Tải bản đầy đủ - 0 (trang)
7 Conclusion: The Possible Role of Iron in Neurodegeneration

7 Conclusion: The Possible Role of Iron in Neurodegeneration

Tải bản đầy đủ - 0trang

620





32 MOSSBAUER

SPECTROSCOPY IN THE STUDY OF LATERITE MINERAL PROCESSING



8. E. Murad, Characterization of a standard bauxite and its deferration products by M€

ossbauer spectroscopy, Miner. Eng. 2005, 18(9).

9. V. Anila, R.M. Singru, V.N. Sharma, S. Chander, M€

ossbauer study of the treatment of nickeliferous laterite ore in argon and

hydrogen/water mixtures, Hydrometallurgy 1981, 7, 329–337.

10. R.A. Bergman, Nickel production from low-iron laterite ores: process descriptions, CIM Bull. 2003, 96(1072), June–July, 127–138.

11. A. Taylor, ALTA 2000 Nickel/Cobalt-6: Seminar Proceedings Review of Nickel/Cobalt Laterite Processes, Alta Metallurgical Services, Perth,

West Australia, 2000.

12. C.S. Simons, Proceedings of a Symposium on The Production of Nickel: Extractive Metallurgy—Past, Present and Future,

Extractive Metallurgy of Nickel and Cobalt, The Metallurgical Society, C.P. Tyroler, C.A. Landolt, eds., 117th TMS Annual Meeting,

Phoenix, Arizona, 1988, pp. 91–134.

13. C.M. Diaz, C.A. Landolt, A. Vahed, A.E.M. Warner, J.C. Taylor, Proceedings of a Symposium on Extractive Metallurgy of Nickel and

Cobalt, The Metallurgical Society, C.P. Tyroler, C.A. Landolt, eds., 117th TMS Annual Meeting, Phoenix, Arizona, 1988.

14. E.N. Zevgolis, et al., EPD Congress on Energy Requirements in Nickeliferous Laterite Treatment, 12–16 March 2006, San Antonio,

Texas, 2006, pp. 487–496.

15. J. Ma, C.A. Pickles, Microwave segregation process for nickeliferous silicate laterites, Can. Metall. Quart. 2003, 42(3), 313–326

16. C.A. Pickles, Microwave heating behaviour of nickeliferous limonitic laterite ores, Miner. Eng. 2004, 17(6), 775–784.

17. ASTM, Standard E277 Test method for total iron in iron ores by stannous chloride reduction and dichromate titration, 1988.

18. E. Zevgolis, C. Zografidis, I. Halikia, E. Devlin, Roasting reduction study of Greek nickeliferous laterites, 138th TMS Congress, San

Francisco, California, 2009.

19. M. Samouhos, M. Taxiarchou, R. Hutcheon, E. Devlin, Microwave reduction of a nickeliferous laterite ore, Miner. Eng. 2012, 34,

19–29.

20. N.E. Zevgolis, C. Zografidis, T. Perraki, E. Devlin, Phase transformations of nickeliferous laterites during preheating and reduction

with carbon monoxide, J. Therm. Anal. Calorim. 2010, 100, 133–139.

21. K. Karalis, C. Zografidis, A. Xenidis, S. Tabouris, E. Devlin, Contribution to the energy optimization in the pyrometallurgical

treatment of Greek nickeliferous laterites, in Third International Symposium on High-Temperature Metallurgical Processing, T. Jiang, J.-Y.

Hwang, P. Masset, O. Yucel, R. Padilla, G. Zhou, eds., Wiley, Hoboken, NJ, 2012.

22. C.A., Metaxas, J.M.R., Meredith, Industrial Microwave Heating, Peter Peregrinus, London, 1983.

23. C.A. Pickles, Dielectric drying of nickeliferous limonitic laterite ores, in Proceedings of Nickel and Cobalt 2005—Challenges in

Extraction and Production, J. Donald, R. Schonewille, eds., Calgary, AB, Canada August 21–24, 2005, pp. 515–530.

24. R. Hutcheon, M. De Jong, F. Adams, A system for rapid measurements of RF and microwave properties up to 1400  C, J. Microw.

Power Electromagn. Energy 1992, 27(2), 87–92.

25. M. Hotta, M. Hayashi, K. Nagata, High temperature measurement of complex permittivity and permeability of Fe3O4 powders in

the frequency range of 0.2 to 13.5 GHz, ISIJ Int. 2010, 51(3), 491–497.

26. Z. Peng, J.-Y. Hwang, J. Mouris, R. Hutcheon, X. Huang, Microwave penetration depth of in materials with non-zero magnetic

susceptibility, ISIJ Int. 2010, 50(11), 1590–1596.



Index

Adipato (adi) complex, 116

Akaganeite, 416–418

collinear antiferromagnetism, 418

crystallinity, 418

Debye–Waller factor, 416

hyperfine parameters, 417, 418

properties, 418

room temperature M€

ossbauer

spectrum, 417

three sexters for M€

ossbauer

spectra, 416, 417

x-ray diffraction peaks, 418

Alkaline earth metal fluorides, 202

Aluminous silicate perovskite, 43

Aluminum

photomicrograph of, 586

SEM element mapping, 585

Ankerite (CaFe(CO3)2), 576

b–g Anticoincidence detector, 60

APD. see Avalanche photodiode

detectors (APDs)

Aqueous Fe(ClO4)3 solutions, 477

As–As bonding

s–p hybridization, 538

Ash fusion temperature (AFT)

