Tải bản đầy đủ - 0 (trang)
4 Antiprotozoal Herbal Medicine from African Medicinal Plants: Clinical Safety and Efficacy Research

4 Antiprotozoal Herbal Medicine from African Medicinal Plants: Clinical Safety and Efficacy Research

Tải bản đầy đủ - 0trang

Table 17.4 Some Medicinal Plants with Multiactivity on Protozoan Parasites

Plant and Family



Traditional

Use



B. sumatrana

(Simaroubaceae)



Malaria,

D.R. Congo

amoebic

dysentery,

cancer,

repellent

[140]

Parasitic

Burkina Faso

infections

[24]

Malaria [34] Tanzania



Lantana ukambensis

(Verbenaceae)

E. kummeriae

(Annonaceae)



Countries of

the Studies



Potentially Active

Compounds



Antiplasmodial

Activity



Antitrypanosomial

Activity



Antileishmanial

Activity



None identified



IC50 , 0.25 μg/mL

(K1) [140]



IC50 , 0.25 μg/mL (T. b.

brucei) [140]

IC50 of 1.52 μg/mL (T.

cruzi) [140]



IC50 of 2.41 μg/

mL (L.

infantum)

[140]



None identified



Not done



IC50 of 1.5 μg/mL (T. b.

brucei) [24]



(None identified) L

(MeOH)



IC50 of 0.12 μg/mL

(K1) [34]



IC50 of 9.25 μg/mL (T. b.

rhodesiense) [34]



ST (DCM)



IC50 of 0.31 μg/mL

(K1) [34]



IC50 of 2.50 μg/mL (T. b.

rhodesiense) [34]



ST (MeOH)



IC50 of 0.31 μg/mL

(K1) [34]



IC50 of 2.50 μg/mL (T. b.

rhodesiense) [34]



RT (PE)



IC50 of 2.51 μg/mL

(K1) [34]



IC50 of 14.10 μg/mL (T.

b. rhodesiense) [34]



RT (DCM)



IC50 of 0.36 μg/mL

(K1) [34]



IC50 of 2.80 μg/mL (T. b.

rhodesiense) [34]



RT (DCM)



IC50 of 0.35 μg/mL

(K1) [34]



IC50 of 2.30 μg/mL (T. b.

rhodesiense) [34]



IC50 of 6.9 μg/

mL (L.

infantum) [24]

IC50 of 2.5 μg/

mL (L.

donovani) [34]

IC50 of 18.00 μg/

mL (L.

donovani) [34]

IC50 of 19.41 μg/

mL (L.

donovani) [34]

IC50 of 14.55 μg/

mL (L.

donovani) [34]

IC50 of 9.79 μg/

mL (L.

donovani) [34]

IC50 of 12.38 μg/

mL (L.

donovani) [34]

(Continued)



Table 17.4 (Continued)

Plant and Family



Traditional

Use



Countries of

the Studies



Potentially Active

Compounds



Antiplasmodial

Activity



Antitrypanosomial

Activity



A. chloropterus

(Malpighiaceae)



Fever



Tanzania



L (EthOH)



IC50 of 5.50 μg/mL

(K1) [34]



IC50 of 29.40 μg/mL (T.

b. rhodesiense) [34]



Pseudospondias

microcarpa

(Anacardiaceae)



Heart

Tanzania

palpitation

[34]



ST (EtOH)



IC50 of 4.33 μg/mL

(K1) [34]



RT (EthOH)



IC50 of 1.13 μg/mL

(K1) [34]



Rheumatism Tanzania

and

filariasis

[34]



ST (EtOH)



IC50 of 1.42 μg/mL

(K1) [34]



RT (EthOH)



IC50 of 1.06 μg/mL

(K1) [34]



N. mitis (Papilonaceae)



Fish poison

[34]



Tanzania



T (EthOH)



IC50 of 0.1.58 μg/mL

(K1) [34]



M. senegalensis

(Celastraceae)



Malaria and

bacterial

infections

[34]



Tanzania



RT (EthOH)



IC50 of 2.05 μg/mL

(K1) [34]



D. natalensis

(Euphorbiaceae)



Antileishmanial

Activity



IC50 of 11.66 μg/

mL (L.

donovani) [34]

