxylic acid, was not observed and

there was also no olefin formation arising from McMurry reactions.



1) Reductive Coupling of Aromatic Aldehydes Induced by TiCl4-M (Zn, Mg, Al)-THF

in CH2Cl2

In 2001, Yamamoto et al. reported diastereoselective pinacol coupling of aldehydes

promoted by monomeric titanocene (III) complex Cp2TiPh [61]. Five aromatic aldehydes

given desired pinacol in 54-96% yields within 1-4 h. In 2000, Li et al. reported the 1,2-diols

were obtained in pinacol coupling mediated by TiCl4-Mg with a high stereoselectivity [42].

These systems of TiCl4-THF-Zn, TiCl4-THF-Al, TiCl4-THF-Mg can quickly reduce a

number of aromatic aldehydes to pinacol with high yields and high stereoselectivity under

ultrasound. Without ultrasound, the pinacols were obtained in lower yield. For example, using

TiCl4-THF-Zn under Ar stirring for 30 min, 1,2-diphenyl-1,2-ethanediol was previously

prepared in 57% yield [51]; using TiCl4-Et2O-Al and stirring for 38 h gave 1,2-diphenyl-1,2ethanediol in 50% yield [43]. Whereas under ultrasonication for only 5 min, in the presence

of TiCl4-THF-Zn, replacement of Ar by N2, 1,2-diphenyl-1,2-ethanediol was obtained in 96%

yield. TiCl4-THF-Al system provided 1,2-diphenyl-1,2-ethanediol in 90% yield for 20 min

[137]. Unfortunately, this method applies only to aromatic aldehydes with electron-donating

substituents in the benzene ring.

As shown in Table 2, the type of reduce metal has some effects on the reaction speed,

yield and product stereoselectivity. Al was proven to be more diastereoselective (dl/meso)

than Zn. The reaction in TiCl4-THF-Zn reduction system can be carried out in higher yields

and shorter reaction time, but lower stereoselectivity. While in TiCl4-THF-Al system, pinacol

coupling can be carried out in higher yields within 15-20 min, and the stereoselectivity was

also improved. Compared with the previous two systems, TiCl4-THF-Mg system was not

efficient to the reaction [137].

2) Reductive Coupling of Aromatic Aldehydes Induced by TiCl3-M (Al, Mg, Mn, Zn)EtOH

In 1982, Clerici et al. reported pinacol coupling of aromatic aldehydes and ketones

promoted by aqueous titanium trichloride in basic media [138]. The reaction was completed

in few minutes, but the reducing power of Ti3+/Ti4+ system is strongly pH dependent, the

method has some limitations with respect to some aromatic aldehydes and ketones.



Some Applications of Ultrasound Irradiation in Pinacol Coupling…



117



Clerici et al. again reported pinacolization of aromatic aldehydes mediated by titanium

trichloride in dichliromethane in 1996 [139]. The reaction was completed in high dlstereoselectivity, but aromatic aldehydes bearing an electron-donating group showed lower

reactivity. Recently, we reported the pinacolization mediated by TiCl4-M (Zn, Mg, Al)-THF

in CH2Cl2 at room temperature under ultrasound irradiation. Eight pinacols were obtained in

33-98% yield within 4-35 min. All of the results stated above prompted us to study the

possibility of the pinacol coupling of aromatic aldehydes mediated by TiCl3-Mn-EtOH,

TiCl3-Mg-EtOH, TiCl3-Al-EtOH and TiCl3-Zn-EtOH systems under ultrasound [140]. The

results were summarized in Table 3.

As shown in the Table 3, the coupling of some aromatic aldehydes was carried out in

good yields and diastereoselectivity using TiCl3-M-EtOH under ultrasound irradiation.

Compared with the classic stirring for 30 min in TiCl3-CH2Cl2, it could smoothly undergo that

the pinacol coupling of aromatic aldehydes carrying electron-withdrawing, and 1,2-diol was

obtained in higher yield in this procedure. Furthermore, aromatic aldehydes carrying electrondonating substituents could also couple to pinacol in higher yield, which those did not

successed in TiCl4-THF-M system, but lower diastereoselectivity than those in latter system.

Improved diastereoselectivity has been observed in our system compared to the

analogous process in THF at room temperature [61]. When p-methylbenzaldehyde, pmethoxybenzaldehyde as a substrate, the ratio of dl and meso of the 1,2-diols is 74:26 and

72:28 respectively in Yamamoto et al., report. In the TiCl3-Al-EtOH system, the ratio of dl

and meso of the corresponding 1,2-diols is 91:9 and 8:92 respectively.

Table 2 The reductive coupling of aromatic aldehydes using TiCl4-THF-M (M: Zn、Al

or Mg) at r.t. in CH2Cl2 under ultrasound irradiation

Reduction Time,min

Isolated yield,

dl/meso*

systema

%

a

C6H5CHO

A

5

96

76/24

B

20

90

93/7

C

20

68

77/23

b

3-ClC6H4CHO

A

4

98

82/18

B

15

96

97/3

C

30

87

92/8

c

4-ClC6H4CHO

A

4

98

69/31

B

15

98

96/4

C

20

89

85/15

d

2,4-Cl2C6H3CHO

A

6

98

51/49

B

25

92

97/3

C

25

84

32/68

e

2-ClC6H4CHO

A

5

97

74/26

B

20

92

34/66

C

20

79

52/48

f

3-BrC6H4CHO

A

5

98

82/18

B

15

95

97/3

C

20

84

90/10

a

A: TiCl4-THF-Zn; B: TiCl4-THF-Al; C: TiCl4-THF-Mg; *dl/meso were determined by 1H NMR.