centrifuge overflow sample, 587

of coal source, 586

Atomic force microscopy, 374, 429

Atomic jumping, 60

Auger electrons, 338

Auger electron spectroscopy (AES), 6,

457, 460, 464

Auger ionization process, 333

Avalanche photodiode detectors

(APDs), 4, 7–9, 44, 257, 268

Averaged powder magnetization, for

ground doublet, 107

Azospirillum brasilense, 341, 343, 344

emission M€

ossbauer spectra, 337

Bacterial glutamine synthetase

molecule, 341

BaFe2As2

atmospheric pressures, 539,

540

crystal structure, 536



low-spin nonmagnetic state, 541

M€

ossbauer spectroscopy, 536

Ba(Fe0.91Co0.09)2As2, magnetic

susceptibility, 538

ossbauer

Ba(Fe0.88Co0.12)2As2, M€

spectroscopy (MS), 537

Ba(Fe0.95Ni0.05)2As2, magnetic

susceptibility, 539

BaFe1.9Ni0.1As2 single-crystal, 538

BaFe2O4 crystalline particles, 545

BaFeO4 sample, 515

20BaOÁ10Fe2O3Á70V2O5 glass

activation energy, 547

current vs. voltage, 546

DTA chart, 545

electrical conductivity (s) and

quadrupole splitting, 547

room-temperature electrical

conductivity, 546

XRD pattern, 545

Barium ferrates(IV), 510

Barium–iron–vanadate glass

electrical resistivity, 543

BaSnF4, structural determination

historical perspectives, 216–217

M€

ossbauer spectroscopy, 220

neutron powder diffraction, 225

sp3d2 hybridization, and VSEPR

rules, 225–226

tetragonal symmetry, 225

BCS theory, superconductors, 397

Benzene-enclathrated Fe(NCS)2(bpp)2Á2

(benzene), 147

conformers of bpp, 147

magnetic measurements with

SQUID, 149

packing view, 148

projections of Fe(NCS)2(bpp)2 to ab

plane, 148

reversible structural changes, triggered

by sorption of benzene

molecules, 147–149

symmetry change around iron, 148

x-ray diffraction analysis, 147

Be window, 6, 7

Bifunctional mechanism, 564



Biology-related and biomedical

applications, of M€

ossbauer

spectroscopy, 272

enzymes, 280–281

ferritin, and hemosiderin, 283–284

hemoglobin, 281–283

microorganisms-related studies,

273–276

pharmaceutical products, 286

controlling iron state, and impurity

level, 286

iron-containing, 286

iron–polygalacturonate complex,

characterization, 286

plant tissues, 276

cucumber roots, spectroscopic

studies, 278–279

spectroscopic studies of iron uptake,

and translocation, 276–277

tissues containing iron-storage

proteins, 284–286

1,3-Bis(4-pyridyl)propane, 147

Bohr magneton, 361

Boltzmann constant, 546

Borate glass, 542

bpa: 1,2-Bis(4-pyridyl)ethane, 144

bpp: 1,3-Bis(4-pyridyl)propane,

144

Bravais single-crystalline lattice, 26

Browns model, 209

Ca2ỵ concentrations, 597

CaIrO3- type structure (Cmcm), 52

Calcine temperature

residual carbon content, 611

in rotary kiln roasting reduction, 611

vs. electrodes slipping, 612

vs. temperature, 611

Calcium

photomicrograph of, 586

SEM element mapping, 585

Calcium ferrate(VI)

FTIR spectra of, 507

Calcium silicate perovskite, 43

Carbon felts

microwave discharge, 528



M€

ossbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, First Edition.

Edited by Virender K. Sharma, G€

ostar Klingelh€

ofer, and Tetsuaki Nishida.

Ó 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



621



622



Carbon monoxide (CO)

preferential oxidation (PROX), in rich

hydrogen atmosphere, 564

Carbothermal reduction, of iron, 555

Cation–cation bond (CCB), 95

Cation-free glutamine synthetase

emission M€

ossbauer spectra, 343

Cd-goethite particles, formation, 493

CEMS M€

ossbauer spectrum, 3, 59, 584

CEMS 2010 spectrometer, 386

Charge transfer phase transition

(CTPT), 153, 161

photoinduced, 164–168

thermally induced, 161–164

Chemical oxygen demand (COD),

595–598, 600, 606

artificial drain, 597

redox titration method, 597

Chemical shift, 44

Clebsch–Gordan coefficients, 380

CMR. see Colossal magnetoresistance

(CMR)

Coal ash

recycling, iron silicate glass

prepration, 596

uses, 596

Coal combustion, 584

Coal oxidation, 579

Coal samples, room-temperature

M€

ossbauer parameters

of, 580

Coals research

coal combustion, 584–587

experimental setup, 577

gasification, 587–590

iron/sulfur, speciation, 576

mild steel, corrosion of, 583–584

M€

ossbauer spectrometer, 577

resuts, 578, 581

sample preparation, 577–578

schematic representation, 577

SEM analyses, 577

weathering of, 578–583

XRD analyses, 577

57

Co-cobalt(II)-doped GS

emission M€

ossbauer spectra, 342

COD. see Chemical oxygen demand

(COD)

57

Co-Doped Y1-xPrxBa2Cu3O7-d,

studies, 397–401

57

Co emission studies, 398, 399

emission M€

ossbauer spectra,

Y0.9Pr0.1Ba2Cu3(57CO)O7-d,

398

Cu3dO2p hybrid band, 397

M€

ossbauer parameters, room

temperature, 400

praseodymium (Pr)



INDEX



effects, 397

ionic properties, 397, 398

PrBCO/YBCO lattice, 398

57

Co emission M€

ossbauer spectra, 335

measurements, 334, 336, 340, 344

spectroscopic data, parameters, 340

Coherent quasielastic nuclear resonant

scattering, 25–29

57

CoII-doped cyanobacteria, 336

57

Co ion implantation, 60

57

Co-labeled cobalamins, 334

57

Co-labeled vitamin B12 coenzyme, 334

Colossal magnetoresistance (CMR), 393,

407–413

analogous cobalt-based perovskites,

La1-xSrxCoO3 (See La0.8Sr0.2CoO3–d)

cobaltate perovskites, 407

iron-doped La0.8Sr0.2FeyCo1-yO3-d

perovskites, 411 (See also Irondoped La0.8Sr0.2FeyCo1-yO3-d)

La0.7Ba0.3MnO3 perovskites, 407

manganate perovskites, 407, 408

materials, 393

Nd0.5Pb0.5MnO3 perovskites, 407

59

Co NMR spectroscopy, 410

Controlled radiative gamma decay, 293

within the framework of two-level

approximation

at excited nucleus

consideration, 293

Hamiltonian operator, 293

nonstationary Schr€

odinger

equation, 294

solutions of system, for cases, 294–295

wave function of whole system, 294

Controlled radioactive, and excited nuclei

radiative gamma decay

direct experimental observation, and

study of process

by delayed gamma–gamma

coincidence method, 311–314

detecting of effect of controlling time

of radiation nuclear decay, 311

influence of distributed resonance

screen made of 119Sn, 314

optimization of decay controlling

system parameters, 313

spontaneous decay of radioactive

Ã

Co(57 Fe) nucleus, 313

structure of controlled, and uncontrolled nuclear transitions, 312

Controlled spontaneous gamma decay

excited nucleus in system of mutually

uncorrelated modes

of electromagnetic vacuum,

295–296

spontaneous gamma decay



in case of free space, 296–298

in case of nonresonant screen

presence, 301–302

of excited nuclei in case of screen

presence, 298

experimental study of phenomenon,

by investigation of space

anisotropy and self-focusing of

M€

ossbauer radiation, 309–311

experimental study of phenomenon,

for M€

ossbauer nuclei, 303–308

of nucleus in the case of resonant

(M€

ossbauer) screen

presence, 298–301

in system of synchronized modes

of electromagnetic vacuum,

302–303

CONUSS program, 50

Conversion electron M€

ossbauer spectroscopy (CEMS), 447, 557,

577

Conversion x-ray M€

ossbauer

spectroscopy (CXMS), 384

registration, 388

Coordination polymers of lanthanides

(Ln), 116

Corrosion process, 418

Corrosion rate, of mild steel, 583

CoSn electrodes, in lithium test, 560

57

Co substitution cations, in

metalloproteins, 345

Coulomb excitation, 58, 59

Coulomb excitation and recoil

implantation M€

ossbauer

effect (CRIME), 59

Coulomb interaction, 152

between d electrons, 152

Crystal field splitting energy, 47

Crystal field theory, 46

on 3d electronic states, 46–47

Cubic fluorite (F) structure

of MO2, 74

Curie temperature, 521

Curie–Weiss law, 107, 173

Cyano-bridged coordination polymer

complexes, 117

DCC model lattice parameter, 84–85

data analysis of Ce–Eu and

Th–Eu, 85

DCC model, 86, 87

derivation, 85–88

model IV, 87–88

model extension attempt

from macroscopic lattice parameter

side, 8992

quantitative BL(Eu3ỵO)-composition

(y) curves, 88, 89



623



INDEX



DC magnetization, 435, 436

curve, 439, 440

magnetic moment, 435, 436

0D, 1D–3D network structure, 95

Debye velocity, 34

b-decay, 59

57

Mn, 60

Decomposition, of abundant mineral

species, 584

Defect crystal chemistry (DCC) lattice

parameter model, 76–79

Defect formation, 60

DF oxides, 74

Dicarboxylate anions, 116

Diffusion coefficients, 29

Diffusion mechanism, 59

Dilute Fe-doped YAG

hyperfine fields, 526

M€

ossbauer analysis of, 526

Dilute magnetic semiconductors/

insulators (DMS/DMI), 521

magnetic phase diagram, 522

magnetic properties, 525–526

DISCVER (discrete versions of

M€

ossbauer spectra)