IC50 of 5.40 μg/mL (T. b. IC50 of 29.90 μg/

rhodesiense) [34]

mL (L.

donovani) [34]

IC50 of 11.60 μg/mL (T. IC50 .30 μg/mL

b. rhodesiense) [34]

(L. donovani)

[34]

IC50 of 10.70 μg/mL (T. IC50 of 19.00 μg/

b. rhodesiense) [34]

mL (L.

donovani) [34]

IC50 of 12.10 μg/mL (T. IC50 of 29.70 μg/

b. rhodesiense) [34]

mL (L.

donovani) [34]

IC50 of 12.4 μg/mL (T. b. IC50 of 8.8 μg/

rhodesiense) [34]

mL (L.

donovani) [34]

IC50 of 12.2 μg/mL (T. b. IC50 of 16.5 μg/

rhodesiense) [34]

mL (L.

donovani) [34]



A. annua (Asteraceae)



T. trichocarpa

(Rutaceae)



Malaria and

other

protozoal

diseases

[34]

Malaria

[140]



Tanzania



L (n-C6H6)



IC50 of 0.04 μg/mL

(K1) [34]



IC50 of 15.3 μg/mL (T. b. IC50 of 6.4 μg/

rhodesiense) [34]

mL (L.

donovani) [34]



Tanzania



Melicopicine



IC50 of 12.45 μg/mL

(K1) [34]



Normelicopicine



IC50 of 3.35 μg/mL

(K1) [34]



Arborinine



IC50 of 1.61 μg/mL

(K1) [34]



Skimmianine



IC50 of 5.60 μg/mL

(K1) [34]



α-Amyrin



IC50 of 0.96 μg/mL

(K1) [34]



IC50 of 15.56 μg/mL (T.

b. rhodesiense) [140]

IC50 .30 μg/mL (T.

cruzi) [140]

IC50 of 5.24 μg/mL (T. b.

rhodesiense) [34]

IC50 of 30 μg/mL (T.

cruzi) [140]

IC50 of 23.52 μg/mL (T.

b. rhodesiense) [34]

IC50 . 30 μg/mL (T.

cruzi) [140]

IC50 of 15.78 μg/mL (T.

b. rhodesiense) [34]

IC50 of

14.50 μg/mL

(T. cruzi) [141]

IC50 of 11.21 μg/mL (T.

b. rhodesiense) [34]

IC50 . 30 μg/mL (T.

cruzi) [140]



IC50 . 30 μg/mL

(L. donovani)

[140]

IC50 of 1.08 μg/

mL (L.

donovani) [34]

IC50 of 5.20 μg/

mL (L.

donovani) [34]

IC50 of 9.40 μg/

mL (L.

donovani) [34]



IC50 of 7.90 μg/

mL (L.

donovani) [34]

(Continued)



Table 17.4 (Continued)

Plant and Family



Traditional

Use



Countries of

the Studies



Potentially Active

Compounds



A. hispidum

(Asteraceae)



Malaria

[141]



Benin



IC50 of 2.90 μM (K1) IC50 of 2.45 μM (T. b.

15-Scetoxy-8β-[(2methylbutyryloxy)]brusei) [142]

[142]

14-oxo-4,5-cisacanthospermolide

9α-acetoxy-15-hydroxy- IC50 of 2.33 μM (K1) IC50 of 6.36 μM (T. b.

8β-(2brucei) [142]

[142]

methylbutyryloxy)-14oxo-4,5-transacanthospermolide

Citral

IC50 of 2.33 μM (K1) IC50 of 6.36 μM (T. b.

brucei) [142]

[142]



C. citratus (Poaceae)



Malaria

[12,121]

and

mosquito

repellent

[143]



Antiplasmodial

Activity



Antitrypanosomial

Activity



L, leaves; ST, stem bark; RT, root bark; S, seeds; T, tuber; PE, petroleum ether; DCM, dichloromethane; n-C6H6, n-hexane; MeOH, methanol.



