Tải bản đầy đủ
4 Bộ chuyển mạch quang 3×3 dựa trên các bộ ghép giao thoa đa mode sử dụng hiệu ứng điện- quang là các bộ dịch pha

4 Bộ chuyển mạch quang 3×3 dựa trên các bộ ghép giao thoa đa mode sử dụng hiệu ứng điện- quang là các bộ dịch pha

Tải bản đầy đủ

a3. Các cổng đầu vào bộ giao thoa đa mode thứ hai được ký hiệu lần lượt là B1, B2, B3 và
các đầu ra của bộ giao thoa đa mode thứ hai được ký hiệu lần lượt là b1, b2, b3 như được thể
hiện trên Hình 3.. Như vậy, với cấu trúc chuyển mạch, ba cổng đầu vào lần lượt là A1, A2,
A3, trong khi ba cổng đầu ra lần lượt là b1, b2, b3. Quan hệ giữa các cổng đầu vào và ra của
bộ chuyển mạch được biểu diễn bởi phương trình ma trận như sau:

M b = MΦ
. M
. M
.

A

\* MERGEFORMAT (.)

Trong đó: M A và M b là các ma trận đầu vào và đầu ra của bộ chuyển mạch. Φ là ma trận
dịch pha. Các ma trận này được xác định như sau:

1

 A1 
 b1 
 ÷
 ÷
M A =  A2 ÷ M b =  b2 ÷
A ÷
b ÷
 3,
 3

\* MERGEFORMAT (.)

 e jϕ1

Φ = 0

 0

\* MERGEFORMAT (.)

0 
÷
1
0 ÷
÷
0 e jϕ2 
0

2

Với φ , φ biểu thị góc dịch pha ở hai cánh ngoài cùng của bộ chuyển mạch.
Bảng 3.. Các trạng thái dịch pha cho hoạt động của bộ
chuyển mạch 3×3 dựa vào hiệu ứng điện-quang
Đầu vào
1

A

1

A

1

A

2

A

2

A

φ1

φ2

Đầu ra

0


3

b

0

b


3

b

0

b


3


3

3


3

2

0

3


3

3

0

3


3

A
A
A
A


3

3


3

3


0

1

2

3

1

2

b

3

b

1

b

2

b

3

b

M là ma trận truyền dẫn đặc tính của bộ ghép đa mode 3×3 theo cơ chế giao thoa tổng quát:

89

 − jπ
e 3
 2π
1  j3
M=
e
3 π
 ej3



e

j

e
e


3

e

π
3

e

j

j


3

e

j

j

π
3


3

−j

π
3


÷
÷
÷
÷
÷
÷
÷


\* MERGEFORMAT (.)

Tương tự phần trước, các trạng dịch pha cho hoạt động chuyển mạch của bộ chuyển mạch
dựa trên sự dịch pha bằng hiệu ứng điện-quang được trình bày như ở Bảng 3..
Như đã đề cập ở trên, cấu trúc của một bộ chuyển mạch quang mà dịch pha để tạo nên
các trạng thái chuyển mạch yêu cầu sử dụng hiệu ứng điện quang [33] làm các bộ dịch pha
tạo pha ở hai cánh. Bằng cách đưa vào một hiệu điện thế một chiều giữa hai điện cực, hiệu
ứng điện quang còn được biết đến với tên gọi là hiệu ứng Pockel sẽ xảy ra ở ống dẫn sóng
vật liệu có hệ số điện - quang (hệ số Pockel) cao và tạo dịch pha tuyến tính tỷ lệ với hiệu
điện thế tác động. Hiệu ứng điện-quang sẽ tạo ra thay đổi hệ số chiết suất của ống dẫn sóng
quang. Do vậy, nó sẽ tạo ra một dịch chuyển pha của sóng quang khi truyền qua trường
điện (do hiệu điện thế ngoài cung cấp) một đại lượng thay đổi xác định bằng:
∆ϕ =

π n3ℜEL
λ

\* MERGEFORMAT (.)