program, 516

Disordered phases, structural

studies, 226

disordered chloride fluoride

phases, 232–241

M€

ossbauer spectroscopy, and

bonding, 234, 236

sample preparation, 232, 234

tin sublattice strength vs. solid

solution composition, 236–241

x-ray diffraction, and double

disorder, 232–236

disordered fluoride phases, 226–232

lone pair stereoactivity, and tin

coordination, 226–230

positional disorder, and orientational

disorder, 230–232

Dissolved oxygen (DO) levels, 595

DNA/RNA polymerases, 344

DOS program, 35

DPS model spectra, representation, 517

Dried biomass (DB), 337

161

Dy in dysprosium dicarboxylates, 116

absorption area and number of

methylene groups, relationship

between, 119

common bands in infrared spectra, 117

experimental methods, 117

M~

ossbauer spectroscopy, 116, 118

Nowick–Wickman relaxation model,

simulation, 121

polymeric dimensional state, relaxation

time criteria, 121



spectral parameters, 118

temperature dependence, 119–120

Dysprosium–transition metal

complexes, 117

EDTA treatment, 340

Eigen-polarizations, 17

Einstein–Smoluchovski equation, 26

Electrical conductivity, 44, 603

Electrically conductive vanadate glass

structural relaxation, 544

vanadate glass, electrically

conductivity, 544

Electric field gradient (EFG), 12, 542

Electromagnetic isotope separation

online (ISOL) technique, 59

Electron capture (EC) decay, 59

Electronic absorption, formula, 394

Electronic scattering length, 10

Electronic spin transition of Fe2ỵ

in ferropericlase, 4749

Electron M

ossbauer spectroscopy,

458460

contribution, 460

depth-selective conversion electron

M

ossbauer spectroscopy

(DCEMS), 459

electron spectrum, 459

electrostatic spherical analyzer, 459

spectra, 459

electron energy analyzer, 459

increasing surface sensitivity, 458–460

integral low-energy electron

M€

ossbauer spectroscopy

(ILEEMS), 460

diagram schematic, 461

spectra recorded at different bias

voltages from a 5 nm thick

57

Fe film, 463

spectrum 5nm thick 57Fe film, 462

vs. ILEEMS, 464

problems, 460, 462

study of a thin layer, 458–460

The Fe 2p XPS spectrum, 458, 459

study of a very thin layer, 458–460

deposition of pure 57Fe films, 458

Electrons appearance, in M€

ossbauer

spectroscopy

Auger electron spectroscopy

(AES), 457

conversion coefficient, a, 456

electrons emission probabilities,

deexcitation of a 57Fe

Nucleus, 457

emitted electrons detection, 457

M€

ossbauer spectroscopy, 457

nuclear and atomic relaxation process,

diagram, 457



physical basis, 456, 458

resonant nuclear absorption, 456

total electron conversion

coefficients, 456

x-ray photoelectron spectroscopy

(XPS), 457

Electron-withdrawiing effect, 400

Emission channeling, 59

Emission M€

ossbauer spectroscopic

data, 338, 339

Emission (57Co) M€

ossbauer

spectroscopy, 333

biochemical/physiological

functions, 334

enzymological applications, 340–345

cations in metalloproteins, 345

EMS studies, 342–344

test object, choosing, 340–342

two-metal-ion catalysis, 344–345

isotope-containing molecules, 333

methodology, 334–335

microbiological applications, 336–340

radionuclide, 333

vitamin B12 coenzyme, 334

Energy-dispersive x-ray analysis

(EDX), 535

Ethylene glycol, in Ar atmosphere, 564

European Synchrotron Radiation Facility

(ESRF), 4

Europium(III) dicarboxylates, 116

EXAFS analysis, 523

Experimental low-energy electron

M€

ossbauer spectroscopy,

460–165

bias voltage, 462, 463

intensity of surface component

relation, 463

channeltron, electron detector, 460,

461

channeltron detection efficiency

curve, 461

dependence of number of

counts recorded per unit

of time, 463

important parameter, 462

electrostatic energy analyzers, 460

transmission, ICEMS, and ILEEMS

spectra

acicular gÀFe2O3 nanoparticles, 464

Fe0.33NbTiP3O12, 464, 465

FactSage modeling, 589

under constant partial oxygen

pressures pyrrhotite, 590

diagram, 590

FARG room-temperature M€

ossbauer

spectrum, 601, 602, 603,

604, 605



624



Fe-As-based high-temperature

superconductors

experimental procedure, 535–537

injected electrons, 537–538

Ni-doped single crystals

new electron-rich species, 538–539

O2, adsorbtion, 539–541

Fe–As bonding, p–d hybridization, 538

Fe electrodes, magnetite

nanoparticles, 489

Fe EXAFS spectra, 524

FeFenNi6-n environments, in LiFexNi1-xO2

solids, 554

Fe(III)–salt solutions, hydrolysis

reactions, 472

Fe ion, artificial drain, 600

FeIr alloy CO oxidation, exposure, 574

57

Fe M€

ossbauer parameters

H2 volume fractions, 573

Ir–Fe/SiO2 catalyst, 572

quasi in situ, 570, 571

57

Fe M€

ossbauer spectroscopy technique

ammonium ferrocyanide, thermal

decomposition, 371–374

decomposition

BaFeO4 in dry/humid air, 515–516

iron(V) in air, 513–514

K2FeO4 in humid air, 514–515

of Na4FeO4 in air, 513

ferrates formation

Fe2O3/Na2O2, solid-state

reaction, 516–517

ferrates(IV, V, and VI), 510–513

ferryl(IV) ion, 508–510

iron oxide, 470

nanocrystalline Fe2O3 catalyst,

376–377

nanocrystalline iron oxides

consecutive processes, 383–388

in-field transmission, 379–381

in situ high-temperature, 381–383

at various temperatures, 378–379

solid-state syntheses, 371

thermal conversion

Fe2(SO4)3 in air, 376

thermal decomposition

K2FeO4 in static air, 516

prussian blue in air, 374–376

use of, 371–377

Fe(NCX)2(bpa)2 (X¼S, Se)