Antileishmanial

Activity

IC50 of 0.94 μM

(L. mexicana)

[142]

IC50 of 2.54 μM

(L. mexicana)

[142]



IC50 of 2.54 μM

(L. mexicana)

[142]

IC50 of 2.54 μM

(L. mexicana)

[142]

IC50 of 2.54 μM

(L. mexicana)

[142]



Antimalarial and Other Antiprotozoal Products from African Medicinal Plants



699



regulatory authorities. Other antimalarial phytomedicines have already been developed and approved in many African countries. These include Cochlospermum planchonii root decoction (Burkina Faso), C. sanguinolenta root infusion (Ghana),

Anemeds A. annua leaf infusion (Democratic Republic of the Congo) [147].



17.5



The Way Forward



It is evident that African medicinal plants represent a promising source of new

drugs against the targeted vector-borne protozoan diseases (Figure 17.4). These

plant materials could be used as starting points for the development of either pharmaceutical compound drugs or herbal medicines. Among the plant species identified, B. sumatrana (Simaroubaceae), E. kummeriae (Annonaceae), E. kummeriae

(Annonaceae), N. mitis (Papilonaceae), and Artemisia spp. (Asteraceae) were very

attractive, because of both high activity on malaria (IC50 , 1 μg/mL) and activity

against other protozoan diseases. Further investigations of products from these species are likely to yield new antiprotozoal drug candidates and/or potential phytomedicines. However, the outcome of such enterprise also depends on a number of

factors, including (1) the relative abundance and widespread nature of the medicinal plant; (2) the yield of the active ingredients and the possibility of mass production of the active ingredient by synthesis; (3) the stability of the concentration of

bioactive ingredients with genetic, climatic, edaphic, and ecological changes; and



250



Plants



Compounds



Hits



203

200



150

93

100

37



50



16

5



4



4



3



3



12



8



6



0

Malaria



Leishmaniasis



Trypanosomiasis

(HAT & Chagas

disease)



Multiactive



Figure 17.4 Number of significantly active antiprotozoal plants, compounds, and potential

hits identified from African medicinal plants. (Note: The selective criteria used are presented

in Table 17.1.)



700



Medicinal Plant Research in Africa



(4) adequate analytical and production methods. Assurance of safety, quality, efficacy, and affordability of medicinal plants and herbal products is thus a critical

issue [150]. As defined by the American Herbal Products Association (AHPA),

standardization (applying to herbal preparations) refers to a body of information

and control tools necessary to ensure product material of reasonable consistency

[150,151]. Protocols for standardization of herbal extracts include a proper identification of the plant species; physical parameters (organoleptic, viscosity, moisture,

pH, hardness, etc.); chromatographic and spectroscopic evaluation of chemotypes

(using UV, FTIR, HPTLC, HPLC, GCMS, LCMS, NMR); microbiological parameters (Escherichia coli and molds, aflatoxin); pesticide residue (DDT, BHC, toxaphene, aldrin); and heavy metal analysis (mercury, lead, cadmium, arsenic, copper,

iron, zinc). In addition to containing no or only sublethal toxic elements, a good

source of herbal medicine should be a widespread medicinal plant growing in different edaphic and climatic environments. The phytochemical composition, especially the content of active ingredients, should remain in a very narrow range

despite the diversity of habitats.

With regard to medicinal plants as a source of lead compounds, priority will be

given to those with the highest extraction yield, and shorter life spans, as with

herbs and shrubs which can easily be cultivated. Lead compounds that can be synthesized cost effectively are preferable.



17.6



Conclusion



From the above review, it is clear that a wide variety of plant species and families

employed in the treatment of protozoan diseases contain bioactive ingredients. A

total of 226 plant species belonging to 75 different families identified from African

folk medicine have been shown to possess significant antiprotozoal activity. Over

200 pure compounds with significant activity have been isolated from some of

these plants.

Among the active compounds, 50 potential hits were described, of which 37 are

active against malaria, 4 against leishmaniasis, 3 against both African and American

trypanosomiasis, and the remaining 6 showing significant activity against more than

one disease. However, only a few toxicity, preclinical, and clinical studies have

been conducted on these plant products. The reverse pharmacology approach looks

quite attractive, fast, and cost-effective, showing promise of developing cheap and

affordable products from the abundantly available biodiversity of Africa.



References

[1] Fisher PR, Bialek R. Prevention of malaria in children. Clin Infect Dis 2002;34:493À8.

[2] Dalrymple DG. Artemisia annua, artemisinin, ACTs & malaria control in Africa: tradition, science and public policy. Washington, DC: Politics & Prose Bookstore; 2012.



