Tải bản đầy đủ - 0 (trang)
Inter- and intra-molecular dimerization reactions

Inter- and intra-molecular dimerization reactions

Tải bản đầy đủ - 0trang

fluorescence was observed. Photocycloadditions of anthracene-functionalized monolayer and anthracene-resorcin[4]arene-based capsules were

investigated by German groups.225,226 Solid and/or crystalline states of

anthracene derivatives were reported by several groups.223,227–229 Photodimerization of anthracene-containing amphiphilic copolymer and anthracene-modified DNA was also investigated.230,231



Me

Si

Me n



(253)





n = 1, 2, 3



Me Me

n

Si



Me2

Si n



SiMe2 n



(254)



(255)



(256)



Kobayashi investigated a self-assembled boronic ester cavitand capsule

for photochemical reaction of 2,6-diacetoxyanthracene.232 Tsuda found a

self-assembled helical anthracene nanofiber in a vortex.233 Chou examined

rotational behaviors and fluorescence energy transfer of N-1- and N-2anthryl succinimide derivatives.234 Reversible photoinduced twisting of

molecular crystal microribbons via [4 ỵ 4] photocycloaddition of 9-anthracenecarboxylic acid.235 Reversible single walled carbon nanotubes of 1,3bis(9-anthracenylmethyl)imidazolium chloride was examined as a functionalized anthracene salts.236 Karatsu reported the intramolecular photodimerization of 9-substituted anthracene derivatives (253) tethered by

oligosilanes giving [4 þ 4] and [2 þ 4]cycloadducts (254), (255), and (256).237

Kohmoto reported the intramolecular [2 ỵ 2] photocycloadditon of

phenanthrenes (257) and (258) to give syn-head-to-head and syn-head-totail cycloadducts (259) and (260).238

Selective photodimerization of (99) in a cucurbit[8]uril (CB[8]) as a host in

aqueous solution occurred to give anti-head-to-head cyclodimer (261),

although (99) in cyclohexane afforded anti-head-to-tail and syn-head-to-tail

dimers (262) and (263).239 Wu and Tung found the diastereoselective photodimerization of alkyl 3-alkoxy-2-naphthoates (264) giving cage products

(266) vis [4 ỵ 4] cycloadducts (265).240

The [4 ỵ 4] cycloadducts of tethered naphthalene and anthracene derivatives underwent photochemical ring opening to an electronically excited

product with adiabatic yields up to 90%.241 Irradiation of naphthalenylsubstituted arenediynes (267) afforded tandem intermolecular [2 ỵ 2]

cycloadduct (268).242



130 | Photochemistry, 2012, 40, 106145



R

O



N



O



O



h



N R



h

O



(257)



(259)





O

R

N



N R



O





O





O



(258)



(260)



CN

in CB[8]



H 2O

CN



CN







(261)



(> 280 nm)



CN

(99)



CN

+ NC



in cyclohexane



NC

(262)



CO2Me



CO2R





(265)

Me

R

H CO2Me



R* =



CO2R

OR*

OR*





OR*

(> 280 nm)

OR*



O R* (> 280 nm)

(264)



R* =



(263)



CO2R



(266)



CO2R



Me

S

H CO2Me



Naph



Naph



350 nm

ι-PrOH



(267)



Naph = 1-naphthyl



(268)



Photochemistry, 2012, 40, 106–145 | 131



The solid state photocyclodimerization of coumarin, chromone and chromanone derivatives have been reported in this period.243–251 Topochemical

photodimerization of 4-chromanone derivatives (269) from b-type structures

afforded anti-head-to-tail [2 þ 2] cyclodimers (270) in high yields, although

anti-head-to-head cyclodimers (271) were obtained in acetonitrile.243,244

O H CO2R

O





solid state



O



O



H O



RO2C



(270)

O



CO2R



O H H O





(269)



MeCN



O



O

CO2R



RO2C



(271)



Photocycloaddition of coumarin derivatives functionalized by SiO2

nanoparticles or based on self-assembled monolayer aorded [2 ỵ 2] photocycloadducts (273).245248 Self-assembled phenylethynylene bisurea macrocycles and cucurbit[8]uril (CB[8]) catalyzed the photodimerization of

coumarin derivatives.249,250 It is noticeable that four dimers of coumarin

and 6-alkylcoumarin were easily cleaved to the corresponding monomers.