Entry



Substrate



118



Zhi-Ping Lin and Ji-Tai Li



Table 3 The reductive coupling of aromatic aldehydes using TiCl3-M (Mn、Mg、Al or

Zn)-EtOH under ultrasound irradiation



a



Entry



Substrate



Systemsa



Time, min



a



C6H5CHO



b



2-ClC6H4CHO



c



3-ClC6H4CHO



d



2,4-Cl2C6H3CHO



e



4-ClC6H4CHO



f



3-BrC6H4CHO



g



4-CH3C6H4CHO



h



4-CH3OC6H4CHO



i



3,4-(OCH2O)C6H3CHO



j



Furaldehyde



A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

B

C



40

40

60

40

40

30

45

35

40

20

40

35

50

30

30

40

40

30

30

40

60

15

35

35

40

30

80

35

40

40

80

45

50

15

50

30

30

50



A:TiCl3-Mn-EtOH, B:TiCl3-Mg-EtOH,

determined by 1H NMR.



C:TiCl3-Al-EtOH,



Isolated

yield, %

64

75

75

89

56

56

68

88

67

85

79

92

86

75

71

79

69

92

79

92

63

95

82

91

70

89

69

87

72

81

62

83

62

86

69

87

86

58

D:TiCl3-Zn-EtOH;



dl/meso*

73/27

68/32

63/37

63/37

37/63

27/73

20/80

45/57

41/59

28/72

66/40

53/47

18/82

20/80

21/79

18/72

38/62

25/75

66/34

65/35

49/52

44/56

60/40

46/54

84/16

63/37

91/9

47/53

74/26

66/34

8/92

60/40

89/11

86/14

66/34

66/34

55/45

59/41

*dl/meso



were



119



Some Applications of Ultrasound Irradiation in Pinacol Coupling…



The coupling of some aromatic aldehydes was also carried out in good yield using TiCl3Al in water under ultrasound irradiation. For example, 1,2-bis(p-methylphenyl)-1,2ethanediol was previously prepared in 35% yield using TiCl3-CH2Cl2 under stirring for 30

min [139], whereas under ultrasonication, 1,2-bis(p-methylphenyl)-1,2-ethanediol was

obtained with 52% yield. In Bhar and Panja’ [36b] report, 1,2-bis(o-chlorophenyl)-1,2ethanediol was prepared in 62% yield using Al-NaOH-H2O under stirring for 120 min,

whereas in this procedure, 1,2-bis(o-chlorophenyl)-1,2-ethanediol was obtained with 72%

yield within 45 min. It is noteworthy that the reagents used are readily available inexpensive

and stable to air oxidation, and the method is easier and more convenient compared with

those so far reported.

It was shown that lower frequency of ultrasound irradiation improved the yield of pinacol

coupling. The type of reducing-metal is a very important factor in the reaction, which related

to the reduction of high valent titanium ability of metal. Furthermore, the type of solvent or

ligands has a significant impact on the stereoselectivity of the products.

The following sequence of reaction appears to be a reasonable rationalization for the

formation of the products [136, 138] (Scheme 2, The reductive coupling of aldehydes induced

by TiCl4-M). The dl-diastereoselection could be explained by the initial generation of

intermediate radical species whose oxygen atoms of the two ketyl radicals are linked side by

side to the low valent titanium species and their alkyl groups are located anti each other to

minimize the steric interaction. That is dl-pinacols are preferentially formed by an internal

carbon-carbon coupling of 'titanium-bridged' intermediate A which is formed readily due to

the highly coordinating ability of low valent titanium species. In the absence of 'titaniumbridged', the radicals of intermediate B, for which steric and polar effects appear to be

important, lead predominantly to the meso dimmers.



Ti-O interaction

R H R



.



H



.



O Ti O Ti

R



H



+ TiCl4 + M



"Ti-bridged"

intermediate A



R

HO

H

R



H

OH



dl selective



O

R H



.



Ti

O



.



R

O

H

Ti

intermediate B

Scheme 2.



H

HO

H

R



R

OH



meso selective



120



Zhi-Ping Lin and Ji-Tai Li



CONCLUSION

Cavitation produces an unusual method for fundamental studies of chemistry and physics

under extreme conditions, and sonochemistry provides a unique interaction of energy and

matter. One may be optimistic that the unusual reactivities caused by ultrasound will find

important industrial application in the years to come.

Ultrasound irradiation as being of great value in pinacol coupling reaction has been

amply demonstrated by the many examples presented in this chapter. It improved the

chemoselectivity significantly of the reactions, but the stereoselectivity of the reaction was

expected to be further improved. The largest current drawback of the reaction is its

mechanism, diastereoselectivity, chiral synthesis and resolution of chiral isomer. As a

consequence, efficient reaction conditions have been required to control the stereochemistry

of the 1,2-diols. Recent efforts have focused on the development of efficient and

environmentally friendly reagents and reaction systems to improve the reactivity of the

reagents and diastereoselectivity of the products. We look forward to increasing the uses for

ultrasound irradiation in organic synthesis reaction.



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]



Brown, B.; Goodman, J. E. High intensity ultrasonics, Ilife Books Ltd, London, 1965.

El‘Piner, I. E. Ultraound: physical, chemical and biological effects, Consultants

Bureau, New York, 1964.

Suslick, K. S. Ultraound: its chemical, physical and biological effects, VCH, 1988.

Mason, T. J.; Lorimer, J. P. Sonochemistry: theory, applications and uses of ultrasound

in chemistry, Ellis Horwood, 1989.

Chemistry with Ultrasound, Ed. Mason, T. J. Critical Reports in Applied Chemistry No

28, Society for Chemical Industry, 1990.