Ở đây, E là cường độ của điện trường, n là hệ số chiết suất của sóng quang nối giữa hai
cánh ống dẫn sóng truy nhập của hai vùng ống dẫn sóng giao thoa đa mode kích thước
3×3, L là chiều dài của vùng điện cực hoạt động, ℜ là hệ số Pockels hay còn gọi là hệ số
điện-quang và λ là bước sóng quang hoạt động của bộ chuyển mạch.Nếu điện trường được
sinh ra bởi điện áp (hiệu điện thế) giữa hai bản điện cực bởi giá trị hiệu điện thế một chiều
V trong khoảng cách giữa hai điện cực d thì:
∆ϕ =

3.4.2

E=

π n3ℜVL


V
d , do đó ta có:

\* MERGEFORMAT (.)

Kết quả mô phỏng và thảo luận

Vật liệu được sử dụng trong lớp lõi của bộ chuyển mạch đã đề xuất là vật liệu tinh thể
AgGaSe2 với hệ số chiết suất là nr =2.7 và vật liệu thủy tinh silic được sử dụng làm lớp vỏ
có hệ số chiết suất với giá trị nc =1.46 cho mô phỏng ba chiều. Các tham số cấu trúc ở Hình
3. được chọn như sau: độ rộng của mỗi bộ ghép đa mode MMI 3×3 là WMMI = 36 μm, chiều

dài LMMI của vùng đa mode là 3847.73 μm và độ rộng của các ống dẫn sóng truy nhập Wa
90

=10 μm để điều kiện đơn mode hoạt động được và cuối cùng chiều cao của ống dẫn sóng
được chọn là 5μm để giới hạn ảnh hưởng của hiệu ứng đa mode đến vùng đa mode. Ở đây,
chúng ta sử dụng phân cực TE và bước sóng 1.550-nm để phân tích và mô phỏng. Nếu tính
thống nhất của dao động của sóng phân cự TE được giả thiết dọc theo hướng của trục y của
Hình 3., sự mô phỏng có thể được thực hiện giả thiết nó là dạng không gian hai chiều [11].
Phương pháp mô phỏng truyền chùm sai phân hữu hạn (FD-BPM) được sử dụng cho thiết
kế và mô phỏng số của thiết bị bởi vì phương pháp truyền chùm ba chiều 3D-BPM cung
cấp kết quả chính xác. Tuy nhiên, ống dẫn sóng ba chiều (3D) có thể được chuyển đổi về
cấu trúc hai chiều (2D) bằng cách sử dụng phương pháp hệ số chiết suất hiệu dụng (EIM).
Do đó, trong nghiên cứu này, chúng ta sử dụng phương pháp 2D-BPM để mô phỏng [131].

L
Chiều dài bộ giao thoa đa mode MMI được thiết lập bằng nửa chiều dài phách Lπ với
điều kiện giao thoa tổng quát và được tính toán bởi sự kết hợp của phương pháp MPA và
sử dụng phương pháp hệ số chiết suất hiệu dụng. Sau đó, chiều dài này được tối ưu hóa
bằng phương pháp 2D-BPM để tìm ra giá trị tối ưu bằng 3847.7μm.
Như đã phân tích ở trên theo kết quả như ở Bảng 3., khi trường đầu vào đưa vào bộ
chuyển mạch từ cổng đầu vào A1 , nếu dịch pha giữa cánh kết nối đầu tiên là 0 và cánh thứ
hai là 2π/3, nó sẽ chuyển mạch tín hiệu quang ra cổng ra b1.

Hình 3.. Mode cơ sở tại cổng đầu vào thứ hai của bộ chuyển mạch 3×3
sử dụng hiệu ứng điện – quang.