1,1-Dimethylnaphthalenone photodimerized to give head-to-head cyclobutane, which was photocleavable linkers.251

RO



RO

O



O

O



O

hν (> 310 nm)



O



hν (~ 250 nm)



O



O



O

R = –(CH2)5Si(OEt)3



RO



RO



(272)



Ar



M = 3H, Ga(C5H5N)

Ar = C6F5



N

Ar



Ar



N

M





N



N



(274)



(273)



N



CHCl3



Ar



N

M

N



N



Ar



Ar



Ar

Ar

N



Ar



Ar



M

+



N



N



N



N



N

M



N



N



Ar



Ar



Ar



Ar

N



N



N



Ar



M

N



M

N



N



N

Ar



Ar



N



(275)



132 | Photochemistry, 2012, 40, 106–145



Ar



(276)



Cinnamic acid, 4-pyridylacrylic acid and their related compounds in solid

and crystalline states were photochemically dimerized to give [2 þ 2]

cyclobutanes.252–259 In the case of pyridylacrylic acids, the stereoselective

photocycloaddition took place by use of acid catalysis.255,256 Intramolecular

photocycloaddition of arylacryloamides,259 1,5-bis(4-pyridyl)-1,4-pentadiene-3-one, and green fluorescence protein related compounds257 were also

investigated to give [2 ỵ 2] photocycloadducts, respectively. A series of

molecular salts of trans-4,4 0 -stilbenedicarboxylic acid with various amines

such as cyclohexylamine, ethylenediamine, 1,3-diaminopropane etc. photochemically dimerized to give [2 ỵ 2] photocycloadducts in high yields.260

Irradiation of polyfluoroaminostilbene in the solid state aorded [2 ỵ 2]

cycloadducts in quantitative yields.261

Yamada reported water-assisted [2 þ 2] photocyclodimerization of (Z)arylvinylpyridine hydrochroride and its (E)-isomer templated cucurbit[8]uril (CB[8]) to give cyclobutane dimers stereoselectively.262–264 Arylvinylpyridine and bispyridylethene derivatives in solid states often dimerized

to give [2 ỵ 2] photocycloadducts regioselectively.265–268 Ramamaurthy

explored the potential of thiourea as a template for the photodimerization

of arylvinylpyridines (stilbazoles) and bispyridylethenes (diazastilbenes) in

the crystalline state.266

Stereospecific and quantitative photocyclodimerization of crystalline

solid generated from 4-vinylpyridine with AgClO4 occurred to give [2 ỵ 2]

cyclobutanes.269 Photocyclodimerization of phenylacetylene was catalyzed

by gold nanoparticles encapsulated inside cucurbit[7]uril (CB[7]).270

Photoreaction of isoquinolinone in solid neat conditions aorded many

kinds of [4 ỵ 4] cyclodimers, however in the presence of 1,3-benzenediol as a

host molecule, a single isomer was obtained.271 Irradiation of 5,10,

15-tris(pentafluorophenyl)corrole (274) slowly gave the 3,3’-corrole dimer

(275) and the 3,3 0 ,17 0 ,3 0 0 -corrole trimer (276).272



N



+



O2





TiO2



(277)



N



N

O O

(278)



TiO2-catalyzed photooxygenation of N-vinylcarbazole (277) afforded 1,2dioxane derivative (278) in a high yield.273



7



Lateral-nuclear rearrangements



Cationic dibenzobarrelene derivatives (279) afforded the corresponding

dibenzosemibullvalene (280) derivatives via triplet sensitized di-p-methane

rearrangement. Although the covalent introduction of benzophenone unit

to pyrrolinium nitrogen atom (281) did result in an inefficient internal triplet

sensitization (o 10%), the di-p-methane rearrangement of this dibenzobarrelene bearing sulfonate-functionalized benzophenone counter ion (283)

in the crystalline state smoothly took place to give the corresponding

Photochemistry, 2012, 40, 106–145 | 133



dibenzosemibullvalene (284).274 Direct irradiation of bisureido-substituted

dibenzobarrelen derivatives (285) induced a di-p-methane rearrangement to

give the corresponding dibenzosemibullvalenes (279). Bisthioureido-substituted one was less reactive, however the complex of this dibenzobarrelene

with chloride, carboxylate or sulfonate anions were transformed to the

dibenzosemibullvalene derivative.275 The potential energy surfaces for dip-methane rearrangement of 4-phenyl-4H-pyran (287) was investigated by