Advances in Sonochemistry, Volume 1, Ed. Mason, T. J. JAI Press, 1990.

Sonochemistry: the uses of ultrasound in chemistry, Ed. Mason, T. J. Royal Society of

Chemical, 1990.

Ley, S. V.; Low, C. M. R. Ultrasound in Synthesis, Springer-Verlag, 1989.

Rechards, W. T.; Loomis, A. L. J. Am. Chem. Soc. 1927, 49, 3086.

Porfer, C. W.; Young, L. J. Am. Chem. Soc. 1938, 60, 1497.

Renaud, P. Bull. Soc. Chem. Fr. 1950, 1044.

Han, B. H.; Boudjouk, P. J. Org. Chem. 1982, 47, 5030.

Feng R.; Zhao, Y. Y.; Bao, C. G. Ultrason. Sonochem. 1997, 4, 183.

Cognet, P.; Wilhelm, A. M.; Delmas, H.; Lyazidi, H. A.; Fabre, P. L. Ultrason.

Sonochem. 2000, 7, 163.

Singh, J., Kaur; J., Nayyar, S.; Bhandari, M.; Kad G. L. Indian J. Chem. 2001, 40B,

386.

Yadav, S. J.; Reddy, B. V. S.; Reddy, K. B. Raj, K. R.; Prasad, A. R. J. Chem. Soc.

Perkin Trans 1 2001, 1939.

Qin, Z. H.; Chen, F. H.; Xie, Y. Y. Progress In Chemistry 1998, 10(1), 63. (b) Bremner,

D. H. Ultrason. Sonochem. 1994, 1, S119. (c) Boldyrev, V. V. Ultrason. Sonochem.

1995, 2, S143. (d) Price, G. J. Ultrason. Sonochem. 2003, 10, 277.



Some Applications of Ultrasound Irradiation in Pinacol Coupling…



121



[18] Li, J. T.; Zang, H. J. J. Hebei Univ. (Natural Science Edition) 2000, 20, 96. (b) Li, J. T.;

Wang, Y. H. Chem. Reagent (Huaxue Shiji) 1987, 9, 98. (c) Bian, Y. J.; Li, J. T.; Li, T.

S. Chin. J. Org. Chem. 2002, 22, 227.

[19] Mason, T. J. Practical Sonochemistry, Ellis, Horwood Limited, 1991. (b) Mason, T. J.;

Peters, D. Practical Sonochemistry, Second Ed., Ellis Horwood, London, 2002.

[20] Luche, J. L. Synthetic Organic Sonochemistry, Kluwer Academic/Plenum Publishers,

Hingham, 1998. (b) Feng, R.; Li, H. M. Sonochemistry and its application, Science and

Technology Publisher of Anhui, Hefei, 1992.

[21] Mason, T. J. Advance in Sonochemistry, 1990(Vol 1), 1991(Vol 2), 1993(Vol 3),

1996(Vol 4), 1999(Vol 5), 2001(Vol 6).

[22] Robertson, G. M. Pinacol coupling reaction. in Comprehensive Organic Synthesis, Ed.

Trost, B. M.; Fleming, I., Pergamon, New York, Vol.3, p.563-611, 1991.

[23] Rieke, R. D. Kim, S. H. J. Org. Chem. 1998, 63, 5235.

[24] Seyden-Penne, J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis, John Wiley

and Sons, New York, 1995.

[25] (a)Lohray, B. B. Tetrahedron:Asymmetry, 1991, 3, 1317. (b) Nicolaou, K. C.; Liu, J. J.;

Yang, Z; Ueno, H.; Guy, R. K.; Sorensen, E. J.; Claiborne, C. F.; Hwang, C. K.;

Nakada, M.; Nantermet, P. G. J. Am. Chem. Soc. 1995, 117, 634. (c) Shiina, I.;

Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Saitoh, K.; Mukaiyama, T.

Chem. Lett. 1997, 419.

[26] Kammermeier, B.; Beck, G.; Holla, W.; Jacobi, D.; Napierski, B.; Jendralla, H. Chem.

Eur. J. 1996, 2, 307. (b) Kammermeier, B.; Beck, G.; Jacobi, D.; Jendralla, H. Angew.

Chem., Int. Ed. Engl. 1994, 33, 685.

[27] Sun, X. L.; Li, X. Y.; Zhang, S. Y. Chemistry (Huaxuetongbao) 1998, 12, 10.

[28] Jacoben, E. N.; Marko, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B.; J. Am. Chem.

Soc. 1988, 110, 1968. (b) Calo, V.; Nacci, A,; Monopoli, A.; Fanizzi, A. Org. Lett.

2002, 4, 2561. (c) Fisher, A. J.; Kerrigan, F. Synth. Commun. 1998, 28, 2959.

[29] Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1557.

[30] Davis, F. A.; Hague, M. S.; Przeslawski, R. M. J. Org. Chem. 1989, 54, 2021.

[31] Dondoni, A.; Fantin, G.; Fogagnolo, M.; Mayo, P. Advances in organic chemistry,

Interscience: New York, 1960, Vol 2, pp 361.

[32] Fittig, R. Ann. 1859, 110, 23.

[33] McMurry, J. E. Chem. Rev. 1989, 89, 1513.

[34] Chatterjee, A. Joshi, N. N. Tetrahedron 2006, 62, 12137.

[35] Zhang, W. C.; Li, C. J. J. Org. Soc., Perkin. Trans. 1 1998, 3131. (b) Gomberg, M.;

Bachmann, W. E. J. Am..Chem. Soc. 1927, 49, 236.