Bộ dịch pha đóng vai trò quan trong cho hoạt động chuyển mạch, nó có thể được thực
hiện bằng cách sử dụng một điện áp thích hợp giữa hai bản điện cực để điều khiển dịch
pha. Biểu thức trong biểu thị rằng dịch pha tăng với điện áp của các điện cực và chiều dài
của các điện cực dọc theo hướng truyền z. Do đó, cần đưa vào điện áp thích hợp trong dải
-5V đến 5V để điều khiển dịch pha các cánh ngoài cùng cho hoạt động chuyển mạch. Vật
liệu được chọn là AgGaSe 2 với hệ số điện-quang vào khoảng 6.9×10 -12m/V là rất thích hợp
cho hoạt động của hiệu ứng điện-quang. Khoảng cách giữa các điện cực được thiết lập
12μm và chiều dài của vùng điện cực L được chọn là 3000μm để thỏa mãn cho điều khiển
91

khoảng dịch pha rộng, đủ để thỏa mãn tất cả các yêu cầu dịch pha cần thiết cho hoạt động
các trạng thái bộ chuyển mạch. Hình 3. thể hiện mode cơ bản truyền trong ống dẫn sóng,
được tính toán bằng công cụ giải mode của phần mềm thương mại Rsoft.
Kết quả mô phỏng cho tất cả các trạng thái chuyển mạch với đường bao điện trường
được thể hiện như Hình 3. được thực hiện bằng phương pháp 2D. Các kết quả cho thấy về
mặt trực quan chất lượng của bộ chuyển mạch quang dựa trên hiệu ứng điện-quang là tốt.
Chúng ta sẽ tiếp tục đánh giá định lượng dựa trên mô phỏng ở phần tiếp theo sau đây.

Hình 3.. Kết quả mô phỏng thực hiện bằng phương pháp BPM
cho tất cả các trạng thái chuyển mạch của bộ chuyển mạch quang 3×3.

Các kết quả cho thấy điện áp đưa vào các điện cực tạo dịch pha của các cánh ngoài
cùng của bộ chuyển mạch nhằm đảm bảo chất lượng hiệu năng của cấu trúc trong tất cả các
phương diện chuyển mạch. Theo đó một chuyển mạch điện-quang cần có suy hào chèn
thích hợp và cần có dung sai tốt với bước sóng và công nghệ chế tạo. Chúng là những tham
số chất lượng hiệu năng của một bộ chuyển mạch quang.

92

Hình 3.. Sự phụ thuộc vào bước sóng của suy hao chèn
trong trường hợp đầu vào 1 và 2 của bộ chuyển mạch.

Công thức tính của suy hao chèn (I. L.) như sau [11]:
P 
I .L. ( dB ) = 10log10  out ÷
 Pin 

\* MERGEFORMAT (.)

Ở đây: Pout và Pin là công suất vào và ra bộ chuyển mạch trong trạng thái hoạt động.
Kết quả mô phỏng trên Hình 3. cho thấy sự phụ thuộc vào bước sóng của suy hao chèn
trong một dải rộng 100nm xung quanh bước sóng trung tâm 1550nm trong vài trường hợp
của hoạt động của cổng đầu vào 1 (input1) và cổng đầu vào 2 (input2). Do tính đối xứng
một cách tự nhiên của cấu trúc 3×3, nên không làm mất tính tổng quát, ta chỉ cần xét
nămtrường hợp mô phỏng cho hoạt động chuyển mạch như trình bày trên Hình 3. là đủ bao
quát cho mọi trường hợp (9 trường hợp) của các trạng thái chuyển mạch. Kết quả mô
phỏng số bằng phương pháp BPM cho thấy rằng suy hao chèn của cấu trúc là rất nhỏ, dưới
0.7 dB.
Như được thể hiện trên Hình 3., sự phụ thuộc vào chiều rộng và chiều dài của bộ ghép
giao thoa đa mode trong cấu trúc thiết kế đề xuất cũng được thể hiện thông qua mô phỏng
bằng phương pháp truyền chùm cho tất cả các hoạt động chuyển mạch. Công suất ra được
chuẩn hóa theo công suất vào. Các kết qủa biểu thị sự biến đổi rất nhỏ của công suất ra
theo một sự thay đổi khá lớn lên đến 100μm chiều dài của bộ ghép đa mode. Cùng với đó,
sự biến đổi trong dải từ -0.2 μm đến 0.2 μm xung quanh vùng đa mode đảm bảo rằng công
suất ra không suy hao hơn 1dB (công suất ra không nhỏ hơn 86% so với công suất đầu
vào). Do vậy, dung sai chế tạo là lớn và dễ dàng thích hợp cho công nghệ chế tạo hiện
hành.