Mori.276

R + R

N



R + R

N

hν (> 310 nm)

acetone

R = Et, n-Pr, i-Pr, n-Bu



(279)



(280)



+

N



+

N

hν (> 310 nm)

acetone



O



O



(281)



(282)



< 10%



O

Ph



+

N



+

N ClO+

4



–O3S





aq HClO4



crystals



MeOH



(283)



(284) 69%



X



N

H



R

N

H



HN



X



R



X



R



X



N

H HN



NH



R

N

H



NH







(285)



X = O, S



R = 3,5-(CF3)2C6H3



R



R



R



(286)

X = O 60%, X = S 52%



R





R'



O

(287)



R'



R'



O



R'



(288)



R'



O



R'



(289)



a : R = R' = H, b : R = R' = Ph, c : R = Ph, R' = H



134 | Photochemistry, 2012, 40, 106–145



R'



O

(290)



R'



Bonesi et al. have reported a mild and convenient one-pot synthesis of

chroman-4-one derivatives (297) by use of photo-Fries rearrangement of

(hetero)aryl 3-methyl-2-butenoate esters (291) under the biphasic basic

conditions.277

O



OH



O







OH

+



+



O

O

(291)



O



(292)



(293)



(294)



Primary photorearranged o-acylphenol derivatives (293) were smoothly

cyclized by base catalysis to give (297) in high yields. Photoreaction of

b-phenylethynyl-a-diazo-b-ketoester (302) in the presence of alcohols

regioselectively afforded the Wolff rearrangement product via alkynyl group

rearrangement. Introduction of o-(3-hydroxy-1-propynyl)fragment in this

structure induced the spontaneous Myers-Saito cycloaromatization. Irradiation of (307) afforded (312) via enyne-allene (310) and 1,4-biradical

intermediates (311).278

O



O

O







O



base



OH



O

(295)



(296)



O



(297)



O



O



O



O



O



(298)



(299)



(300)



O

OEt



N2



OEt

C







(302)



O



O



(301)



O



O



N



O



O



ROH



(303)



OEt

OR



O



O



OEt



OEt

OR



OR ROH

C



OH



OR



O

(304)



(305)



O



O



O

N2



OEt





(307)



OEt

C



OH



O



O

THF



OEt



C



O



O



OH

(308)



O



(306)



(309)



Photochemistry, 2012, 40, 106–145 | 135



O

H



OEt



CO2Et

O



C

C O



O



O



(310)



CO2Et

O



[H]



(311)



O



(312)



References

1 V. Ramamurthy and Y. Inoue, Supramolecular Photochemistry, John Wiley &

Sons, Hoboken, 2011.

2 Review: See ref. 1; R. S. Liu, L.-Y. Yang, Y.-P. Zhao, A. Kawanabe and

H. Kandori, 547–570.

3 Review: M. Shi, L.-X. Shao, J.-M. Lu, Y. Wei, K. Mizuno and H. Maeda,

Chem. Rev., 2010, 110, 5883–5913.

4 Review: R. Reuter and H. A. Wegner, Chem. Commun., 2011, 47, 12267–

12276.

5 Review: K. Ichimura and T. Seki, Molecular Switches, 2011, 2, 629–668.

6 Review: W. R. Browne and B. L. Feringa, Molecular Switches, 2011, 1, 121–

179.

7 Review: N. Kawatsuki, Chem. Lett., 2011, 40, 548–554.

8 Review: A. A. Beharry and G. A. Woolley, Chem. Soc. Rev., 2011, 40, 4422–

4437.

9 Review: J. Wachveitl and A. Zumbusch, Chem.Bio.Chem., 2011, 12, 1169–

1170.

10 Review: R. Klain, Pure Appl. Chem., 2010, 82, 2247–2279.

11 Review: F. Durola, H. Dube, D. Ajami and J. Rebek, Jr., Supramolecular

Chem., 2011, 23, 37–41.

12 Review: G. Bartocci, U. Mazzucato and A. Spalletti, Hydrogen Bonding and

Transfer in the Excited State, 2011, 1, 205–215.

