Tải bản đầy đủ - 0 (trang)
A.1 Enthalpy, free energy and heat capacity data

A.1 Enthalpy, free energy and heat capacity data

Tải bản đầy đủ - 0trang

P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-A



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



376



Species

C2 H4 O(aq)

C2 H5 OH(aq)

C2 H5 OH(l)

C2 H6(g)

C3 H8(g)

C6 H6(l) (benzene)

C6 H6(g) (benzene)

C6 H12(g) (cyclohexane)

C6 H12 O6(s) (α-d-glucose)

C6 H12 O6(aq) (α-d-glucose)

C12 H22 O11(aq) (α-lactose)

C12 H22 O11(aq) (β-lactose)

C12 H22 O11(aq) (sucrose)

CO(g)

CO2(g)

CO2(aq)

CO2−

3(aq)

CaCO3(s)

CaO(s)

Cd(OH)2(s)

Cl(g)

Cl−

(aq)

ClO(g)

Cl2(g)

Cl2 O(g)

Co2+

(aq)

Cr2 O2−

7(aq)

F−

(aq)

F2(g)

Fe(s)

Fe2+

(aq)

FeCl2(s)

FeSO4(s)

HCO−

3(aq)

H(g)

H2(g)

HBr(g)

H2 O(l)

H2 O(g)

H2 S(g)

HPO2−

4(aq)

H2 PO−

4(aq)



October 29, 2011



Standard thermodynamic properties

fH







kJ mol−1

−212.34

−276.98

−277.69

−84.68

−103.85

49.0

82.9

−123.1

−1274.4

−1263.06

−2232.37

−2233.50

−2215.85

−110.53

−393.51

−413.26

−675.23

−1206.9

−634.92

121.301

−167.080

101.22

0

87.88

−58

−1490.3

−335.35

0

0

−90.0

−341.6

−928.4

−689.9

217.998

0

−36.29

−285.830

−241.826

−20.50

−1299.0

−1302.6





fG

−1

kJ mol



−139.00

−180.85

−174.78

−32.82

−23.47

124.8

129.8

32.0

−910.23

−914.25

−1564.36

−1565.61

−1550.89

−137.17

−394.37

−386.05

−527.90

−1128.8

−603.30

−469.8

105.305

−131.218

97.48

0

105.10

−54

−1301.1

−281.52

0

0

−90.5

−302.2

−820.8

−586.8

203.276

0

−53.36

−237.140

−228.582

−33.33

−1096.0

−1137.2



Cp,m

J K−1 mol−1



111.5

52.6

73.6

132

81.6

105.3

218.16



29.12

37.1



81.9

42.8

21.84

31.54

33.91

47.50



31.30

25.1

76.7

100.6

20.79

28.82

29.14

75.40

33.58

34.20



13:55



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-A



Top: 14.586mm



CUUK1808/Roussel



Species

Hg(l)

Hg(g)

Hg2 Cl2(s)

HgS(s)

I−

(aq)

+

K(aq)

KBr(s)

Mg2+

(aq)

MgCl2 ·6H2 O(s)

MnO2(s)

Mn2 O3(s)

N2(g)

NH3(aq)

NH+

4(aq)

NH4 NO3(s)

NO2(g)

N2 O4(g)

Na(s)

Na(g)

Na+

(aq)

NaCl(s)

NaH(s)

NaOH(s)

Na2 O(s)

Ni2+

(aq)

NiCl2(s)

Ni(OH)2(s)

O2(g)

O2(aq)

O3(g)

OH−

(aq)

Ni2+

(aq)

PCl3(g)

PCl5(g)

Pb(s)

Pb(g)

Pb2+

(aq)

PbBr2(s)

PbCl2(s)

PbI2(s)

PbSO4(s)



Gutter: 23.198mm



978 1 107 00678 2



October 29, 2011



A.1 Enthalpy, free energy and heat capacity data



377



fH







kJ mol−1

0

61.38

−265.37

−58.2

−56.78

−252.14

−393.8

−467.0

−2499.0

−520.0

−959

0

−80.29

−133.26

−365.56

33.2

9.16

0

107.5

−240.34

−411.15

−56.44

−425.6

−417.98

−54

−305.3

0

−12.09

142.67

−230.015

−54

−287.0

−374.9

0

195.2

0.92

−279

−359.4

−175.39

−919.97





fG

−1

kJ mol



0

31.84

−210.72

−50.6

−51.72

−282.51

−380.1

−455.4

−2114.7

−465.2

−881

0

−26.50

−81.19

−183.87

51.32

97.89

0

77.0

−261.95

−384.14

36.37

−379.7

−379.18

−46

−259.03

−444

0

16.35

163.19

−157.220

−46

−267.8

−305.0

0

162.2

−24.24

−261.9

−314.2

−173.57

−813.04



Cp,m

J K−1 mol−1

27.98

20.79

101.7

48.4



53.6

315.0

54.1

107.7

28.87



84.1

37.2

77.3

28.2

20.8

49.8

59.5

69.09

71.7

29.35

39.22



71.8

112.8

26.4

20.79

80.1

77.4

(cont.)