93

(a)

(b)
Hình 3.. Công suất đầu ra chuẩn hóa phụ thuộc vào sự thay đổi của chiều rộng và chiều dài của
vùng giao thoa đa mode MMI trong hoạt động ở trạng thái đầu vào thứ 2 đến đầu ra thứ 2 của
bộ chuyển mạch: (a) sự biến đổi của chiều rộng; (b) sự biến đổi của chiều dài.

Cuối cùng, hiệu ứng của biến đổi hệ số chiết suất cũng được mô phỏng và được trình
bày như trên Hình 3.. Các kết quả mô phỏng thể hiện rằng công suất ra của bộ chuyển
mạch biến đổi trong khoảng từ 85% đến 98% (tương ứng với giá trị truyền đạt -0.7 dB đến
-0.09 dB) trong sự so sánh với công suất đầu vào khi hệ số chiết suất vật liệu thay đổi 0.1
quanh giá trị của hệ số chiết suất lớp lõi. Kết quả này cho thấy dung sai vật liệu chế tạo của
bộ chuyển mạch được đề xuất là rất lớn. Do đó, sai số chế tạo vật liệu ít ảnh hưởng đến
chất lượng hiệu năng về mặt quang học của bộ chuyển mạch.
94

Hình 3.. Hiệu ứng của sự thay đổi hệ số chiết suất đến công suất ra được chuẩn hóa.

3.5

Kết luận chương

Thiết kế các bộ chuyển mạch quang mới dựa trên cấu trúc giao thoa đa mode được đề
nghị trong chương này dựa trên việc thiết kế bộ chuyển mạch dựa trên cấu trúc tương tự
giao thoa Mach-Zehnder. Giữa hai vùng đa mode cùng kích thước được nối với nhau bằng
các ống dẫn sóng truy nhập đơn mode.Thực hiện các hiệu ứng gây dịch pha thụ động cho
các bộ dịch pha này để tạo ra các trạng thái hoạt động chuyển mạch đầy đủ. Chương này đề
xuất hai cách gây dịch pha thụ động điều khiển được. Cách thứ nhất là sử dụng các bộ ghép
định hướng phi tuyến dựa trên hiệu ứng Kerr. Cấu trúc thiết kế này để tạo ra bộ chuyển
mạch toàn quang 2×2 và 3×3. Cách thứ hai sử dụng hiệu ứng quang điện bằng các điện cực
áp vào các ống dẫn sóng nối giữa hai vùng đa mode để sử dụng hiệu ứng Pockel gây dịch
pha. Cấu trúc chuyển mạch được đề xuất thiết kế bộ chuyển mạch 3×3. Tất cả các cấu trúc
đề xuất được phân tích và thiết kế bằng phương pháp ma trận truyền đạt và phương pháp
truyền chùm BPM. Các trường điều khiển quang có cường độ khá cao được sử dụng để tạo
ra lượng dịch pha cần thiết cho hoạt động chuyển mạch hoặc là các trường điện đặt lên các
bản cực để tạo dịch pha chuyển mạch. Kết quả mô phỏng cho thấy rằng hoạt động chuyển
mạch được thực hiện chính xác và có dung sai chế tạo tương đối lớn. Cấu trúc đề xuất có
thể được sử dụng mở rộng để tạo ra các bộ chuyển mạch nhiều cổng, chẳng hạn như các bộ
chuyển mạch quang kích thước 1×M hoặc N×M (ở đây N và M là các số nguyên dương)
nhưng độ phức tạp cũng tăng lên nhiều. Chúng ta cũng có thể sử dụng lai ghép giữa các
cấu trúc 2×2 và 3×3 ghép theo cấu trúc Benes để tạo ra các bộ chuyển mạch kích thước lớn
hơn. Đánh giá chất lượng hiệu năng của các bộ chuyển mạch bằng sử dụng mô phỏng là tốt
do đó các cấu trúc này có thể sử dụng hiệu quả cho ứng dụng trong các mạng thông tin
quang tốc độ cao.
95