assembled structures, 144

powder x-ray diffraction study, 145

structural change by desorption of

propanol molecules, 144–145

time dependence of 57Fe M€

ossbauer

spectra, 145

Fe(NCX)2(bpp)2Á2(benzene), 149

57

Fe M€

ossbauer spectrum, 149–150



INDEX



powder x-ray diffraction pattern, 149

reversible spin-state switching involving

structural changes,

triggered by sorption of benzene

molecules, 149–150

spin-crossover phenomenon, 150

Fe(Ni) alloy particle, microwave

reduction, 616

Fe–Ni production, in E/F vs. calcine

reduction degree, 612

Fe(NO3)3 solutions

characterization of, 475

hydrolysis/precipitation, 473

particles precipitation, TEM

images, 476

Fenton method, 596

Fe2O3

AFM images, 375

characteristic ordering

temperature, 370

hysteresis loops, 369

individual polymorphs, stability

of, 368

iron(II) oxalate dihydrate, 376

modeled typical zero-field

roomtemperature, 369, 370

M€

ossbauer hyperfine parameters, 369

nanoparticles, 369

polymorphs, room-temperature

m€

ossbauer hyperfine

parameters, 357

a-Fe2O3, 353–358

FE-SEM images of, 482

hydrolysis, 478, 479

modeled M€

ossbauer spectra, 358

monocrystalline, 357

particle size distribution, 356

phosphorus, incorporation of, 483

room temperature, 355

schematic representation of, 354

magnetic phase diagram of, 356

shape and size, 479

spin-flop field characteristic, 357

temperature, effect of, 481

e-Fe2O3

iron(III) oxide, brown magnetic

phase, 364

magnetization, temperature

dependence, 366

room temperature, 367

schematic representation of, 365

g-Fe2O3

low-temperature, 375

magnetic behavior, 361

M€

ossbauer spectra, 363

schematic representation, 360, 361

zero-field M€

ossbauer spectra, 362

FeOCl film, 386



b-FeOOH

characteristic XRD patterns, 481

FeCl3 hydrolysis, 474

FE-SEM images of, 482

XRD lines, 476

g-FeOOH particles

iron oxyhydroxide–surfactant, 485

lamellar microstructure, 476

precipitation process, 485

in situ nucleation, 486

a-FeOOH samples

Co2ỵ ions, 492

FE-SEM images, 491, 492

[Fe(pyrazine){Pt(CN)4}] complex, 160

photoinduced spin conversion,

between LS and HS states,

160–161

spin-crossover transition, thermally

induced, 160

Ferrates

Fe-O bond distances/electron density

on iron, 513

isomer shift values of, 512

oxidation state (OS) of iron, 512

parameters, 510

spectroscopic characterization,

506–508

Ferrate(VI) solution, XANES

spectrum, 507

Ferrimagnetic phase transition, 173

Ferritin, 327

H/L-ferritin chains, 327

M€

ossbauer spectroscopy, 328

properties, 327

Ferromagnetic clusters, 411

Ferryl(IV), 509

Ferryl species, formation of, 505

Fe/SiO2 catalyst, 57Fe M€

ossbauer

parameters, 570

Fe2(SO4)3Á2H2O isothermal

decomposition, 377

ossbauer

Fe2(SO4)3 room-temperature M€

spectrum, 376

Field cooling (FC) modes, 525

Flow temperature (FT) value, 586

Fly ash, M€

ossbauer spectrum, 585

Focusing monochromator (FM), 6

Free energy, 153

Galy–Andersson’s model, 209

Gamma decay, 292

controlled spontaneous, problems

of, 292

models describing process of

spontaneous decay, 292

limitations and solutions, 293

Gasification–fusion furnaces, 595

Gasification process, optimization, 588



625



INDEX



Gasifier graphical representation of, 588

Glu amino acid residues, 344

Glutamic acid (Glu) residues, 341, 342

Glutamine synthetase (GS), 334, 343

Goethite (aÀFeOOH), 418–420, 421,

423, 426, 490–495

collinear antiferromagnet, 419

crystallographic structure, 420

divalent cations, influence of, 491–493

formation, 494

hyperfine parameters, 417, 418

magnetic properties, 419

nonstoichiometric, 419

platinum group metal cations, influence

of, 494–495

room temperature M€

ossbauer

spectrum, 419

stoichiometric, 419

tetravalent cations, influence of, 494

trivalent cations, influence of, 493–494

Grazing incidence scattering

geometry, 34

Healthy and diseased brain tissue,

asymmetry of M€

ossbauer

spectra, 330–331

Healthy brain tissue, M€

ossbauer

studies, 325–327

Heavy fermion superconductors, 127

magnetic ordering and paramagnetic

relaxation in, 129–133

Heisenberg uncertainty principle, 26

Hematite (Fe2O3), 585

Eu-for-Fe substitution, 495

oxidizing conditions, 589

Heme (iron protoporphyrin IX)

proteins, 315

characterization of intermediate states,

and chemical significances, 316

chemical stability and other

advantages, 316

store two oxidizing equivalents,

nature’s strategies, 316

Hemosiderin

M€

ossbauer spectroscopy, 328

properties, 327

Hexamethylenetetramine (HMTA), 473

High-pressure diamond anvil cell

(DAC), 44

High-resolution monochromators

(HRMs), 4

High-resolution neutron diffraction

studies

Cu(1)—Cu(1) distance, 400

High-Tc superconductors, 393–401

57

Co-doped Y1-xPrxBa2Cu3O7-d

(See 57Co-doped

Y1-xPrxBa2Cu3O7-d)



highest critical temperature, 394

M€

ossbauer probe, 397

out-of-the-chain vibrations, 400

studies, 394–401

YBa2Cu3O7-d (YBCO)

(See YBa2Cu3O7-d (YBCO))

High-valent Fe intermediates., 315

HS–LS transition, 152

Hund’s rule, 152, 175

Hydrolytical products, FT-IR spectra, 477

Hyperfine magnetic field, 380

ICEMS. see Integral conversion electron

M€

ossbauer spectroscopy

(ICEMS)

Imidazole, 177

In-beam M€

ossbauer spectroscopy

(IBMS), 58

INES program, 35

In-field M€

ossbauer spectroscopy, 436

spectra, nanosized

Ni0.25Co0.25Zn0.5Fe2O4, 436

Infrared (IR) spectra of Eu malonate, 116

in situ M€

ossbauer spectroscopy, 382

Instrumentation, 4

detectors, 4

isotopes, accessible at ID18, 5

monochromators, 4–5

nuclear resonance beamline, 5–6

radioactive source, 4

UHV system for in situ nuclear resonant

scattering, 6–9

Integral conversion electron M€

ossbauer

spectroscopy (ICEMS), 385,

456–458, 462–465, 467

spectrum from a 5nm 57Fe film

deposited by evaporation on a

Si wafer, 458

Intergovernmental Panel on Climate

Change (IPCC), 595

Intermediate-spin complexes, pure, 178

core modification, 184–189

ruffled deformation, 182–184

saddled deformation, 178–182

Ir–Fe bimetal catalysts, 564

Ir–Fe/SiO2 catalyst, PROX reaction, 573,

574

Iron, 43, 44

concentrations, 597

in substantia nigra, 328–329

experimental M€

ossbauer spectroscopic

results, 53–54

labile, 328, 330

possible role in

neurodegeneration, 331

preliminary M€

ossbauer studies, 329

concentrations in control and PSP

tissues, 329



present in healthy and diseased brain

tissue, 328

reduced laterite samples, phase

content of, 615

simplified decay scheme, 59

spin and valence states, in silicate

postperovskite, 52–54

spin transition in ferropericlase, 55

states in both perovskite and

postperovskite, 55

total spin momentum of 3d

electronics, 55

Iron-containing soda-lime silicate (ISLS)