13:55



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-A



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



378



Species

S2−

(aq)

SF6(g)

SO2(g)

SO3(g)

SO2−

4(aq)

Si(s)

SrSO4(s)

UF6(g)

U3 O8(s)

Zn2+

(aq)

ZnF2(s)

ZnO(s)



October 29, 2011



Standard thermodynamic properties

fH







kJ mol−1

30

−1220.47

−296.81

−395.7

−909.34

0

−1453

−2112.9

−3574.8

−153.39

−764

−350.46





fG

−1

kJ mol



Cp,m

J K−1 mol−1



79

−1116.44

−300.09

−371.1

−744.00

0

−1341

−2029.1

−3369.5

−111.62

−713.4

−320.48



96.88

39.8

50.67

20.1



65.6

40.3



A.2 Standard entropies

Species

C(s) (graphite)

C2 H5 OH(l)

C5 H4 N4 O2(s) (xanthine)

C6 H12 O6(aq) (α-d-glucose)

CO2(g)

CO2−

3(aq)

Ca(s)

CaCl2(s)

Cl2(g)

H2(g)

H2 O(l)

N2(g)

O2(g)

O2(aq)

O3(g)

U(s)

UO2+

2(aq)



S◦

J K−1 mol−1

5.74

160.67

161.1

264.01

213.785

−50.0

41.6

104.62

223.081

130.680

69.95

191.609

205.152

110.88

238.92

50.20

−98.2



13:55



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-B



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



October 29, 2011



Appendix B

Standard reduction potentials at 298.15 K



E ◦ /V



Reduction process



O3(g) + 2H+

(aq) + 2e

+

2−

PbO2(s) + 4H(aq) + SO4(aq) + 2e−



Au3+

(aq) + 3e

2−

+

Cr2 O7(aq) + 14H(aq) + 6e−



O2(g) + 4H+

(aq) + 4e

Br2(aq) + 2e−





NO3(aq) + 4H+

(aq) + 3e



+

NO3(aq) + 3H(aq) + 2e−



Hg2+

(aq) + 2e

+

Ag(aq) + e−



Hg2+

2(aq) + 2e

O2(g) + 2H2 O(l) + 4e−



Cu2+

(aq) + 2e

AgCl(s) + e−



H+

(aq) + e

AgI(s) + e−

PbSO4(s) + 2e−



Cd2+

(aq) + 2e

NiO2(s) + 2H2 O(l) + 2e−



Zn2+

(aq) + 2e

Cd(OH)2(s) + 2e−



Cr2+

(aq) + 2e

+

Li(aq) + e−



→ O2(g) + H2 O(l)

→ PbSO4(s) + 2H2 O(l)

→ Au(s)

3+

→ 2Cr(aq)

+ 7 H2 O(l)

→ 2H2 O(l)



→ 2Br(aq)

→ NO(g) + 2H2 O(l)

→ HNO2(aq) + H2 O(l)

→ Hg(l)

→ Ag(s)

→ 2Hg(l)

→ 4OH−

(aq) ,

→ Cu(s)

→ Ag(s) + Cl−

(aq)

→ 12 H2(g)

→ Ag(s) + I−

(aq)

→ Pb(s) + SO2−

4(aq)

→ Cd(s)

→ Ni(OH)2(s) + 2OH−

(aq)

→ Zn(s)

→ Cd(s) + 2OH−

(aq)

→ Cr(s)

→ Li(s)



379



+2.07

+1.68

+1.498

+1.33

+1.229

+1.0873

+0.96

+0.934

+0.851

+0.7996

+0.7973

+0.401

+0.3419

+0.222 33

0

−0.1518

−0.361

−0.4030

−0.490

−0.7618

−0.809

−0.91

−3.0401



14:1



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-C



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



October 29, 2011



Appendix C

Physical properties of water



Ice at 0 ◦ C

Density = 0.915 g cm−3

Vapor pressure = 4.579 torr

Heat of fusion = 333.4 J g−1 = 6.007 kJ mol−1

Absolute molar entropy = 41.0 J K−1 mol−1

Specific heat capacity = 2.113 J K−1 g−1

Molar heat capacity = 38.07 J K−1 mol−1

Liquid water

Specific heat capacity = 4.184 J K−1 g−1

Molar heat capacity = 75.37 J K−1 mol−1

See also next page.