Antimalarial and Other Antiprotozoal Products from African Medicinal Plants



701



[3] WHO. World health statistics 2012. Geneva: WHO Press; 2012.

[4] Nwaka S. Drug discovery and beyond: the role of public-private partnerships in improving access to new malaria medicines. Trans R Soc Trop Med Hyg 2005;99:20À9.

[5] TDR Disease Reference Group on Chagas Disease, Human African Trypanosomiasis and

Leishmaniasis. Research priorities for Chagas disease, human African trypanosomiasis

and leishmaniasis. WHO Technical Report Series, No. 975. Geneva: WHO Press; 2012.

[6] Vasisht K, Kumar V. Trade and production of herbal medicines and natural health products. Trieste, Italy: United Nations Industrial Development Organization and the

International Centre for Science and High Technology; 2002:3

[7] Zofou D, Abimbola S, Norice CT, Samje S, Zoumana IT, Oyediran OA, et al. The

needs of biomedical science training in Africa: perspectives from the experience of

young scientists. Afr J Health Prof Educ 2011;3(2):9À12.

[8] Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Aliraine FN, et al. Quinine,

an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J

2011;10:144.

[9] Titanji VPK, Zofou D, Ngemenya MN. The anti-malarial potential of medicinal plants

used for the treatment of malaria in Cameroonian folk medicine. Afr J Tradit

Complement Altern Med 2008;5(3):302À21.

[10] WHO. General guidelines for methodologies on research and evaluation of traditional

medicine. Geneva: WHO Press; 2000.

[11] Vasisht K, Kumar V. Compendium of medicinal and aromatic plants—vol. 1: Africa.

Trieste: ICS-UNIDO; 2004.

[12] Adjanohoun JE, Aboubakar N, Dramane K, Ebot ME, Ekpere JA, Enoworock EG,

et al. Traditional medicine and pharmacopoeia: contribution to ethno botanical and

floristic studies in Cameroon. Lagos, Nigeria: Organization of African Unity;

Scientific, Technical and Research Commission; 1996.

[13] Betti JL. Medicinal plants sold in Yaounde´ markets, Cameroon. Afr Stud Monogr

2002;23(2):47À64.

[14] Betti JL. An ethnobotanical study of medicinal plants among the Baka pygmies in the

Dja biopher reserves, Cameroon. Afr Stud Monogr 2004;25(1):1À27.

[15] Kuete V, Efferth T. Cameroonian medicinal plants: pharmacology and derived natural

products. Front Pharmacol 2010;1:123.

[16] Sinou V. Nouvelles appoches dans la morphologie du Plasmodium et du Trypanosome;

insidance en chimiotherapie. Ile-de-France, Paris: These de Doctorat en Biologie,

Museum National d’Histoire naturelle; 1998.

[17] Moran M, Guzman J, Henderson K, Liyanage R, Wu L, Chin E, et al. Neglected disease research and development: a five year review. Sydney & London: Global Funding

of Innovation for Neglected Diseases (G-FINDER); Policy Cures; 2012.

[18] Gillies MT, Coetzee M. A supplement to the Anopheninae of Africa South of the

Sahara (Afrotropical region). Publ S Afr Inst Med Resour 1987;55:143À60.

[19] WHO. World malaria report 2012. Geneva: WHO Press; 2012.

[20] WHO. World malaria report 2010. Geneva: WHO Press; 2010.

[21] Ioset J-R, Brun R, Wenzler T, Kaiser M, Yardley V. A training manual for screening

in neglected diseases. Tokyo: DNDi and Pan-Asian Screening Network; 2009.

[22] Murray H, Berman J, Davies C, Saravia N. Advances in leishmaniasis. Lancet

2005;366:1561À77.

[23] Kouassi MA, Ioset J-R, Ioset KN, Diallo D, Maueăl J, Hostettmann K. Anti-leishmanial

activities associated with plants used in the Malian traditional medicine.

J Ethnopharmacol 2007;110:99À104.



702



Medicinal Plant Research in Africa



[24] Sawadogo WR, Le Douaron G, Maciuk A, Bories C, Loiseau PM, Figade`re BIP, et al.