Chương 4
Bộ ghép kênh ba bước sóng sử dụng giao thoa đa mode
Triplexer (bộ ghép kênh ba bước sóng) đóng một vai trò rất quan trọng trong các hệ
thống thông tin quang như: các hệ thống cáp quang đến tận nhà FTTH (fiber to the home),
các mạng quang truy nhập thụ động, v.v.Có ba bước sóng nói chung thường được sử dụng
là 1310 nm, 1490 nm và 1550 nm (theo khuyến nghị ITU-G.983) cho lưu lượng đường lên,
lưu lượng đường xuống và các dịch vụ chồng lấn lựa chọn, chẳng hạn dịch vụ truyền video
tương tự hay các dịch vụ số liệu khác trong các cửa sổ bước sóng thông tin quang. Do đó,
ta cần một thiết bị mà có thể ghép kênh hoặc phân kênh truy nhập những bước sóng này
trong thực tế ứng dụng. Hiện tại, có một số kiểu thiết kế cho các bộ triplexer. Một là sử
dụng cấu trúc phân tách các bộ lọc, chẳng hạn các bộ lọc màng mỏng (thin film filters) [56]
nhưng kiểu này có một hạn chế là khó tích hợp với các cấu kiện quang khác nên đắt tiền.
Hai là sử dụng các cách tử như cách tử ống dẫn sóng được sắp mảng (AWG) [32] và cách
tử phản xạ Bragg [155] nhưng kích cỡ của những loại này vẫn còn khá lớn. Loại khác nữa
dùng các kỹ thuật mạch tích hợp quang phẳng (PLCs) như các tinh thể quang (photonic
crystals) [114] [113] hoặc các ống dẫn sóng silic ghép định hướng [112].
Gần đây, các thiết bị dựa trên ống dẫn sóng MMI là các thành phần hữu dụng trong
các mạch tích hợp quang (PICs) bởi vì một số ưu điểm nổi bật về băng thông, kích thước
nhỏ, suy hao thấp và dung sai chế tạo tương đối lớn. Bên cạnh đó, ống dẫn sóng silic là
một giải pháp hứa hẹn cho các bộ ghép đa mode để xây dựng các vi mạch quang tích hợp
như bộ triplexer bởi một số ưu điểm như: độ tương phản chiết suất cao (khi vật liệu chế tạo
ống dẫn sóng phổ biến là silic trên nền vật liệu- SOI) cho phép bắt giữ ánh sáng tốt và cấu
trúc mật độ cao (compact structure) với độ cong cực nhọn. Hơn nữa, nó rất tương thích với
công nghệ chế tạo vi mạch CMOS [23] nên giá thành rẻ hơn những vật liệu khác. Chương
này của luận án sẽ đề xuất các thiết kế mới của cấu kiện triplexer dựa trên các bộ ghép giao
thoa đa mode trên nền tảng vật liệu silic và thủy tinh silic.