Steam at 100 ◦ C

Density = 5.880 × 10−4 g cm−3

Heat of vaporization = 2257 J/g = 40.66 kJ mol−1

Absolute molar entropy at 1 bar = 196.3 J K−1 mol−1

Molar heat capacity at constant pressure = 33.76 J K−1 mol−1



Table C.1 Properties of liquid water as a function of temperature

Temperature

◦C

0

4

20

25

40

60

80

100



Density

g cm−3



Mole density

mol L−1



Vapor pressure

torr



vap h

J g−1



0.9999

1.0000

0.9982

0.9971

0.9922

0.9832

0.9718

0.9584



55.49

55.49

55.39

55.33

55.06

54.56

53.93

53.19



4.579

6.101

17.535

23.756

55.324

149.38

355.1

760.000



2501

2492

2454

2443

2408

2362

2316

2269



380







S◦

J K−1 mol−1



εr



63.2

64.3

68.6

69.95

73.7

78.3

82.7

86.9



87.85

86.26

80.18

78.37

73.18

66.78

60.95

55.63



10:33



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-D



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



October 29, 2011



Appendix D

The SI system of units



The following is a table of some of the SI units which you will find useful during your

study of physical chemistry. This list is by no means exhaustive.

Observable



SI unit



Abbreviation



Definition



Activity

Charge

Electric potential

Energy

Force

Frequency

Length

Mass

Number

Power

Pressure

Temperature

Time

Volume



becquerel

coulomb

volt

joule

newton

hertz

meter

kilogram

mole

watt

pascal

kelvin

second

cubic meter



Bq

C

V

J

N

Hz

m

kg

mol

W

Pa

K

s

m3



1 Bq = 1 event s−1



1 Hz = 1 cycle s−1



1 W = 1 J s−1



SI units are often used with prefixes. Here is a list of the more commonly used ones:

Prefix



Name



Value



f

p

n

μ

m

c

k

M

G



femto

pico

nano

micro

milli

centi

kilo

mega

giga



10−15

10−12

10−9

10−6

10−3

10−2

103

106

109



381



10:41



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-D



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



382



October 29, 2011



The SI system of units



D.1 Calculations in SI units

Physical chemistry is a quantitative science. As a result, there will be a lot of calculations

to be carried out during your study of the subject. I find that it helps a lot to learn to work

with the SI system of units and to try to be consistent about it. There will be times where

it’s more convenient to use another system, but when in doubt, use SI units. Why? The

SI system has one great advantage over most other systems of units: it’s consistent. This

means that if you use SI units consistently, your calculations will always give answers in

appropriate SI units.

Take the ideal gas law. Suppose that you are given the volume, number of moles and

temperature of a system. Then you can calculate the pressure by p = nRT /V . If you use

moles for n, express the temperature in kelvins and the volume in m3 , and use the SI value

of R, the answer comes out in the SI units of pressure, namely pascals. There’s no messing

around with unit analysis and no need to learn several different values of R. If you are given

data in non-SI units, convert them before doing the calculation. Once you get used to doing

things this way, you will probably find that you make fewer errors in handling units.

Example D.1 Here’s a typical first-year ideal gas question, solved in detail here to show

you my suggested problem-solving technique. Suppose you are asked to calculate the

pressure of 8 mol of argon in a 3 L flask at 870 ◦ C. First, convert all data to SI units using

the conversion factors in appendix E.

3L

= 0.003 m3

1000 L m−3

T = 870 + 273.15 K = 1143 K



V =



Using the SI value of the ideal gas constant (appendix E), we get

(8 mol)(8.314 472 J K−1 mol−1 )(1143 K)

0.003 m3

7

= 2.5 × 10 Pa



p=



How do we know that the answer comes out in pascals? We used SI units consistently in

the calculation so the answer comes out in the SI unit of pressure, namely pascals. If we

need the answer in some other units, we can then convert it to whatever representation is

wanted.

One persistent source of confusion when doing calculations in SI units relates to the unit

of mass. It is tempting to think that the gram is the SI unit of mass, but it isn’t.

The kg is the SI unit of mass.

When doing calculations in SI units involving mass, it is therefore necessary to use

kilograms. In some problems we will encounter in this book, this sometimes means writing

molar masses in the unusual units of kg mol−1 . For now, let’s just have a look at a simple

and, hopefully, familiar example from your physics course:



10:41



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-D



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



D.1 Calculations in SI units



October 29, 2011



383



Example D.2 What is the kinetic energy of a 145 g baseball traveling at 145 km h−1 ?

I think that most students who have taken physics would notice that they need to convert

the speed to the SI units of m s−1 because we need to strip the SI prefix from km h−1 , and

the SI unit of time is the second. What many of us would miss is that we have to convert

the mass of the baseball to kg because the latter is the SI unit of mass, not the gram:

145 g

= 0.145 kg

1000 g/kg

145 × 103 m h−1

v=

= 40.3 m s−1 .

3600 s h−1

1

1

∴ K = mv 2 = (0.145 kg)(40.3 m s−1 )2 = 118 J.