13 Review: Y. Luo and Q. Zhang, Advances in Condensed Matter and Materials

Research, 2010, 7, 1–97.

14 Review: X. Laloyaux and A. M. Jonas, Angew. Chem. Int. Ed., 2010, 49, 3262–

3263.

15 Review: H.-F. Yu and T. Kobayashi, Molecules, 15, 570–603.

16 Z. Wang, Y. Takashima, H. Yamaguchi and A. Harada, Org. Lett., 2011, 13,

4356–4359.

17 S. Martin, W. Haiss, S. J. Higgins and R. J. Nichols, Nano Lett., 2010, 10,

2019–2023.

18 S. Horikoshi, T. Sato, K. Sakamoto, M. Abe and N. Serpone, Photochem.

Photobiol. Sci., 2011, 10, 1239–1248.

19 J. Briand, O. Braăm, J. Rehault, J. Leonard, A. Cannizzo, M. Chergui,

V. Zanirato, M. Olivucci, J Helbing and S. Haacke, Phys. Chem. Chem. Phys.,

2010, 12, 3178–3187.

20 H. Goto and K. Kawabata, Polym. Chem., 2011, 2, 1098–1106.

21 X.-J. Pan, H. Jiang, Y. Wang, Z.-Y. Lei, G. Zou, Q. Zhang and K. Wang,

J. Colloid Interface Sci., 2011, 354, 880–886.

22 X. Xing, X. Wang, L. Xu, Y. Tai, L. Dai, X. Zheng, W. Mao, X. Xu and

X. Zhou, Org. Biomol. Chem., 2011, 9, 6639–6645.

23 S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang and

A. Y.-G. Fuh, Optics Commun., 2010, 283, 1726–1731.



136 | Photochemistry, 2012, 40, 106–145



24 Y. G. Marinov, G. B. Hadjichristov, A. G. Petrov, S. Sridevi, U. S. Hiremath,

C. V. Yelamaggad and S. K. Prasad, J. Phys. Conf. Series, 2010, 253, 012060.

25 A. Ozols, D. Saharov, V. Kokars, V. Kampars, A. Maleckis, G. Mezinskis and

A. Pludons, J. Phys. Conf. Series, 2010, 249, 012055.

26 R. J. Maurer and K. Reuter, J. Chem. Phys., 2011, 135, 224303.

27 Y. Inagaki, M. Nakamoto and A. Sekiguchi, J. Am. Chem. Soc., 2011, 133,

16436–16439.

28 A. Albini and J. E. Arguăello, Handbook of Synthetic Photochemistry, WileyVCH, Verlag Weiheim, 2010.

29 M. Oelgemoeller and O. Shvydkiv, Molecules, 2011, 16, 7522–7550.

30 M. Oelgemoeller and W. H. Kramer, J. Photochem. Photobiol. C, Photochem.

Rev., 2010, 11, 210–244.

31 Review: See ref. 1; D. M. Bassani, 53–86.

32 T. Bach and J. P. Hehn, Angew. Chem. Int. Ed., 2011, 50, 1000–1045.

33 U. Streit and C. G. Bochet, Beilstein J. Org. Chem., 2011, 7, 525–542.

34 K. Selvam and M. Swaminathan, Catal. Commun., 2011, 12, 389–393.

35 Y.-O. Shen, X.-L. Yang, D.-Q. Chen, J. Xue, L. Zhu, H.-K. Fun, H.-W.

Hu and J.-H. Xu, Chem. Eur. J., 2010, 16, 2873–2886.

36 M. Ohashi, K. Nakatani, H. Maeda and K. Mizuno, Tetrahedron Lett., 2010,

51, 5537–5539.

37 S. Lin, M. A. Ischay, C. G. Fry and T. P. Yoon, J. Am. Chem. Soc., 2011, 133,

19350–19353.

38 M. Rueping, D. Leonori and T. Poisson, Chem. Commun., 2011, 47,

9615–9617.

39 C. Muller, A. Bauer, M. M. Maturi, M. C. Cuquerella, M. A. Miranda and

T. Bach, J. Am. Chem. Soc., 2011, 133, 16689–16697.

40 C. Mueller, A. Bauer and T. Bach, Photochem. Photobiol. Sci., 2011, 10,

1463–1468.