In vitro anti-leishmanial and antitrypanosomal activities of five medicinal plants from

Burkina Faso. Parasitol Res 2012;110:1779À83.

[25] Rassi AJR, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375:1388À402.

[26] Handa SS, Khanuja SPS, Longo G, Rakesh DD. Extraction technologies for medicinal

and aromatic plants. Trieste: ICS-UNIDO; 2008.

[27] Pink R, Hudson A, Mourie`s M-A, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 2005;4:727À39.

[28] Rasoanaivo P, Oketch-Rabah H. Preclinical considerations on anti-malarial phytomedicines. Part II. Efficacy evaluation. Antananarivo: Inst. Malgache de Recherches

Applique´es; 1998.

[29] Willcox M, Bodeker G, Rasanavo P. Traditional medicinal plants and malaria. Paris:

CRC Press; 2004.

[30] Mahmoudi N, De Julian-Ortiz JV, Ciceron L, Galvez J, Mazier D, Danis M, et al.

Identification of new anti-malarial drugs by linear discriminant analysis and topological virtual screening. J Antimicrob Chemother 2006;57:489À97.

[31] Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat

Rev Drug Discov 2006;5:941À55.

[32] Dharani N, Rukunga G, Yenesew A, Mbora A, Mwaura L, Dawson I, et al. Common antimalarial trees and shrubs of East Africa: a description of species and a guide to cultivation

and conservation through use. Nairobi, Kenya: The World Agroforestry Centre; 2010.

[33] Willcox ML, Gilbert B. [Available online from: ,www.eolss.net.] Traditional medicinal plants for the treatment and prevention of human parasitic diseases. UNESCO

Encyclopaedia of Life Support Systems; 2005

[34] Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A. Anti-plasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected

Tanzanian medicinal plants. Tanzan J Health Res 2009;11(4):226À34.

[35] Nkunya HHH, Weenen H, Bray DH, Mgani QA, Mwasumbi LB. Anti-malarial activity

of Tanzanian plants and their active constituents: the genus Uvaria. Planta Med

1991;57:341À3.

[36] Akam T, Yong J, Fanso-Free S. Antiplasmodial agents from Xylopia parviflora seeds.

Abstract/Acta Tropica 2005;96S:S1À506.

[37] Boyom FF, Ngouana V, Zollo PH, Menut C, Bessiere JM, Gut J, et al. Composition

and anti-plasmodial activities of essential oils from some Cameroonian medicinal

plants. Phytochemistry 2003;64(7):1269À75.

[38] Kapadia GJ, Angerhofer CK, Ansa-Asamoah R. Akuammine: an anti-malarial indolemonoterpene alkaloid of Picralima nitida seeds. Planta Med 1993;59(6):565À6.

[39] Franc¸ois G, Ake AL, Holenz J, Bringmann G. Constituents of Picralima nitida display

pronounced inhibitory activity against asexual erythrocytic form of Plasmodium falciparum in vitro. J Ethnopharmacol 1996;54(2À3):113À7.

[40] Zirihi GN, Mambu L, Gue´de´-Guina F, Bodo B, Grellier P. In vitro antiplasmodial

activity and cytotoxicity of 33 West African plants used for the treatment of malaria. J

Ethnopharmacol 2005;98:281À5.

[41] Fotie J, Bothle SD, Leimanis ML, Georges E, Rukunga G, Nkenfack AE. Lupeol longchain fatty acid ester with anti-malarial activity from Holarrhena floribunda. J Nat

Prod 2005;69(1):62À7.

[42] Oketch-Rabah HA, Dossaji SF, Christensen SB, Frydenvang K, Lemmich E, Cornett

C, et al. Anti-protozoal compounds from Asparagus africanus. J Nat Prod

1997;60:1017À22.



Antimalarial and Other Antiprotozoal Products from African Medicinal Plants



703



[43] Wube AA, Bucar F, Asres K, Gibbons S, Rattray L, Croft SL. Anti-malarial compounds from Kniphofia foliosa roots. Phytother Res 2005;19(6):472À6.

[44] Chanphen R, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y. Anti-malarial principles from Artemisia indica. J Nat Prod 1998;61:1146À7.