glass, 596

COD values, 598

dissolution rate of cations, 596

network modifier (NWM), 596

room-temperature M€

ossbauer spectra

of, 596, 597

Iron-doped La0.8Sr0.2FeyCo1-yO3-d,

411–413

case of y 0.05 iron content, 411, 412

case of y!0.15 iron content, 412, 413

emission and transmission M€

ossbauer

study, 411–413

Iron-doped YAG microdischarge

treatment, 528–531

Iron(III)–hydroxy complexes

formation of, 470

Iron(III) oxide, polymorphs, 353, 381

amorphous Fe2O3, 369–371

crystal structures, magnetic

properties, 352

a-Fe2O3, 353–358

b-Fe2O3, 358–359

e-Fe2O3, 364–368

g-Fe2O3, 360–364

Iron(III) porphyrin complexes

axial ligands for, 177

deformation modes, 178

molecular structures of Fe(Por)I, 186

M€

ossbauer and EPR spectra, 187

properties, 177

spin-crossover triangle in, 195–198

spin state, controll of, 177

Iron oxide, precipitation

crystallographic systems, 471

dense b-FeOOH suspensions,

480–483

57

Fe M€

ossbauer spectroscopy

technique, 470

hydrolysis reactions, 470–480

hyperfine magnetic fields (HMFs), 474

influence of cations

goethite, 490–495

hematite, 495–496

maghemite, 496

magnetite, 496



626



Iron oxide, precipitation (Continued )

properties of

ferrihydrite, 483–485

lepidocrocite (g-FeOOH), 485–487

maghemite (g-Fe2O3), 487–490

magnetite (Fe3O4), 487

Iron oxides

classification of, 352

compounds, oxidation states, 506

Iron silicate glass

prepared by recycling coal ash, 596

Iron-tetraamidomacrocyclic ligand

(Fe-TAML) catalysts, 505

Iron(V) nitride complex, 511

Isomer shift (IS), 537

ISO 7404-5 tandard method, 588

Isothermal remanence magnetization

(IRM) curve, 439, 440

dM plots, 439, 440

Henkel plot, 440

Jahn–Teller distortions, 52

Jarosite, 579

Jump function, 26

K2FeO4

aging, kinetics, 384

decomposition product, 516

electron paramagnetic resonance (EPR)

measurements of, 507

thermal decomposition, 516

Kr€

oger–Vink notation, 75

Kynurenic acid, 316

Lamb–M€

ossbauer factor, 3, 12, 26

Landau mine, 583

Langmuir–Hinshelwood reaction, 572

La0.8Sr0.2CoO3-d

area ratios between doublet

and sextet components

La0.8Sr0.2Co1–yFeyO3–d

perovskites, 409

57

Co emission M€

ossbauer spectra

after oxygen removal, 408,

409

emission m€

ossbauer study, 408–411

isomer shifts of doublet and sextet of

La0.8Sr0.2Co1-yFeyO3-d

perovskites, 410

M€

ossbauer isomer shifts of sextets

(dsextet) and doublets

(ddoublet), 410

Laterite–lignite mixture

dielectric constant of, 616

DTA data of, 618

infrared images of, 617

logarithmic scale diagram, 618

microwave heating of, 618



INDEX



microwave power supply, 617, 618

real and imaginary permittivities, 619

Laterite mineral processing, 608

conventional processing, 610–612

microwave processing, 613–619

nickel production, from lateritic/sulfidic

ores, 608

pyrometallurgical processing, 609

thermal effect, 610

LIB. see Li-ion batteries (LIB)

LIESST. see Light-induced excited spinstate trapping (LIESST)

LiFePO4 lithium deinsertion/

insertion, 555

LiFeVPOx glass, 548

electrical conductivity, 549

Light-induced excited spinstate trapping

(LIESST), 153

for Fe(II) complexes, 153–157

for Fe(III) complexes, 157–159

highest critical temperature, 160

Li-ion batteries (LIB)

anode materials

alloys/intermetallic

compounds, 558–560

antimony alloys, 560–561

conversion oxides, 556–558

cathode active material, 543–544,

547–550

cathode materials, 543, 554

insertion silicate electrodes,

555–556

layered intercalation electrodes, 554

phosphate electrodes, with olivine

structure, 554–555

discharge/charge capacity, 549, 550

electrochemistry of, 549

isotopes, 553

of mobile phone, 543

physicochemical behavior, 550

room-temperature M€

ossbauer spectra

of, 550

Linear polarization, 11

Lipkin’s sum rules, 35

Liquid nitrogen temperature (LNT), 475,

492, 493

Li3Sb signal, 561

Li–Sn intermetallics, 558

isomer shift, 559

Lithium-ion battery, nucleus/

transition, 553

Ln complexes, of dicarboxylates, 116

Ln3ỵ/M4ỵ ionic radii ratio

(x0026A;x00070;x00070;), 75

Lns-M€

ossbauer and lattice parameter data

of DF oxides, 79

151

Eu-M€

ossbauer, and lattice parameter

data, 79



DF-type Ce–Eu, 80

F-type U–Eu, 79–80

Hf–Eu, 80

P-type stabilized Zr–Eu, 80

Th–Eu, 80

155

Gd-M€

ossbauer, and lattice

parameter data, 80–84

Lns-M€

ossbauer data analysis, 84–85

Lone pair stereoactivity, and material

properties, 241–242

Low-energy electron diffraction

(LEED), 6

Low-energy electrons technique, 455

Magnesium silicate perovskite, 49

Magnetic anisotropy, 362

Magnetic cluster model, 410

Magnetic dipole hyperfine

interactions, 17

Magnetic force microscopy

(MFM), 429

Magnetic susceptibility, and saturation

moment, for ground

doublet, 107

averaged powder moment,

110–113

calculated paramagnetic relaxation

spectra

of Np for different fluctuation

rates, 109

comparison of energy-level, 110

free ion model, 108–109

ising-type magnetic moment, 109–111

comparison of experimental and

theoretical T plots, 112

experimental and theoretical

magnetization curves, 112

for O¼Np¼O axes collinear

crystals, 112

with/without high-temperature

approximation, 111–112

polycrystalline samples fast in

STYCAST, 107

Magnetite/maghemite, 353, 420, 421

formation of

Co2ỵ ion concentration, 496

Ni2ỵ ion concentration, 496

Zn2ỵ ion concentration, 496

hyperfine parameters, 417, 418

magnetic properties, 420

nanoparticles, 489

nonstoichiometric, 420

vs, stoichiometric, 420

stoichiometric, 420

superparamagnetic magnetite

particles, 420

three sextets, 420

Verwey transition, 420, 421



627



INDEX



Magnetization, 11, 18, 24, 25, 35, 101,

104, 111, 113, 173, 367, 435,

445, 465, 531, 556

Manganese, 59

Markovian diffusion, 26

Metal-inorganic-transport (MIT)