41 T. Murase, S. Horiuchi and M. Fujita, J. Am. Chem. Soc., 2010, 132, 2866–

2867.

42 S. Horiuchi, Y. Nishioka, T. Murase and M. Fujita, Chem. Commun., 2010,

46, 3460–3462.

43 C. S. Penkett, J. A. Woolford, T. W. Read and R. J. Kahan, J. Org. Chem.,

2011, 76, 1295–1304.

44 C. S. Penkett, J. A. Woolford, I. J. Day and M. P. Coles, J. Am. Chem. Soc.,

2010, 132, 4–5.

45 T. Gaich and J. Mulzer, Org. Lett., 2010, 12, 272–275.

46 M. D. Tzirakis, M. N. Alberti and M. Orfanopoulos, Org. Lett., 2011, 13,

3364–3367.

47 S. Kulyk, W. G. Dougherty, Jr., W. S. Kassel, S. A. Fleming and S. McN,

Sieburth, Org. Lett., 2010, 12, 3296–3299.

48 S. Kulyk, W. G. Dougherty, W. S. Kassel, M. J. Zdilla and S. McN., Sieburth,

Org. Lett., 2011, 13, 2180–2183.

49 F. Yagishita, M. Sakamoto, T. Mino and T. Fujita, Org. Lett., 2011, 13,

6168–6171.

50 M. Sakamoto, F. Yagishita, A. Saito, S. Kobaru, A. Unosawa, T. Mino and

T. Fujita, Photochem.Photobiol. Sci., 2011, 10, 1387–1389.

51 S. Arumugam and V. V. Popik, J. Am. Chem. Soc., 2011, 133, 5573–5579.

52 J. Liese and N. A. Hampp, J. Photochem. Photobiol. A: Chem., 2011, 219,

228–234.

53 D. W. Cho, C. W. Lee, J. G. Park, S. W. Oh, N. K. Sung, H. J. Park, K. M.

Kim, P. S. Mariano and U. C. Yoon, Photochem. Photobiol. Sci., 2011, 10,

1169–1180.

Photochemistry, 2012, 40, 106–145 | 137



54 J. D. White, Y. Li and D. C. Ihle, J. Org. Chem., 2010, 75, 3569–3577.

55 P. Chen, P. J. Carroll and S. McN., Sieburth, Org. Lett., 2010, 12, 4510–4512.

56 A. Vasudevan, C. Villamil, J. Trumbull, J. Olson, D. Sutherland, J. Pan and S.

Djuric, Tetrahedron Lett., 2010, 51, 4007–4009.

57 R. A. Valiulin, T. M. Arisco and A. G. Kutateladze, J. Org. Chem., 2011, 76,

1319–1332.

58 H. Maeda, K. Chiyonobu and K. Mizuno, Photochem. Photobiol. Sci., 2011,

10, 1445–1449.

59 D. Thonon, E. Goukens, G. Kaisin, J. Paris, J. Flagothier and A. Luxen,

Tetrahedron, 2011, 67, 5572–5576.

60 Z. Yu, L. Y. Ho and Q. Lin, J. Am. Chem. Soc., 2011, 133, 11912–11915.

61 H.-T. Yu, J. Li, Z.-F. Kou, X.-W. Du, Y. Wei, H.-K. Fun, J.-H. Xu and Y.

Zhang, J. Org. Chem., 2010, 75, 2989–3001.

62 B. Xia, B. Gerard, D. M. Solano, J. Wan, G. Jones, II and J. A. Porco, Jr.,

Org. Lett., 2011, 13, 1346–1349.

63 I. Kikas, I. Skoric, Z. Marinic and M. Sindler-Kulyk, Tetrahedron, 2010, 66,

9405–9414.

64 C. Huang, H. Yu, Z. Miao, J. Zhou, S. Wang, H.-K. Fun, J. Xu and Y. Zhang,

Org. Biomol. Chem., 2011, 9, 3629–3631.

65 K. Matsumura, T. Mori and Y. Inoue, J. Org. Chem., 2010, 75, 5461–5469.

66 Y. Yabuno, Y. Hiraga, R. Takagi and M. Abe, J. Am. Chem. Soc., 2011, 133,

2592–2604.