[36] Schreibmann, A. A. P. Tetrahedron Lett. 1970, 4271. (b) Bhar, S.; Panja, C. Green

Chem. 1999, 1, 253. (c) Sahade, D. A.; Kawaji, T.; Sawada, T.; Mataka, S.; Thiemann,

T.; Tsukonok, T.; Tashiro, M. J. Chem. Res., Synop. 1999, 210. (d) Li, L. H.; Chan, T.

H. Org. Lett. 2000, 2, 1129.

[37] Wang, Z. Y.; Yuan, S. Z.; Zha, Z. G.; Zhang, Z. D. Chin. J. Chem. 2003, 21, 1231.

[38] Wang, C.Y.; Pan, Y. J.; Wu, A. X. Tetrahedron 2007, 63, 429.

[39] Dieter, L. Chem. Rev. 1989, 883.

[40] Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S. J. Org. Chem. 1976, 41, 260.

[41] Pierrot, M.; Pons, J. M.; Santelli, M. Tetrahedron Lett. 1988, 29, 5925.



122



Zhi-Ping Lin and Ji-Tai Li



[42] Li, T. Y.; Wang, L. P.; Zhang, T.; Li, Y. X.; Wang, Z. M. Chem. J. Chin. Univ. 2000,

21, 1391.

[43] Hu,Y. L.; Du, Z. Y.; Wang, J. X.; Xi Y. S.; Gu, S. J. Synth. Commun. 1998, 28, 3299.

[44] Wang, J. X.; Du, Z. Y.; Hu, Y. L. J. Northwest Norm. Univ. (Nat. Sci.) 2000, 36, 46.

[45] Li, T. Y.; Wang, L. P.; Cui, W.; Zhao, J. Z.; Wang, Z. M. Chem. Research Chin. Univ.

2000, 16, 320.

[46] Gansäuer, A.; Bauer, D. J. Org. Chem. 1998, 63, 2070.

[47] Bandini, M.; Cozzi, P. G.; Morganti, S.; Umani-Ronchi, A. Tetrahedron Lett. 1999, 40,

1997.

[48] Li, Y. G.; Tian, Q. S.; Zhao, J.; Feng, Y.; Li, M. J.; You, T. P. Tetrahedron: Asymmetry

2004, 15, 1707.

[49] Dunlap, M. S.; Nicholas, K. M. Synth. Commun. 1999, 29, 1097.

[50] Dunlap, M. S.; Nicholas, K. M. J. Organmet. Chem. 2001, 630, 125.

[51] Li, T. Y.; Cui, W.; Liu, J. G.; Zhao, J. Z.; Wang, Z. M. J Chem. Soc., Chem. Commun.

2000, 139.

[52] Gansauer, A. J. Chem. Soc., Chem. Commun. 1997, 457.

[53] Chatterjee, A.; Bennur, T. H.; Joshi, N. N. J. Org. Chem. 2003, 68, 5668.

[54] Tsuritani, T.; Ito, S.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2000, 65, 5066.

[55] Shimizu, M.; Goto, H.; Hayakawa. R. Org. Lett. 2002, 4, 4097.

[56] Nayak, S. K.; Banerji, A. J. Org. Chem. 1991, 56, 1940.

[57] Rele, S.; Chattopadhyay, S.; Nayak, S. K. Tetrahedron Lett. 2001, 42, 9093.

[58] Balu, N.; Nayak, S. K.; Banerji, A. J. Am. Chem. Soc. 1996, 118, 5932.

[59] Lipski, T. A.; Hilfiker, M. A.; Nelson, S. G. J. Org. Chem. 1997, 62, 4566.

[60] Yamamoto, Y.; Hattori, R.; Itoh, K. J Chem. Soc., Chem. Commun. 1999, 825.

[61] Yamamoto, Y.; Hattori, R.; Miwa, T.; Nakagai, Y.; Kubota, T.; Yamaoto, C.; Okamoto,

Y.; Itoh, K. J. Org. Chem. 2001, 66, 3865.

[62] McMurry, J. E.; Rico, J. G. Tetrahedron Lett. 1989, 30, 1169.

[63] McMurry, J. E.; Siemers, N. O. Tetrahedron Lett. 1993, 34, 7891.

[64] Barden, M. C.; Schwartz, J. J. Am. Chem. Soc. 1996,118, 5484.

[65] Paradas, M.; Campa a, A. G.; Est vez, R. E.; Cienfuegos, L. l.; Jim nez, T.; Robles,

R.; Cuerva, J. M.; Oltra, J. E. J. Org. Chem. 2009, 74, 3616. (b) Bensari, A.; Renaud, J.

L.; Riant, O. Org. Lett. 2001, 3, 3863. (c) Gansäuer, A. Synlett 1997, 363. (d) OllerLópez, J. L.; Campa, A. G.; Cuerva, J. M.; Oltra, J. E. Synthesis 2005, 15, 26192.

[66] Enders, D.; Ullrich, E. C. Tetrahedron: Asymmetry 2000, 11, 3861.

[67] Hashimoto, Y.; Mizuno, U.; Matsuoka, H.; Miyahara, T.; Takakura, M.; Yoshimoto,

M.; Oshima, K.; Utimoto, K.; Matsubara, S. J. Am. Chem. Soc. 2001, 123, 1503.

[68] Mukaiyama T, Kagayama A, Igarashi K. Chem. Lett. 2000, 336. (b) Matsubara, S.;

Hashimoto, Y.; Okano, T.; Utimoto, K. Synlett 1999, 1411. (c) Duan, X. F.; Feng, J. X.;

Zi, G. F.; Zhang, Z. B. Synthesis 2009, 277. (d) Sana, S. Synlett 2002, 364.