family, 336

Metallicity, 395, 396

Microdischarge between carbon felts

(MD/CF), 522

Microenvironment, 345

Microwave processing

bulk hematitic laterite ore

x-ray pattern of, 614

drying rates, 613

heat generation, 612

hematitic nickeliferous laterite

ore, 613

XRF chemical analysis, 613

laterite mineral processing,

613–619

TM0n0 cavity system, 614

Minerals pyrite (FeS2), 576

57

Mn beam characteristics, 60

57

Mn decay, 59

57

Mn (!57Fe) implantation M€

ossbauer

spectroscopy, 61

application to inorganic chemistry,

63–65

exotic localized Fe molecules,

64–65

unusual high Fe oxidation states, 63

application to materials science, 62

detector for 14.4 keV M€

ossbauer

g-rays, 62

g-ray detector, development

of, 65–66

in-beam M€

ossbaue spectrometer, 61,

62

Morin transition, 354, 355, 495

temperature, 356

M€

ossbauer effect, 3, 58, 60, 133, 378, 552,

561

M€

ossbauer g-ray detector, development, 65, 66

M€

ossbauer–Lamb factor, 378

M€

ossbauer parameters, isomer

shift, 339

M€

ossbauer surface imaging techniques,

465, 466

absorption, 465, 466

application, 465

coss section, M€

ossbauer

microscope, 466

magnetic resonance imaging (MRI), 465

multicapillary x-ray lens, 466

operating principle, 465

working, 465, 466



M

ossbauer transitions, in actinide

isotopes, 124

Naỵ concentrations, 597

Nafion, 471

Nanocrystalline CoSn, 558

Nanoregime, properties, 429

Nanosized Al-1 at % Fe, 442–446

fractional integrated intensity of (111)

peak, 443

hyperfine field distribution of

M€

ossbauer spectra., 442, 443

M–H curves at room temperature, 445

M€

ossbauer parameters, 444

properties, 442

quadrupole splitting, 444

room-temperature M€

ossbauer

spectra, 442, 443

self-annealing effect, 444

variation of bulk magnetic parameters,

with grain size, 446

variation of integrated P(H) with milling

time, for various field

component, 444

Nanosized Fe-Al alloys

coercivity HC, 446

hysteretic properties, ferromagnetic

material, 446

calculation, 446

Nanosized Fe–Al alloys, 441–446

ball-milled samples, 445

bcc Fe grains, 445

bulk Fe-Al systems, 442

DC magnetization measurements, 445

intermetallic Fe-Al systems, 441

mechanical alloying (MA), alloy

sysnthesis, 442

M€

ossbauer studies results, 445

nanocrystalline Fe-Al systems, 442

nanosized Al–1 at % Fe, 442–446

(See Nanosized Al-1 at% Fe)

unmilled samples, 445

Nanotechnology, 3

Neel P-type ferrimagnet, 366

Neel’s model, 438

Neel temperature, 416, 418, 439, 494

Neptunyl(ỵ1) complexes, 95

M

ossbauer and magnetic study, 98106

(NH4)[NpO2(O2CH)2], 98100

[(NpO2)2((O2C)2C6H4)(H2O)3]

H2O, 104106

[NpO2(O2CCH2OH)(H2O)], 100101

[NpO2(O2CH)(H2O)], 101104

Neptunyl monocation (NpO2ỵ)

magnetic property, 9798

Network former (NWF), 600

Network modifier (NWM), 600

Neurodegeneration, 324–325



Neutron in-beam M€

ossbauer

spectroscopy, 66

Nickel production

from lateritic/sulfidic ores, 608

Ni-ferrihydrite, 492

N-methyl-D-aspartic acid (NMDA)

receptors, 316

Nonmagnetic materials, 12

237

Np M€

ossbauer relaxation spectra,

106–107

conditions for

ferro- and paramagnetic states, 106

Kramers ion of lanthanide

elements, 107

Wickman’s relaxation model

illustration, 107

Zeeman pattern, 106

237

Np M€

ossbauer spectroscopy, 96–97

NTA (nanotechnology assorted) glassTM,

543, 544, 546, 547

Nuclear forward scattering (NFS), 249

Nuclear inelastic interaction, 30

Nuclear inelastic scattering, 4, 6

experiment, 33

Nuclear inelastic spectrum, 33

Nuclear resonance beamline ID18, 5–6

Nuclear resonant scattering (NRS), 3, 4,

13, 23, 28, 30, 225, 256, 269

delayed, angular dependence, 22

experimental geometry used in, 12

intensity in forward direction, 26

time spectra, 19, 20, 27

Nuclear transitions, M€

ossbauer

spectroscopy (MS), 552

Off-placement, O(4) atoms, 399, 400

Orange II dye, 505

Orientation-dependent time-integrated

intensity (ODIN), 26

Original coal samples, proximate

analyses, 578

ORP pH, changes, 598

Orthorhombic distortion, 202

Orthorhombic europium orthoferrite

(EuFeO3), 496

Oxalato complex, 116

Oxidative stress, 324–325, 329

Oxide glass, 542

Oxygen vacancies, 529

Parallel-plate avalanche, 61

a-PbSnF4, structural determination

historical perspectives, 216–217

M€

ossbauer spectroscopy, 220, 224

neutron powder diffraction, 225

sample orientation, 223

sp3d2 hybridization, and VSEPR

rules, 225



628



a-PbSnF4, structural determination

(Continued )

tetragonal symmetry, 225

x-ray powder diffraction, 221, 222

Perovskite structure, 52, 407

binary oxides, 393

silicate, 43

strontium ferrate (SrFeO3), 401, 402

x-ray diffraction, 523

Phase transitions, 203

PHOENIX program, 35

Phonon density, 4

Phonon DOS of Fe films, 36

PHONON program, 37

Phosphate glass, 542

Photoinduced spin-crossover

phenomena, 153

LIESST for Fe(II) complexes, 153–157

LIESST for Fe(III) complexes, 157–159

Photoinduced spin transition, 153

Plastic scintillation counters, 61

Polarization, 17

Porphyrin analogues, 179–180

Potassium ferrate(VI) sample

in situ measurement, 515

Preferential CO oxidation, in H2

catalyst preparation, 564–565

catalytic activity test, 565

Ir–Fe/SiO2 catalyst, 567–568

calcined catalyst, 569

57

Fe M€

ossbauer parameters, 570

H2 concentration, effect of, 568–569

M€

ossbauer spectra

characterization, 565

PtFe alloy nanoparticles catalyst,

565–567

PROX reaction

Ir–Fe/SiO2 catalyst, 573, 574

Prussian blue (PB)

formation of, 372

hyperfine parameters, 374

Pyridine, 177

Pyrite, 579

to ferrous sulfate, conversion, 582

Pyrrhotite (Fe1.25S), 585

Quadrupole splitting (QS), 44, 75, 228,

261, 273, 339, 395, 484, 537,

542, 578

Quinine hydrogen sulfate (QHS), 475

Radiative decay, 15, 16, 20, 292

Raman spectroscopy, 160

Rapid spin equilibrium in solid state,

168–172

g-Rays, 3, 58, 59

Recycled iron silicate glass

water-purifying ability of, 595–596



INDEX



Recycled silicate glasses

characterization of, 596

electromagnetic property of, 601–605

Fe2O3 contents, 599

water-purifying ability of, 596–600

Relative absorption area (RAA), 75

Resonant scattering length, 11

Reverse-LIESST, 156

Rh3ỵ ions iron oxide samples

synthesis, 495

RI beam irradiation, 60

Room temperature M€

ossbauer

spectrometry (RT-MS)