67 M. Hapke, K. Kral, C. Fischer, A. Spannenberg, A. Gutnov, D. Redkin and

B. Heller, J. Org. Chem., 2010, 75, 3993–4003.

68 Review: See 28; A. B. Penenory and J. E. Arguăello, 319–352.

69 Y.-M. Shen, X. L. Yang, D.-Q. Chen, J. Xue, L. Zhu, H.-K. Fun, H.-W.

Hu and J.-H. Xu, Chem. Euro. J., 2010, 16, 2873–2886.

70 M. Ohashi, H. Maeda and K. Mizuno, Chem. Lett., 2010, 39, 462–463.

71 J. Matsumoto, Y. Yoshinaga, A. Hamasaki, T. Kawasaki, T. Yamashita,

T. Shiragami and M. Yasuda, Bull. Chem. Soc. Jpn., 2011, 84, 1130–1132.

72 Review: D. Mangion and D. R. Arnold, Acc. Chem. Res., 2002, 35, 297–304.

73 G. G. Wubbels, H. Daniel and D. Policarpio, J. Org. Chem., 2010, 75,

7726–7733.

74 G. A. Blanco and M. T. Baumgartner, New J. Chem., 2010, 34, 2306–2309.

75 V. L. Ivanov and M. V. Serdechnova, High Energy Chem., 44, 14–19.

76 V. L. Ivanov and S. Y. Lyashkevich, High Energy Chem., 2011, 45, 210–213.

77 B. Li, B. Han, Z.-J. Shi, Y. W. Ren, S.-C. Lu and W. Zhang, Tetrahedron Lett.,

2010, 51, 3748–3751.

78 S. Ma, Handbook of Cyclization Reactions, Vol. 2, Wiley-VCH, Weinheim (2010).

79 Review: See ref. 78; A. G. Griesbeck, 1149–1197.

80 Review: K. B. Jorgensen, Molecules, 2010, 15, 4334–4358.

81 Review: A. I. Khalaf, Trends Photochem. Photobiol., 2010, 12, 65–75.

82 Review: See ref. 28; G. Pandey and S. R. Gadre, 241–286.

83 Review: See ref. 28; J. Perez-Prieto and M. A. Miranda, 287–318.

84 Review: T. Bach and J. P. Hehn, Angew. Chem. Int. Ed., 2011, 50, 1000–1045.

85 Review: A. Polukhtine, G. Karpov, D. R. Pandithavidana, A. Kuzmin and V.

V. Popik, Aust. J. Chem., 2010, 63, 1099–1107.

86 Review: D. W. Cho, U. C. Yoon and P. S. Mariano, Acc. Chem. Res., 2011, 44,

204–215.

87 Review: M. Oelgemoeller and W. H. Kramer, J. Photochem. Photobiol.

C, Photochem. Rev., 2010, 11, 210–244.

88 B. L. Feringa and W. R. Browne, Molecular Switches, 2nd, Wiley, Weinheim

(2011).

138 | Photochemistry, 2012, 40, 106–145



89 Review: See ref. 87; Y. Yokoyama, T. Gushiken and T. Ubukata, 81–95.

90 Review: E. Deniz, M. Tomasulo, J. Cusido, S. Sortino and F. M. Raymo,

Langmuir, 2011, 27, 11773–11783.

91 Review: M. Irie, Photochem. Photobiol. Sci., 2010, 9, 1535–1542.

92 Review: S. Delbaere, G. Vermeersch and Micheau, J. Photochem. Photobiol.

C, Photochem. Rev., 2011, 12, 74–105.

93 Z.-G. Yuan, Y. Xiao and X.-H. Qian, Chem. Commun., 2010, 46,

2772–2774.

94 S.-Q. Xiao, A. C. Stuart, S.-B. Liu, H.-X. Zhou and W. You, Adv. Funct.

Mater., 2010, 20, 635–643.

95 D. Waghray, W. Nulens and W. Dehaen, Org. Lett., 2011, 13, 5516–5519.

96 X.-J. Zhang, X.-X. Jiang, K. Zhang, L. Mao, J. Luo, C.-Y. Chi, H. S. O. Chan

and J. Wu, J. Org. Chem., 2010, 75, 8069–8077.

97 K. Butkovic, D. Vuk, Z. Marinic, J. Penic and M. Sinder-Kulyk, Tetrahedron,

2010, 66, 9356–9362.