[69] Hirao, T.; Asahara, M.; Muguruma, Y.; Ogawa, A. J. Org. Chem. 1998, 63, 2812. (b)

Hatano, B.; Ogawa, A.; Hirao, T. J. Org. Chem. 1998, 63, 9421. (c) Hirao, T.; Hatano,

B.; Imamoto, Y.; Ogawa, A. J. Org. Chem. 1999, 64, 7665. (d) Xu, X. L.; Hirao, T. J.

Org. Chem. 2005, 70, 8594. (e) Sun, J. T.; Dai, Z. Y.; Li, C. S.; Pan, X.; Zhu C. J. J.

Organometal. Chem. 2009, 694, 3219. (f) Xu, X.; Hirao, T. Synfacts 2005, 340.

[70] Hirao, T.; Hasegawa, T.; Muguruma, Y.; Ikeda, I. J. Org. Chem. 1996, 61, 366.



Some Applications of Ultrasound Irradiation in Pinacol Coupling…



123



[71] Hirao, T.; Takeuchi, H.; Ogawa, A.; Sakurai H. Synlett 2000, 1658.

[72] Konradi, A. W.; Kemp, S. J.; Pedersen, S. F. J. Am. Chem. Soc. 1994, 116, 1316.

[73] SvatoŠ, A.; Boland, W. Synlett 2000, 549. (b) Halterman, R. L.; Porterfield, J. P.;

Mekala, S. Tetrahedron Lett. 2009, 50, 7172. (c) Svato, A.; Boland, W. Synlett 1998,

549.

[74] Li, C. J.; Meng, Y.; Yi, X. H.; Ma, J. H.; Chan, T. H. J. Org. Chem. 1997, 62, 8632.

[75] Li, C. J.; Meng, Y.; Yi, X. H. J. Org. Chem. 1998, 63, 7498.

[76] Inoue, H.; Suzuki, M.; Fujimoto, N. J. Org. Chem. 1979, 44, 1722.

[77] Ito, K.; Nakanishi, S.; Otsuji, Y. Chem. Lett. 1980, 1141.

[78] Shi, L.; Fan, C. A.; Tu, Y. Q.; Wang, M.; Zhang, F. M. Tetrahedron 2004, 60, 2851.

[79] Wang, L.; Sun, X. H.; Zhang, Y. M.; J. Chem. Res., Synop. 1998, 336.

[80] Liu, X.; Zhang, Y. M. Chin. J. Org. Chem. 2003, 23, 92.

[81] Liu, S. M.; Li, J. T.; Bian, Y. J.; Yang, J. H.; Li, T. S. Chin. J. Org. Chem. 2002, 22,

675.

[82] Groth, U.; Jeske, M. Chem.Int. Ed. 2000, 39, 574.

[83] Groth, U.; Jeske, M. Synlett 2001, 129.

[84] Yamada, R.; Negoro, N. Tetrohedron Lett. 1997, 38, 3271. (b) Banik, B. K.; Banik, I.;

Aounallah, N.; Castillo, M. Tetrahedron Lett. 2005, 46, 7065. (c) Aspinall, H. C.;

Greeves, N.; Valla, C. Org. Lett. 2005, 7, 1919. (d) Matsukawa, S.; Hinakubo, Y. Org.

Lett. 2003, 5, 1221.

[85] Ding, Z. B.; WU, S. H. Chin. J. Org. Chem. 1997, 17, 165.

[86] Wang, L.; Zhang, Y. M. Terahedron 1998, 54, 11129. (b) Wang L.; Zhang Y. M. Synth.

Commun. 1998, 28, 3991.

[87] Talukdar, S.; Fang, J. M. J. Org. Chem. 2001, 66, 330.

[88] Nomura, R.; Matsuno, T.; Endo, T. J. Am. Chem. Soc. 1996, 118, 11666.

[89] Taniguchi, N.; Uemura, M. Tetrahedron 1998, 54, 12775.

[90] Hou, Z.; Takamine, K.; Aoki, O.; Shiraishi, H.; Fujiwara, Y.; Taniguchi, H. J. Org.

Chem. 1988, 53, 6077.

[91] Shimada, H.; Qu, J. P.; Matsuzaka, H.; Ishii, Y.; Hidai, M. Chem. Lett. 1995, 671.

[92] Maury, O.; Villiers, C.; Ephritikhine, Michel. Tetrahedron Lett. 1997, 38, 6591.

[93] Khan, R. H.; Mathur, R. K.; Ghosh, A. C. Synth. Commun. 1997, 27, 2193.

[94] Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1995, 117, 7283.

[95] Bolourtchian M, Zadmard R, Saidi M. Synth. Commun. 1998, 28, 2017.

[96] Schonberg, A.; Mustafa, A. Chem. Rev. 1947, 40, 181. (b) Moore, W. M.; Hammond,

G. S.; Foss, R. P. J. Am. Chem. Soc. 1961, 83, 2789. (c) Hammond, G. S.; Baker, W. P.;

Moore, W. M. J. Am. Chem. Soc. 1961, 83, 2795.

[97] Pitts, J. N.; Letsinger, R. L.; Taylor, R. P.; Patterson, J. M.; Recktenwald, G.; Maktin,

R. B. J. Am. Chem. Soc. 1959, 81, 1068.

[98] Cohen, S. G.; Parola, A.; Parsons, G. H. Chem. Rev. 1973, 73, 141.

[99] Seeback, D.; Daum, H. J. Am. Chem. Soc. 1971, 93, 2795.

[100] Bradshaw, J. S. J. Org. Chem. 1966, 31, 237.

[101] Stocker, J. H.; Kern, D. H. J. Org. Chem. 1968, 33, 291.