2

2

m=



10:41



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-E



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



October 29, 2011



Appendix E

Universal constants and conversion factors



Constant

Avogadro’s constant

Boltzmann’s constant

Electron mass

Elementary charge

Faraday’s constant

Ideal gas constantb

Neutron mass

Permittivity of the vacuumc

Planck’s constant

Proton mass

Speed of light in vacuume

Standard gravityf

a



b

c

e

f



Symbol



Valuea



L

kB

me

e

F

R

mn



6.022 141 79 × 1023

1.380 6503 × 10−23

9.109 3819 × 10−31

1.602 176 46 × 10−19

96 485.342

8.314 472

1.674 927 16 × 10−27

8.854 187 817 × 10−12

6.626 0688 × 10−34

1.054 571 68 × 10−34

1.672 621 58 × 10−27

2.997 924 58 × 108

9.806 65



0



h

h

¯

mp

c

g



Units

mol−1

J K−1

kg

C

C mol−1

J K−1 mol−1

kg

C2 J−1 m−1

J Hz−1

Js

kg

m s−1

m s−2



All values in this table are from the NIST web site:

http://physics.nist.gov/cuu/Constants/index.html

Also known as the “molar gas constant”.

Also known as the “electric constant”. The value of this constant is fixed in the SI system.

In the SI system of units, the values of c is fixed.

The standard acceleration due to gravity (standard gravity for short) is a value fixed by

convention.



Conversion factors

Length

˚ = 10−10

1 A

Volume

1

1 cm3 =

1 m3 = 1000



m

mL

L



384



10:39



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-E



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



Constants and conversion factors



Mass

1 amu =

1 g mol−1

−27

1 amu = 1.660 538 78 × 10

kg

1 Da =

1 g mol−1

1 t

=

1000 kg

Pressure

1 atm =

760 torr or mmHg

1 atm =

101 325 Pa

1 bar =

100 000 Pa

Energy

1 cal =

4.184 J

1 eV = 1.602 176 46 × 10−19 J

Time

1 y =

365.25 d

Temperature

To convert degrees Celsius to kelvins, add 273.15.



October 29, 2011



385



10:39



P1: SFK



Trim: 247mm × 174mm



CUUK1808-APP-F



Top: 14.586mm



CUUK1808/Roussel



Gutter: 23.198mm



978 1 107 00678 2



October 29, 2011



Appendix F

Periodic table of the elements, with molar masses



1

1



18

H



2



1.01

3



2



Li 4

6.94



13

Be



5



9.01



22.99



24.31



3



4



39.10



40.08



85.47



44.96



Sr 39



87.62



47.88



Y 40



88.91



5

Ti 23



50.94



Zr 41



91.22



55 Cs 56 Ba 57 La 72



8

Mn 26



54.94



Mo 43



Re 76



186.21



C 7



26.98



28.09



65.41



69.72



Au 80 Hg 81 Tl 82



196.97 200.59 204.38



N 8

14.01



O 9



78.96



Sb 52



20.18



Cl 18 Ar

39.95



Br 36 Kr



79.90



Te 53



127.60



Bi 84



F 10 Ne



35.45



Se 35



83.80

I 54 Xe



126.90 131.29



Po 85



At 86 Rn



Yb 71



Lu



208.98



87 Fr 88 Ra 89 Ac 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg



58



Ce 59



140.12

90



Th 91



232.04



Pr 60



140.91



Pa 92



231.04



Nd 61



144.24

U 93



Pm 62



Sm 63



150.36

Np 94



Eu 64



151.97



Pu 95



Am 96



238.03



386



Gd 65



157.25



Tb 66 Dy 67 Ho 68



Er 69



158.93 162.50 164.93 167.26



Cm 97



Tm 70



168.93



He

4.00



19.00



S 17



32.07



As 34



121.76



Pb 83



207.2



P 16



74.92



Sn 51



17



16.00



30.97



Ge 33



72.61



Ag 48 Cd 49 In 50



16



Si 15



107.87 112.41 114.82 118.71



Pt 79



195.08



12



Cu 30 Zn 31 Ga 32



63.55



Pd 47



106.42



Ir 78



192.22



11

Ni 29



58.69



Rh 46



102.91



Os 77



190.2



10

Co 28



58.93



Ru 45



101.07



W 75



183.85



9

Fe 27



55.85



Tc 44



95.94



Ta 74



180.95



7

Cr 25



52.00



Nb 42



92.91



Hf 73



132.91 137.33 138.91 178.49



6

V 24



15



12.01



13 Al 14



K 20 Ca 21 Sc 22



37 Rb 38



B 6



10.81



11 Na 12 Mg



19



14



173.04



174.97



Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lr



10:48



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

A.1 Enthalpy, free energy and heat capacity data

Tải bản đầy đủ ngay(0 tr)

×