[45] Karioti A, Karioti A, Skaltsa H, Zhang X, Tonge PJ, Perozzo R, et al. Inhibiting enoylACP reductase (FabI) across pathogenic microorganisms by linear sesquiterpene lactones from Anthemis auriculata. Phytomedicine 2008;15:1125À9.

[46] Kayser O, Kiderlen A, Croft SL. Natural products as potential antiparasitic drugs. In:

Studies in natural product chemistry, vol. 26. Elsevier, UK 2002:779À848

[47] Oketch-Rabah HA, Brøgger Christensen S, Frydenvang K, Dossaji SF, Theander TG,

Cornett C, et al. Anti-protozoal properties of 16,17-dihydrobrachycalyxolide from

Vernonia brachycalyx. Planta Med 1998;64(6):559À62.

[48] Oketch-Rabah HA, Lemmich E, Dossaji SF, Theander TG, Olsen CE, Cornett C, et al.

Two new antiprotozoal 5-methylcoumarins from Vernonia brachycalyx. J Nat Prod

1997;60(5):458À61.

[49] Goffin E, Ziemons E, De Mol P, Do Ceu De Madureina M, Martins AP, Da Cunha

AP, et al. In vitro antiplasmodial activity of Tithonia diversifolia and identification of

its main active constituent: tagitinin C. Planta Med 2002;68(6):543À5.

[50] Likhitwitayawuid K, Phadungcharoen T, Krungkrai J. Antimalarial xanthones from

Garcinia cowa. Planta Med 1998;64(1):70À2.

[51] Schwikkard S, van Heerden RF. Anti-malarial activity of plant metabolites. Nat Prod

Rep 2002;19(6):675À92.

[52] Jachak SM, Saklani A. Kigelia africana (Lam.) Benth.—an overview. Nat Prod Rad

2009;8(2):190À7.

[53] Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In

vitro antiplasmodial activity of medicinal plants native and naturalized in South Africa.

J Ethnopharmacol 2004;92:177À91.

[54] Zofou D, Kengne ABO, Tene M, Ngemenya MN, Tane P, Titanji VPK. In vitro antiplasmodial activity and cytotoxicity of crude extracts and compounds from the stem bark of

Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol Res 2011;108(6):1383À90.

[55] Zofou D, Tene M, Tane P, Titanji VPK. Anti-malarial drug interactions of compounds

isolated from Kigelia africana (Bignoniaceae) and their synergism with artemether,

against the multidrug-resistant W2mef Plasmodium falciparum strain. Parasitol Res

2011. Available from: http://dx.doi.org/10.1007/s00436-011-2519-9.

[56] Makinde JM, Amusan OOG, Adesogan EK. The anti-malarial activity of Spathodea

campanulata stem bark extract on Plasmodium berghei berghei in mice. Phytother Res

1988;4(2):53À6.

[57] Amusan OOG, Adesogan EK, Makinde JM. Anti-malarial active principles of

Spathodea campanulata stem bark. Phytother Res 1990;10(8):692À3.

[58] Makinde JM, Amusan OO, Adesogan EK. The antimalarial activity of Spathodea campanulata stem bark extract on Plasmodium berghei berghei in mice. Planta Med

1998;54(2):122À5.

[59] Mambu L, Grellier P, Florent L, Joyeau R, Ramanitrahasimbola D, Rasoanaivo P, et

al. Clerodane and labdane diterpenoids from Nuxia sphaerocephala. Phytochemistry

2006;67(5):444À51.

[60] Kalauni SK, Suresh Awale S, Yasuhiro Tezuka Y, Banskota AH, Thein Linn ZT, Asih

PBS, et al. Anti-malarial activity of cassane- and norcassane-type diterpenes from

Caesalpinia crista and their structure-activity relationship. Biol Pharm Bull 2006;29(5):

1050À2.



704



Medicinal Plant Research in Africa



[61] Figueiredo JN, Raăz B, Sequin U. Novel quinone methides from Salacia kraussii with

in vitro antimalarial activity. J Nat Prod 1998;61(6):718À23.

[62] Lenta NB, Ngouela S, Boyom FF, Tantangmo F, Tchouya FGR, Tsamo E, et al. Antiplasmodial activity of some constituents of the root bark of Harungana madagascariensis Lam. (Hypericaceae). Chem Pharmacol Bull 2007;55(3):464À7.