[102] Ji, S. J.; Matsushita, M.; Takahashi, T. T.; Horiuchi, C. A. Tetrahedron Lett. 1999, 40,

6791.

[103] Li, J. T.; Yang, J. H.; Han, J. F.; Li, T. S. Green Chem. 2003, 54, 433.

[104] Stocker, J. H.; Jenevein, R. M. J. Org. Chem. 1968, 33, 294.



124



Zhi-Ping Lin and Ji-Tai Li



[105] Carbajo, J.; Calvente, J. J.; Andreu, R.; Roldan, E.; Dominguez, M. J. Electroanal.

Chem. 2000, 482, 102.

[106] Zhang, S. M.; Li, H.; Zhang, X. C.; Li, B. Q.; Wu, S. H.; Huang, W. P.; Liu, Z. G.;

Feng, Y. Chin. J. Org. Chem. 2002, 22, 603.

[107] Lim, H. J.; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y. Tetrahedron Lett. 1998, 39,

4367.

[108] Ogawa, A.; Takeuchi, H.; Hirao, T. Tetrahedron Lett. 1999, 40, 7113.

[109] Mečiarová, M.; Toma, Ś. Green Chem. 1999, 1, 257.

[110] Basu, M. K.; Becker, F. F.; Banik, B. K. J. Chem. Research (S) 2000, 406.

[111] Joma, S.; Gaplovsky, A.; Luche, J. L. Ultrason. Sonochem. 2001, 8, 201.

[112] Gaplovsky, A.; Gaplovsky, M.; Toma, S.; Luche, J. L. J. Org. Chem. 2000, 65, 8444.

[113] Cognet, P.; Ghanem-Lakhal, A.; Berlan, J.; Wilhelm, A. M.; Delmas, H.; Fabre, P. L.

Chem. Eng. Sci. 2000, 55, 2571.

[114] Li, J. T.; Yang, J. H.; Li, T. S. Chin. J. Org. Chem. 2004, 24(11), 1340.

[115] Li, J. T.; Wang, S. X.; Chen, G. F.; Li, T. S. Current Organic Synthesis 2005, 2, 4156.

[116] Li, Y. G.; Jiang, C. S.; You, T. P. http://hxtb.icas.ac.cn/col/2001/index.htm 2000-0904/2000-11-21.

[117] Tanaka, K.; Kishigami, S.; Toda, F. J. Org. Chem. 1990, 55, 2981.

[118] Delair, P.; Luche, J. L. J. Chem. Soc., Chem. Commun, 1989, 398.

[119] Mečiarová, M.; Toma, Ś.; Babiak, P. Chem. Pap. 2001, 55, 302; Chem. Abstr. 2002,

136, 325277r.

[120] Zang, H. J.; Li, J. T.; Ning, N.; Wei, N.; Li, T. S. Indian J. Chem. 2002, 41B, 1078.

[121] Zang, H. J.; Li, J. T.; Bian, Y. J.; Li, T. S. Chem. J. Inter. 2003, 5, 8.

[122] Yang, J. H.; Li, J. T.; Zhao, J. L.; Li, T. S. Synth. Commun. 2004, 34, 993.

[123] Li, J. T.; Yang, J. H.; Chen, Y. X.; Li, T. S. J. Chem. Research(S) 2004, 494.

[124] Bian, Y. J.; Liu, S. M.; Yang, J. H.; Li, J. T. Chin. J. Synth. Chem. 2004, 12, 429.

[125] Zhang, W. C.; Li, C. J. J. Org. Chem. 1999, 64, 3230.

[126] Bian, Y. J.; Han, X. F.; Liu, S. M.; Li, J. T. Chin. J. Org. Chem., 2003, 23, 1356.

[127] Li, J. T.; Bian, Y. J.; Zang, H. J.; Li, T. S. Synth. Commun. 2002, 32, 547.

[128] Li, J. T.; Bian, Y. J.; Liu, S. M.; Li, T. S. Indian J. Chem. 2004, 42B, 196.

[129] Li, J. T.; Chen, Y. X.; Li, T. S. Synth. Commun. 2005, 35, 2831.

[130] Wang, J. S.; Li J. T.; Lin Z. P.; Li T. S. Synth. Commun. 2005, 35, 1419.

[131] Khurana, J. M.; Sehgal, A. J. Chem. Soc., Chem. Commun. 1994, 571. (b) Khurana, J.

M.; Sehgal, A.; Gogia, A.; Manian, A.; Maikap, G. C. J. Chem. Soc., Perkin Trans.1.

1996, 2213.

[132] Bian, Y. J.; Liu, S. M.; Li, J. T.; Li, T. S. Synth. Commun. 2002, 32, 1169.

[133] Li, J. T.; Bian, Y. J.; Liu, S. M.; Li, T. S. Chin. J. Org. Chem. 2003, 23, 479.

[134] Wang, S. X.; Wang, K.; Li, J. T. Synth. Commun. 2005, 35, 2387.

[135] Mukayama, T.; Sato, T; Hanna. J. Chem. Lett. 1973, 1041.

[136] Mukaiyama, T.; Yoshimura, N.; Igarshi, K.; Kagayama, A. Tetrahedron 2001, 57,

2499.

[137] Li, J. T.; Yang, J. H.; Li, T. S. Chin. J. Org. Chem. 2003, 23, 1428. (b) Li, J. T.; Chen,

Y. X.; Li, T. S. J. Chem. Research(S) 2005, 361.

[138] Clerici, A.; Porta, O. Tetrahedron Lett. 1982, 23, 3517.

[139] Clerici, A.; Clerici, L.; Porta, O. Tetrahedron Lett. 1996, 37, 3035.