98 Y.-W. Ren, X.-R. Wang, W.-X. Wang, B. Li, Z.-J. Shi and W. Zhang,

Tetrahedron Lett., 2011, 52, 192–195.

99 S. Lu, R. Wang, Y. Yang, Y. Li, Z.-J. Shi, W. Zhang and Z.-F. Tu, J. Org.

Chem., 2011, 76, 5661–5669.

100 T. Mitamura, K. Iwata and A. Ogawa, J. Org. Chem., 2011, 76, 3880–3887.

101 T. Mitamura and A. Ogawa, J. Org. Chem., 2011, 76, 1163–1166.

102 T. Mitamura, K. Iwata, A. Nomoto and A. Ogawa, Org. Biomol. Chem., 2011,

9, 3768–3775.

103 Y. Du, J.-D. Xue, M.-D. Li, X.-G. Guan, D. W. McCamant and D. L.

Phillips, Chem. Eur. J., 2010, 16, 6961–6972.

104 Y.-H. Wang and P. Wan, Photochem. Photobiol. Sci., 2011, 10, 1934–1944.

105 J. Park and H. Kim, Bull. Korean Chem. Soc., 2011, 32, 3465–3468.

106 T. Ito, E. Nishiuchi, G. Fukuhara, Y. Inoue and T. Mori, Photochem. Photobiol. Sci., 2011, 10, 1405–1414.

107 S.-C. Lu, S.-C. Wei, W.-X. Wang, W. Zhang and Z.-F. Tu, Eur. J. Org. Chem.,

2011, 5905–5910.

108 J. P. Cueva, A. Gallardo-Godoy, J. L. Juncosa, Jr., P. A. Vidi, M. A. Lill, V. J.

Watts and D. E. Nichols, J. Med. Chem., 2011, 54, 5508–5521.

109 J. Xuan, Y. Cheng, J. An, L.-Q. Lu, X.-X. Zhang and W.-J. Xiao, Chem.

Commun., 2011, 47, 8337–8339.

110 J. W. Tucker, J. M. Narayanam, S. W. Krabbe and C. R. J. Stephenson, Org.

Lett., 2010, 12, 368–371.

111 A. Fukazawa, E. Yamaguchi, E. Ito, H. Yamada, J. Wang, S. Irle and S.

Yamaguchi, Organomettalics, 2011, 30, 3870–3879.

112 S. Ghosh and J. Das, Tetrahedron Lett., 2011, 52, 1112–1116.

113 Review: See ref. 1; M. Morimoto and M. Irie, 267–283.

114 Review: S. Nakamura, S. Yokojima, K. Uchida, and T. Tsujioka, J. Photochem. Photobiol. C, Photochem. Rev., 2011, 12, 138–150.

115 K. Mori, Y. Ishibashi, H. Matsuda, S. Ito, Y. Nagasawa, H. Nakagawa, K.

Uchida, S. Yokojima, S. Nakamura, M. Irie and H. Miyasaka, J. Am., Chem.

Soc., 2011, 133, 2621–2625.

116 Y. Ishibashi, M. Fujiwara, T. Umesato, H. Saito, S. Kobatake, M. Irie and

H. Miyasaka, J. Phys. Chem., C, 2011, 115, 4265–4272.

117 Y. Ishibashi, K. Okuno, C. Ota, T. Umesato, T. Katayama, M. Murakami,

S. Kobatake, M. Irie and H. Miyasaka, Photochem. Photobiol. Sci., 2010, 9,

172–180.

118 T. Fukaminato, T. Doi, N. Tamaoki, K. Okuno, Y. Ishibashi, H. Miyasaka

and M. Irie, J. Am. Chem. Soc., 2011, 133, 4984–4990.

Photochemistry, 2012, 40, 106–145 | 139



119 T. Fukaminato, M. Tanaka, T. Doi, N. Tamaoki, T. Katayama, A. Mallick,

Y. Ishibashi, H. Miyasaka and M. Irie, Photochem. Photobiol. Sci., 2010, 9,

181–187.

120 M. Morimoto and M. Irie, J. Am. Chem. Soc., 2010, 132, 14172–14178.

121 M. Morimoto and M. Irie, Chem. Commun., 2011, 47, 4186–4188.

122 T. Yamaguchi, K. Nanba, T. Ozeki, S. Irie and M. Irie, J. Photochem.

Photobiol., A: Chem., 2010, 213, 141–146.