Akaganeite, 416, 417

Goethite, 418

magnetite/maghemite, 420

Rust layers, 421–426

a calculation, formula, 421

classification, 421

iron oxides and oxyhydroxides,

quantitative

characterization, 421

M€

ossbauer fraction fj, 421

relative phase abundances, rj, 421

steels, 421–426 (See also Steels)

ternary rust diagram, 421

Rutherford backscattering, 59

Shannon’s ionic radii, 75

Silicate glass, 542

recycling (See Recycled silicate glass)

Silicate postperovskite

spin and valence states of iron in, 52–54

Silicon

photomicrograph of, 586

SEM element mapping, 585

Single-molecule magnet (SMM), 113

a-SnF2, structural determination, 213

historical perspectives, 213–214

work of Bergerhoff, 214–216

Sodium ferrate decomposition

products, 517

Sodium ferrate, DPS model, spectra/

representation, 517

Sodium-ion battery (SIB), 544

Soil diazotrophic rhizobacterium A.

brasilense, 336

Sol–gel method

sample preparations, 523

Y3Fe5O12 (YIG), 522

Spin-crossover phenomenon, 143, 153

in assembled complexes Fe

(NCX)2(bpa)2 (X¼S, Se, BH3)

by enclathrating guest

molecules, 145–147

coordination angle of anion, 147

2D grid structure, 146

57

Fe M~

ossbauer spectra, 146



transition temperatures in 1D

structure, 147

x-ray structural analysis, 145

contribution of S¼3/2 in Fe

(OETPP), 180

data of five-coordinate Fe carrying

anionic axial ligand, 180

involving intermediate-spin state, 189

spin crossover between S¼3/2 and

S¼1/2, 189–191

spin crossover between S¼3/2 and

S¼5/2, 192–195

M€

ossbauer spectrum of [Fe

(OETPP), 181

ortho/meta-H signals, movements, 180

photoinduced, for [Fe(pyrazine)

{Pt(CN)4}](pyrazine¼

C4H4N2), 153

temperature dependence of effective

magnetic moments, 181

Spinel ferrites, 230–241

Cr-substituted Co–Zn ferrite

(CrxCo0.5-xZn0.5Fe2O4), 430

cation distributions, 431

tetrahedral A sites, 430, 431

tetrahedral B sites, 430, 431

intersublattice interactions JAB, 430

intrasublattice interactions JAA and

JBB, 430

microstructure determination,

430–433

M€

ossbauer technique, 430

spectra of Cr0.25Co0.25Zn0.5Fe2O4,

with/without external field

of 5T, 434

structural parameters

calculation, 430

variations of hyperfine fields at A and

B sites in CrxCo0.5-xZn0.5Fe2O4,

431

nanoferrites, elucidation of bulk

magnetic properties using

in-field M€

ossbauer

spectroscopy, 434–435

ball-milled Ni0.35Zn0.65Fe2O4, 435,

436

canting angle uB, calculation, 435

example, impurity-free

Cr0.25Co0.25Zn0.5Fe2O4, 434,

436

interactions among sublattice in

samples, 435

low-temperature (LT)

spectrum, 434

M€

ossbauer measurements, 435

real-time (RT) spectrum, 434, 435

nanoferrites synthesis, coprecipitation

method, 431



629



INDEX



average paritcle size (D), Scherrer

formula, 432

aÀFe2O3 impurity, 431, 432

particle size distribution, 433

room-temperature M€

ossbauer

spectrum, 433

TEM micrographs, 433

XRD spectra of Cr0.25Co0.25Zn0.5Fe2O4, 432

superparamagnetic nanosystems, effect

on magnetic properties,

236–241

antiferromagnetic (AFM), 339

canting effects, 436, 438

coercivity, calculation, 439

core-shell effect, 436, 437

dilute system vs. real system

interparticle interactions,

236–241

exchange bias field, calculation, 439

ferromagnetic (FM), 439

HC, coercive field plot, 440, 441

HE, exchange bias field plot, 440, 441

low-temperature M€

ossbauer

spectra, 437

M-H loops, 438, 439

parameters calculation, formula, 438

parameters, M€

ossbauer Fitting Using

Core-Shell Model, 437

remanence, function of coling

field, 441

room-temperature M€

ossbauer

spectra, 43

single-phased nanosized

particles, 436

ZFC curve, blocking temperature TB,

436, 438

Spin equilibrium, and valence fluctuation

antiferromagnetic interaction between

HS state, 175

(n-C4H9)4N[FeIIFeIII(mto)3], 173

concerted phenomenon coupled

with, 173

effective magnetic moment, 173,

175

57

Fe M€

ossbauer spectra, 173, 174

ferrimagnetic phase transition, 175

inverse magnetic susceptibility, 173

schematic feature of rapid spin

equilibrium in FeIIIO3S3

site, 175

Spin-pairing transition, 51

Spin-state isomers, 177

SRPAC. see Synchrotron radiation-based

perturbed angular correlations

(SRPAC)

Stannous fluoride SnF2, 202, 203

lead-containing phases, 203, 204



Steels

Colombian carbon steels (CS),

421–424

composition, 421

77K M€

ossbauer spectra

total immersion tests, 423

M€

ossbauer spectra, room

temperature

Dry-Wet cycles, 425

total immersion tests, 422

Colombian weathering steels

(WS), 421–423

composition, 421

77K M€

ossbauer spectra

hit rusts, Dry-Wet cycles, 425

scraped rust. Wey-Dry

cycles, 425

total immersion tests, 423

M€

ossbauer spectra, room

temperature

dry-wet cycles, 425

total immersion tests, 422

degradation process, chloride ions, 424

dry-wet cycles, 424–426

Japanese weathering steels (WS),

422–423

composition, 422

Lorentzian profiles, 422, 423, 425

mechanisms of deterioration, kimura

et al., 424

metal-doped Fe(OH)2, 424

outdoor tests, 426

total immersion tests, 421–424

adherent rust, 422

Strontium ferrate (SrFeO3), 401–407

properties, 401

Sr0.95Ca0.05Co0.5Fe0.5O3-d

vs. Sr0.5Ca0.5Co0.5Fe0.5O3-d, 401, 402

Sr0.5Ca0.5Co0.5Fe0.5O3-d , study,

405–407

brownmillerite-structured

antiferromagnetic

CaFeO2.5, 405

CO2 absorption, 407

EMS spectra, 406

microheterogeneity, 406

M€

ossbauer Parameters of the two

major sextets, 406

TMS spectra, 406

Sr0.95Ca0.05Co0.5Fe0.5O3-d, study,

401–405

assumptions on the basis of TMS and

EMS experiments, 404

carbon dioxide absorption

experiments, M€

ossbauer

spectra, 405

CO2 absorption spectra, 405

3D alternating models, 404



difference in TMS and EMS

spectra, 403, 405

differing oxygen ligand environments

for Fe and Co in the lattice, 402

EMS spectra, 402–404

long-range magnetic order, 404

nearest neighbor (NN) cation

distribution, normal (TMS)