Some Applications of Ultrasound Irradiation in Pinacol Coupling…



125



[140] Li, J. T.; Chen, Y. X.; Chang, R. X.; Li, T. S. J. Chem. Res.(S) 2005, 784. (b) Li, J. T.;

Lin, Z. P.; Li, T. S. Ultrason. Sonochem. 2005, 12, 349. (c) Li, J. T.; Lin, Z. P.; Li, T. S.

Synth. Commun. 2004, 34, 4339.

[141] Kappe, C. O. Tetrahedron 1993, 49, 6937.

[142] Li, J. T.; Han, J. F.; Yang, J. H.; Li, T. S. Ultrason. Sonochem. 2003, 10, 119.

[143] Wang, J. S.; Li, J. T.; Lin, Z. P. Lett. Org. Chem. 2006, 3, 523.

[144] Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron

2002, 58, 4801.

[145] Kumar, H.; Parmar, A. Ultrason. Sonochem. 2008, 15, 129.

[146] Li, J. T.; Han, J. F.; Li, T. S. J. Chem. Res.(S) 2004, 160.

[147] Li, J. T.; Han, J. F.; Lin, Z. P.; Li, T. S. Chin. J. Org. Chem. 2004, 24, 675.

[148] Li, J. T.; Lin, Z. P.; Han, J. F.; Li, T. S. Synth. Commun. 2004, 34, 2623.

[149] Garcia Navio, J. L.; Lorente, A.; Soto, J. L. Heterocycles 1982, 19, 305.

[150] Stefani, H. A.; Oliveira, C. B.; Almeida, R. B.; Pereira, C. M. P.; Braga, R. C.; Cella,

R.; Borges, V. C.; Savegnago, L.; Nogueira, C. W. Eur. J. Medicinal Chem. 2006, 41,

513.

[151] Ji, S. J.; Shen, Z. L.; Gu, D. G.; Wang, S. Y. J. Organometal. Chem. 2004, 689, 1843.

[152] Zhou, W. J.; Ji, S. J.; Shen, Z. L. J. Organometal. Chem. 2006, 691, 1356.

[153] Li, J. T.; Lin, Z. P. Ultrason. Sonochem. 2008, 15, 265.

[154] Li, J. T.; Xu, W. Z.; Chen, G. F.; Li, T. S. Ultrason. Sonochem. 2005, 12, 473.

[155] Reddy, D. B.; Padmavathi, V.; Reddy, M. M. Indian J. Chem. 1992, 31B, 407.

[156] McNulty, J.; Steere, J. A.; Wolf, S. Tetrahedron Lett. 1998, 39, 8013.

[157] Li, J. T.; Zhang, H. J.; Meng, L. H.; Li, L. J.; Yin, Y. H.; Li, T. S. Ultrason. Sonochem.

2001, 8, 93.

[158] Sager, J. M.; Saharia, G. S. J. Ind. Chem. Soc. 1957, 34, 898.

[159] Li, J. T.; Li, T. S.; Li, L. J.; Cheng, X. Ultrason. Sonochem. 1999, 6, 199.

[160] Popp, F. D. J. Org. Chem. 1960, 25, 646.

[161] Wang, S. X.; Li, J. T.; Yang, W. Z.; Li, T. S. Ultrason. Sonochem. 2002, 9, 159.

[162] Xu, W. Z.; Chen, G. F.; Han, J. F.; Li, T. S.; Li, J. T. Chem. Indian. J. 2003, 1, 109.

[163] Jin, T. S.; Ma, Y. R.; Li, T. S. Indian J. Chem. 1999, 38B, 109.

[164] Dippy, J. F. J.; Lewis, R.L. Rec. Trav. Chim. 1937, 56, 1000 (CA: 32, 5215).

[165] Calvino, V.; Picallo, M.; Lopez-Peinado, A. J.; Martin-Aranda, R. M.; Duran-Valle, C.

J. Appl. Surface Sci. 2006, 252, 6071.

[166] Ding, L.; Wang, W.; Zhang, A. Ultrason. Sonochem. 2007, 14, 563.

[167] Toda, F. Tanaka, K. Hamai, K. J. Chem. Soc. Perkin Trans 1 1990, 3207.

[168] Li, J. T.; Chen, G. F.; Wang, J. X.; Li, T. S. Synth. Commun. 1999, 29, 965.

[169] Li, J. T.; Yang, W. Z.; Chen, G. F.; Li, T. S. Synth. Commun. 2003, 33, 2619.

[170] Polackova, V.; Tomova, V.; Elecko, P.; Toma, S. Ultrason. Sonochem. 1996, 3, 15. (b)

Wang, L.; Li, J. T.; Wang, J. S.; Xu, W. Z. Chem. Indian J. 2005, 1, 621. (c) Entezari,

M.H.; Shameli, A.A. Ultrason. Sonochem. 2000, 7, 169.

[171] Ali, M. M.; Sana, S.; Tasneem; Rajanna, K. C.; Saiprakash, P. K. Synth. Commun.

2002, 32, 1351.

[172] Shriner, R. L. Org. React. 1946, 1, 1. (b) Rathke, M. W. Org. React. 1975, 22, 423. (c)

Gensler, W. J. Chem. Rev. 1957, 57, 265. (d) Diaper, D. G. M.; Kuksis, A. Chem. Rev.

1959, 59, 89.



126



Zhi-Ping Lin and Ji-Tai Li



[173] Becker, D.; Brodsky, N.; Kalo, I. J. Org. Chem. 1978, 43, 2557. (b) Barco, A.; Benett,

S.; Pollini, G. P. J. Org. Chem. 1980, 45, 4776. (c) Klipa, D. K.; Hart, H. J. Org. Chem.