[63] Azebaze AGB, Meyer M, Valentin A, Nguemfo EL, Fomum ZT, Nkengfack AE.

Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C.. Chem Pharm Bull 2006;54(1):111À3.

[64] Lihitkwitayawuid K, Angerhofer CK, Chai H, Pezzuto JM, Cordell GA, Ruangrungsi

N. Cytotoxic and anti-malarial alkaloids from the bulbs of Crinum amabile. J Nat Prod

1993;56(8):1331À8.

[65] Campbell WE, Nair JJ, Gammon DW, Codina C, Bastida J, Viladomat F, et al.

Bioactive alkaloids from Brunsvigia radulosa. Phytochemistry 2002;53(5):587À91.

[66] Okasaka M, Takaishi Y, Kashiwada Y, Kodzhimatov OK, Ashurmetov O, Lin AJ, et

al. Terpenoids from Juniperus polycarpus var. seravschanica. Phytochemistry

2006;67:2635À40.

[67] Cimanga K, De Bruyne T, Pieters L, Vlietinck AJ, Turger CA. In vitro and in vivo

antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. J Nat Prod 1997;60(7):688À91.

[68] Banzouzi JT, Soh PN, Mbatchi B, Cave A, Ramos S, Retailleau P, et al. Cogniauxia

podolaena: bioassay-guided fractionation of defoliated stems, isolation of active compounds, antiplasmodial activity and cytotoxicity. Planta Med 2008;74:1453À6.

[69] Ramalhete C, Lopes D, Mulhovo S, Rosa´rio VE, Ferreira MJU. Anti-malarial activity

of some plants traditionally used in Mozambique. In: Workshop plantas medicinais e

fitoterapˆeuticas nos tro´picos. 2008. Available from: www2.iict.pt/archive/doc/

C_Ramalhete_wrkshp_plts_medic.pdf.

[70] Silva JRA, de S Ramos A, Machado M, de Moura DF, Neto Z, Canto-Cavalheiro MM,

et al. A review of anti-malarial plants used in traditional medicine in communities in

Portuguese-speaking countries: Brazil, Mozambique, Cape Verde, Guinea-Bissau, Sa˜o

Tome´ and Prı´ncipe and Angola. Mem Inst Oswaldo Cruz 2011;106(Suppl. 1):142À58.

[71] Ramalhete C, Lopes D, Mulhovo S, Molna´r J, Rosa´rio VE, Ferreira MJ. New antimalarials with a triterpenic scaffold from Momordica balsamina. Bioorg Med Chem

2010;18(14):5254À60.

[72] Efange SMN, Bru R, Wittlin S, Connolly JD, Hoye TR, McAkam T, et al.

Okundoperoxide, a bicyclic cyclofarnesylsesquiterpene endoperoxide from Scleria

striatinux with antiplasmodial activity. J Nat Prod 2009;72(2):280À3.

[73] Weenen H, Nkunya MHH, Bray DH, Mwasumbi LB, Kinabo LS, Kilimali VAEB.

Anti-malarial activity of Tanzanian medicinal plants. Planta Med 1990;56:368À70.

[74] Weenen H, Nkunya HHM, Bray DH, Mwasumbi LB, Kinabo LS, Kilimali VAEB, et

al. Anti-malarial compounds containing an alpha,beta-unsaturated carbonyl moiety

from Tanzanian medicinal plants. Planta Med 1990;56(4):371À3.

[75] Thebtaranonth C, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y. Anti-malarial

sesquiterpenes from tubers of Cyperus rotundus: structure of 10,12-peroxycalamenene,

a sesquiterpene endoperoxide. Phytochemistry 1995;40(1):125À8.

[76] Francois G, Timperman G, Eling W, Ake´ Assi L, Holenz J, Bringmann G.

Naphthylisoquinoline alkaloids against malaria: evaluation of the curative potentials of

dioncophylline C and dioncopeltine A against Plasmodium berghei in vivo. Antimicrob

Agents Chemother 1997;41:2533À9.



Antimalarial and Other Antiprotozoal Products from African Medicinal Plants



705



[77] Franc¸ois G, Timperman G, Haller RD, Baăr S, Isahakia MA, Robertson SA, et al.