and nucleogenic

57

Fe (EMS), 403

orthorhombic microdomains, 404

perovskite lattice, 402, 404

phase-separated models, 404

quadrupole splittings

difference, 403, 404

relative number of NN Fe and

Co, 404

synthesis, 402

TMS spectra, 402–404

x-ray diffractometery studies, 402

SrFeO2.5 brownmillerite structure, 404

Succinato (suc) complex, 116

Suface M€

ossbauer studies

biomedical application, 466, 467

characterization, 467

discovery, 466

Fe3O4, an ancient material, 466–468

ICEMS invetigation, 467

ICEMS spectra

ILEEMS investigation, 467

ILEEMS surface sensitivity

vs. ICEMS surface sensitivity, 467,

468

magnmetic film application, 467

Superconducting sheets, 401

Superconductor isomer shifts, 400, 401

Super iron battery, 506

Surface analysis, 455

Surface analytical technique,

requirements, 455

Synchrotron M€

ossbauer spectroscopy

(SMS), 44

extreme P–T conditions, 44

simulated time spectra, 46

spectra evaluation, 44–46

Synchrotron radiation-based M€

ossbauer

techniques, 4, 10

brief theoretical background, 10–12

coherent elastic nuclear resonant

scattering, 10

coherent quasielastic nuclear resonant

scattering, 25–30

incoherent inelastic nuclear resonant

scattering, 30–38

nuclear resonant scattering in grazing

incidence geometry, 20–24

time spectra of nuclear resonant

scattering, 12–20



630



Synchrotron radiation-based perturbed

angular correlations

(SRPAC), 250

applications in bioinorganic

chemistry, 258

57

Fe NFS of oxidized Pf D14C

Fd, 261–262

57

Fe NFS of oxidized Rc FdVI,

260–261

57

Fe NFS on oxidized Fe

protein, 262

57

Fe NFS on the resting state

MoFe protein, 263–264

[4Fe-4S] ferredoxin from Pyrococcus

furiosus, 259

[2Fe-2S] ferredoxin VI from

Rhodobacter capsulatus,

258–259

nitrogenase, 259–260

nuclear forward scattering, 258

detectors and detection methods,

256–257

electric hyperfine interactions, 252,

254

experimental aspects of NFS and

SRPAC, 255

experimental setup, general

aspects, 255

experimental setup in NFS and SRPAC,

differences, 257–258

magnetic hyperfine interactions,

250–252, 254–255

model complexes examined by, 264

57

Fe SRPAC of Fe2(S2C3H6)(CO)6,

264–265

57

Fe SRPAC of Ni ferrite, 265–267

61

Ni SRPAC of Ni ferrite, 267–268

monochromators, 255–256

sample requirements, 258

as scattering variant of TDPAC, 250

technical background, 250

theoretical aspects, 252–254

theoretical aspects of NFS, 250

Tanabe–Sugano diagram, 152

TDPACs. see Time differential perturbed

angular correlations (TDPACs)

Tetramethylammonium hydroxide

(TMAH), 475

TG Labys-DSC system, 616

Thermal hysteresis, 152

Thermal stability, 60

Thin film multilayer systems (MLS),

446–453

DC magnetization studies, 448–450

experimental and fitted parameters

of as-deposited and at hightemperature M–H Loops, 449



INDEX



experimental hysteresis loops, 450

hysteresis loops of as-deposited

57

Fe/Al MLS at different

temperatures, 450

nonsquare loop, coercivity, 450

RT hysteresis loop, formula, 449

spin orientation, Fe film, 450

deposition process, 447

57

Fe/AI MLS, 446–453

M€

ossbauer (CEMS) study, 451, 452

annelaing conditions, 452

annelaing effects, 452

as-deposited MLS, 451, 452

close-lying Lorentzians, 451

complementary characterization

techniques, 452

crosssectional TEM micrograph, 452

deposition conditions, 452

heat formation effects, 452

high-temperature study, 452

hyperfine fields, 451

magnetization studies, 451

room-temperature CEMS spectra

of 57Fe/Al MLS, 451

ultrathin Fe/Al MLS, studies, 451

properties, 446, 447

structural characterization, 447, 448

electron density profile (EDP), 447

electron micrographs and SAD

patterns of as-deposited and

annealed Fe/Al MLS, 447, 449

ion beam sputtering (IBS)

technique, 447

TEM micrograph evidences, 448

XRR measurement of 57Fe/Al

MLS, 447, 448

XTEM investigations, direct

observation, 447

Time differential perturbed angular

correlations (TDPACs), 249,

250, 253, 269

Tin-containing alloys, barycenter

position, 559

Tin electronic structure, and M€

ossbauer

spectroscopy, 208

bonding type, and coordination, 208

chemical isomer shift d, 212

geometry agreement with VSEPR

model, 209211

quadrupole splitting, 212213

Sn2ỵ ion, 208

spin system of 119Sn nuclide,

211–212

tin(II) covalently bonded, 208

Tin(II) fluoride SnF2, 202

covalent bonding, and polymeric

structure, 205–207

crystal structures, 204



experimental aspects, for pure

phases, 203

forming mixed fluorides with alkaline

earth metal fluorides, 202

lead-containing phases transitions, 203

M€

ossbauer spectroscopy, 204

PbClF-type structure, 207–208

a-PbSnF4 structure, 207

phase characterization and elemental

analysis, 204

projection of structures, 206

pure phases, 203

react with BaCl2Á2H2O in aqueous

solutions, precipitate function

of, 203

sample preparation, 203

spectrometer equipped with helium

closed-cycle refrigerator, 205

typically ionic structure, 204–205

Transition metal ion, 152

Transmission electron microscopy

(TEM), 393, 429

vs. emission M€

ossbauer spectroscopy

(EMS), 393, 394

Transmission 57Fe M€

ossbauer

studies, 396

L?-Tryptophan

oxidation by heme-based

enzymes, 316–318

chemical reaction catalyzed by

MauG, 318–319

high-valent BIS-Fe(IV) intermediate

in MauG, 319–320

oxidation/oxygenation of free, and

protein-bound Trp, 317

utilization of two c-type hemes by

MauG to perform, 317

tryptophan 2,3-dioxygenase (TDO)

ligand-bound structure, 317

Tryptophan 2,3-dioxygenase (TDO), 316

high-valent Fe intermediate, 320–321

ligand-bound structure, 317

Two-XRD-line ferrihydrite

XRD pattern of, 485

Ube municipal garbage combustion plant,

chemical analysis, 598

UHV system, 6–9

APD detector, 7, 8

Be windows, 7

distribution chamber, 7

Kirkpatrick–Baez focusing mirrors, 9

load-lock chamber, 8

low-energy electron diffraction, 6

manipulator, 6

NRS chamber, 8

nuclear inelastic scattering, 6

portable chambers, 8–9



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

7 Conclusion: The Possible Role of Iron in Neurodegeneration

Tải bản đầy đủ ngay(0 tr)

×