1981, 46, 2815.

[174] Bang, K.; Lee, K.; Park, Y. K.; Lee, P. H. Bull. Korean Chem. Soc. 2002, 23, 1272.

[175] Tu, S. J.; Jiang, H.; Zhuang, Q. Y.; Liao, C. B.; Shi, D. Q.; Wang, X. S.; Gao, Y. Chin.

J. Org. Chem. 2003, 23, 488.

[176] Jin, T. S.; Xiao, J. C.; Wang, S. J.; Li, T. S.; Song, X. R. Synlett 2003, 2001.

[177] Han, J. F.; Li, J. T.; Li, T. S. Chem. Indian J. 2004, 1, 562.

[178] Li, J. T.; Xu, W. Z.; Yang, L. C.; Li, T. S. Synth. Commun. 2004, 34, 4565.

[179] Wang, S. X.; Wang, W.; Li, J. T. E J. Chem. 2005, 2, 121.

[180] Wang, S. X.; Li, Z. Y.; Zhang, J. C.; Li, J. T. Ultrason. Sonochem. 2008, 15, 677.

[181] Jin, T. S.; Xiao, J. C.; Wang, S. J.; Li, T. S. Ultrason. Sonochem. 2004, 11, 393. (b) Jin,

T. S.; Zhang, J. S.; Wang, A. Q.; Li, T. S. Ultrason. Sonochem. 2006, 13, 220.

[182] Abaee, M. S.; Hamidi, V.; Mojtahedi, M. M. Ultrason. Sonochem. 2008, 15, 823.

[183] Leite, A. C. L.; Moreira, D. R. M.; Coelho, L. C. D.; Menezes, F. D.; Brondani, D. J.

Tetrahedron Lett. 2008, 49, 1538.

[184] Mojtahedi, M. M.; Abaee, M. S.; Hamidi, V.; Zolfaghari, A. Ultrason. Sonochem. 2007,

14, 596.

[185] Sreedhar, B.; Reddy, P. S.; Prakash, B. V.; Ravindra, A. Tetrahedron Lett. 2005, 46,

7019.

[186] Li, J. T.; Li, X. L.; Li, T. S. Ultrason. Sonochem. 2006, 13, 200. (b) Li, J. T.; Zhang, X.

H.; Lin, Z. P. Beilstein J. Org. Chem. 2007, 3, 13.

[187] Wang, S. X.; Li, X. W.; Li, J. T. Ultrason. Sonochem. 2008, 15, 33.

[188] Koyama, J.; Sugita, Y. Chem. Pharm. Bull. 1983, 31, 2601.

[189] Peng, Y. Q.; Zhong, W. J.; Song, G. H. Ultrason. Sonochem. 2005, 12, 169.

[190] Tobia, D.; Rickborn, B. J. Org. Chem. 1986, 51, 3849.

[191] Yokoe, I.; Higuchi, K.; Shirataki, Y.; Komatsu, M. Chem. Pharm. Bull. 1981, 29, 894.

[192] Li, J. T.; Liu, X. F. Ultrason. Sonochem. 2008, 15, 330. (b) Li, J. T.; Zhang, X. H.; Lin,

Z. P. Synth. Commun. 2008, 38, 2838. (c) Li, J. T.; Zhai, X. L.; Lin, Z. P.; Zhang, X. H.

Lett. Org. Chem. 2008, 5, 579. (d) Li, M.; Li, J. T.; Sun, H. W. Ultrason. Sonochem.

2008, 15, 37. (e) Li, J. T.; Liu, X. R.; Liu, X. F. Ultrason. Sonochem. 2009, 16, 4. (f)

Song, Y. L.; Li, J. T. Ultrason. Sonochem. 2009, 16, 440. (g) Li, J. T.; Meng, X. T.;

Zhai, X. L. Ultrason. Sonochem. 2009, 16, 590. (h) Li, J. T.; Liu, X. F.; Yin, Y.; Du, C.

Org. Commun. 2009, 2, 1. (i) Li, J. T.; Sun, X. L. Synth. Commun. 2009, 39, 4321.

[193] Li, J. T.; Xu, W. Z.; Zhao, X.; Li, T. S. J. Chem. Res.(S) 2004, 838. (b) Li, J. T.; Yin,

Y.; Li, L.; Sun, M. X. Ultrason. Sonochem. 2010, 17, 11. (c) Li, J. T.; Liu, X. R.; Sun,

M. X. Ultrason. Sonochem. 2010, 17, 55. (d) Li, J. T.; Zhai, X. L.; Chen, G. F.

Ultrason. Sonochem. 2010, 17, 356. (e) Li, J. T.; Sun, M. X. Aust. J. Chem. 2009, 62,

353. (f) Li, J. T.; Li, X. L.; Liu, X. F.; Ma, J. J. Front. Chem. China 2009, 4, 58. (g)

Song, Y. L.; Li, J. T.; Chen, H. J. Chem. Technol. Biotechnol. 2009, 84, 578. (h) Li, J.

T.; Yin, Y.; Meng, X. T. Lett. Org. Chem. 2009, 6, 384.

[194] Suslick, K. S. Ultrasound, its Chemical, Physical and Biological Effects, VCH

Publishers: New York, 1990. (b) Mason, T. J.; Peters, D. Practical Sonochemistry.

Power Ultrasound: Uses and Applications, Ellis Horwood: Chichester, 2002. (c)

Mason, T. J.; Lorimer, J. Applied Sonochemistry: Uses of Power Ultrasound in



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Reductive Coupling of Aromatic Aldehydes and Ketones Using Low- Valent Titanium

Tải bản đầy đủ ngay(0 tr)

×