123 L. Kuroki, S. Takami, K. Yoza, M. Morimoto and M. Irie, Photochem.

Photobiol. Sci., 2010, 9, 221–225.

124 K. Uchida, N. Nishikawa, N. Izumi, S. Yamazoe, H. Mayama, Y. Kojima,

S. Yokojima, S. Nakamura, K. Tsujii and M. Irie, Angew, Chem. Int. Ed.,

2010, 49, 5942–5944.

125 T. Tsujioka and N. Matsui, Optics Lett., 2011, 36, 3648–3650.

126 Y. Iwai and T. Tsujioka, Jap. J. Appl. Phys., 2011, 50, 081602/1–081602/5.

127 T. Tsujioka, J. Mater. Chem., 2011, 21, 12639–12643.

128 K. Tani, K. Kubono, K. Hori, K. Shoji, G. Shiga, M. Yamamoto and

T. Tsujioka, Chem. Lett., 2011, 40, 1267–1268.

129 T. Tsujioka, M. Yamamoto, K. Shoji and K. Tani, Photochem. Photobiol. Sci.,

2010, 9, 157–161.

130 T. Tsujioka, R. Takagi and T. Shiozawa, J. Mater. Chem., 2010, 20, 9623–

9627.

131 Y. Sesumi, S. Yokojima, S. Nakamura, K. Uchida and T. Tsujioka, Bull.

Chem. Soc. Jpn., 2010, 83, 756–761.

132 T. Tsujioka, I. Onishi and D. Natsume, Appl. Optics, 2010, 49, 3894–3899.

133 H. Nishi, T. Asahi and S. Kobatake, J. Phys. Chem. C, 2011, 115, 4564–4570.

134 S. Kobatake, H. Hasegawa and K. Miyamura, Crystal Growth & Design, 2011,

11, 1223–1229.

135 H. Nishi, T. Namari and S. Kobatake, J. Mater. Chem., 2011, 21, 17249–

17258.

136 D. Kitagawa and S. Kobatake, Chem. Lett., 2011, 40, 93–95.

137 S. Kobatake, S. Imao, Y. Yamashiro and Y. Terakawa, Tetrahedron Lett.,

2011, 52, 1905–1908.

138 H. Nishi and S. Kobatake, Chem. Lett., 2010, 39, 638–639.

139 D. Kitagawa, I. Yamashita and S. Kobatake, Chem. Commun., 2010, 46, 3723–

3725.

140 H. Nishi, T. Asahi and S. Kobatake, J. Photochem. Photobiol., A: Chem.,

2011, 221, 256–260.

141 D. Kitagawa, K. Sasaki and S. Kobatake, Bull. Chem. Soc. Jpn., 2011, 84,

141–147.

142 D. Kitagawa, I. Yamashita and S. Kobatake, Chem. Euro. J., 2011, 17, 9825–

9831.

143 W.-J. Liu, S.-Z. Pu, S.-Q. Cui, G. Liu and C.-B. Fan, Tetrahedron, 2011, 67,

4236–4242.

144 S.-Z. Pu, P.-J. Yan, G. Liu, W.-J. Miao and W.-J. Liu, Tetrahedron Lett.,

2011, 52, 143–147.

145 C.-J. Cheng, Z.-B. Liu, L. Shen, L. Li, C. Ma, S.-Z. Pu and J.-K. Xu, J. Chem.

Res., 2011, 35, 282–287.

146 S.-Z. Pu, H. Li, G. Liu, W.-J. Liu, S.-Q. Cui and C.-B. Fan, Tetrahedron, 2011,

67, 1438–1447.

147 G. Liu, S.-Z. Pu and X.-M. Wang, J. Photochem. Photobioll. A: Chem., 2010,

214, 230–240.

148 G. Liu, S.-Z. Pu and X.-M. Wang, Tetrahedron, 2010, 66, 8862–8871.

149 S.-Z. Pu, H. Li, G. Liu and W.-J. Liu, Tetrahedron Lett., 2010, 51, 3575–3579.

140 | Photochemistry, 2012, 40, 106–145



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Inter- and intra-molecular dimerization reactions

Tải bản đầy đủ ngay(0 tr)

×