Growth inhibition of asexual erythrocytic forms of Plasmodium falciparum and P. berghei in vitro by naphthylisoquinoline alkaloid-containing extracts of Ancistrocladus

and Triphyophyllum species. Int J Pharmacogn 1997;35:559.

[78] Hallock YF, Cardellina 2nd JH, Schaăffer M, Bringmann G, Franc¸ois G, Boyd MR.

Korundamine A, a novel HIV-inhibitory and antimalarial “hybrid” naphthylisoquinoline alkaloid heterodimer from Ancistrocladus korupensis. Bioorg Med Chem Lett

1998;8(13):1729À34.

[79] Banzouzi JT, Pblache Y, Rado R, Menan H, Valentin A, Roumestan C, et al. In vitro

antiplasmodial activity of extracts of Alchornea cordifolia and identification of an

active constituent: ellagic acid. J Ethnopharmacol 2002;81(3):399À401.

[80] Focho DA, Ndam WT, Fonge BA. Medicinal plants of AguambuÀBamumbu in the

Lebialem highlands, southwest province of Cameroon. Afr J Pharm Pharmacol 2009;3

(1):001À13.

[81] Zofou D, Kowa TK, Wabo HK, Ngemenya MN, Tane P, Titanji VPK. Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: a bioassayguided fractionation of the stem bark. Malar J 2011;10:167.

[82] Faujan NH, Alitheen NB, Yeap SK, Ali AM, Muhajir AH, Ahmad FBH. Cytotoxic

effect of betulinic acid and betulinic acid acetate isolated from Melaleuca cajuput on

human myeloid leukemia (HL-60) cell line. Afr J Biotech 2010;63(4):367À9.

[83] Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, et

al. Lupane triterpenes and derivatives with antiviral activity. Bioorg Med Chem Lett

2003;13(20):3549À52.

[84] Parlova NI, Savinova OV, Nikolaeva SN, Boreko EI, Flekhter OB. Antiviral activity of

betulin, betulinic and betulonic acid against some enveloped and non-enveloped

viruses. Fitoterapia 2003;74:489À92.

[85] Qian K, Nakagawa-Goto K, Yu D, Morris-Natschke LM, Nitz TJ, Kilgore N, et al.

Anti-AIDS agents 73: structure activity relationship study and asymmetric synthesis of

3-O-monomethylsuccinyl-betulinic acid derivatives. Bioorg Med Chem Lett 2007;17

(23):6553À7.

[86] Steele JC, Warhurst DC, Kirby GC, Simmonds MS. In vitro and in vivo evaluation of

betulinic acid as an anti-malarial. Phytother Res 1999;13(2):115À9.

[87] Lenta BN, Devkota KP, Ngouela S, Boyom FF, Naz O, Choudhary IM, et al. Antiplasmodial and cholinesterase inhibiting activities of some constituents of

Psorospermum glaberrimum. Chem Pharm Bull 2008;56(2):222À6.

[88] Gu G, Feng S, Xiaoyan W. Antimalarial constituents of Hypericum japonicum Thunb.

Isolation and structure of japonicins A, B, C and D. Huaxue Xuebao 1988;46:246À51.

[89] Franc¸ois G, Steenackers T, Assi LA, Steglich W, Lamottke K, Holenz J, et al.

Vismione H and structurally related anthranoid compounds of natural and synthetic origin as promising drugs against the human malaria parasite Plasmodium falciparum:

structureÀactivity relationships. Parasitol Res 1999;85(7): 582À528

[90] Ratsimamanga-Urverg S, Rasoanaivo P, Rafatro H, Robijaona B, RakotoRatsimamanga A. In vitro antiplasmodial activity and chloroquine-potentiating action

of three new isoquinoline alkaloid dimers isolated from Hernandia voyronii Jumelle.

Ann Trop Med Parasitol 1994;88:271À7.

[91] Munoz V, Sauvain M, Mollinedo P, Callapa J, Rojas I, Gimenez A, et al. Antimalarial

activity and cytotoxicity of (2)-roemrefidine isolated from the stem bark of

Sparattanthelium amazonum. Planta Med 1999;65:448À9.



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

4 Antiprotozoal Herbal Medicine from African Medicinal Plants: Clinical Safety and Efficacy Research

Tải bản đầy đủ ngay(0 tr)

×