4.1 Giới thiệu và nguyên lý thiết kế
Nguyên lý thiết kế của bộ tách/ghép bước sóng dựa trên cấu trúc giao thoa đa mode
dựa trên tính chất là với cùng cấu trúc hình học thì các bước sóng khác nhau có nửa chiều
dài phách khác nhau. Cũng do nửa chiều dài phách tỷ lệ nghịch với bước sóng hoạt động
nên bước sóng ngắn có nửa chiều dài phách lớn hơn so với các bước sóng dài. Mặt khác, ta
đã biết là hiện tượng giao thoa tạo ảnh có tính chu kỳ tức là tạo ảnh được lặp đi lặp lại tại
những khoảng cách xác định bằng nhau. Sử dụng các đặc tính này, ta xét một ống dẫn sóng
giao thoa đa mode kích thước 2×2 với cổng đầu vào không ở vị trí trùng với trục đối xứng
như được trình bày trên Hình 4.. Theo nguyên lý giao thoa tổng quát thì sau một khoảng
cách truyền theo phương truyền sóng với chiều dài
96

L = 3Lπ (λ )

(với

Lπ (λ )

ký hiệu là nửa

chiều dài phách tại bước sóng hoạt động λ ) thì ảnh đầu ra sẽ đối xứng gương với tạo ảnh
đầu vào.Tổng quát, ảnh đầu ra sẽ ở vị trí soi gương so với ảnh đầu vào nếu khoảng cách
truyền bằng số nguyên dương lẻ lần nửa chiều dài phách và ảnh đầu ra sẽ ở vị trí đồng vị
với ảnh đầu vào nếu khoảng cách truyền bằng số nguyên dương lẻ lần nửa chiều dài

λ

λ

phách. Sử dụng nguyên lý này, với hai bước sóng 1 và 2 được đưa vào đầu vào của một
bộ giao thoa đa mode 2×2, nếu khoảng cách truyền thỏa mãn đẳng thức:

L = 3mLπ (λ1 ) = 3nLπ (λ2 )

Equation Chapter (Next)

Section 1\* MERGEFORMAT (.)

Hình 4. Sơ đồ nguyên lý bộ ghép kênh hai bước sóng sử dụng bộ ghép đa mode 2×2.

Ở đây: m và n là các số nguyên dương. Nếu m, n cùng tính chẵn lẻ thì các bước sóng

λ1 và λ 2 sẽ được đưa ra cùng một cổng ở đầu ra còn ngược lại nếu m, n chẵn lẻ đôi một
λ

λ

khác nhau thì các bước sóng 1 và 2 sẽ được tách ra một cách riêng biệt ở hai đầu ra của
ống dẫn sóng đa mode. Nguyên lý này cũng có thể được mở rộng cho nhiều bước sóng
cùng đưa vào cùng một đầu vào. Khi đó chúng ta sử dụng phân tầng các bộ giao thoa đa
mode để tách riêng dần các bước sóng ở đầu ra cho đến khi ở các đầu ra cuối cùng các
bước sóng được tách hoàn toàn ra mỗi cổng riêng.
Như đã phân tích, các bước sóng khác nhau thì nửa chiều dài phách khác nhau. Từ
biểu thức xác định nửa chiều dài phách và đẳng thức ta thấy điều kiện để tách riêng hai
bước sóng khi đó là:
m λ1.We2 (λ2 )
=
n λ2 .We2 (λ1 )

\* MERGEFORMAT (.)

W ( λ)
Với: e
là chiều rộng hiệu dụng của ống dẫn sóng đa mode tại bước sóng λ .
Nếu các bước sóng gần nhau, chẳng hạn các bước sóng nằm trong vùng cửa sổ thông
tin 1550 nm sử dụng cho các ứng dụng WDM với khoảng cách kênh nhỏ (chỉ cỡ 0.4 nm
hoặc 0.8 nm) thì nửa chiều dài phách là gần nhau, do vậy phương trình sẽ xác định cặp số
(m,n) có giá trị tương đối lớn. Điều này dẫn đến chiều dài của bộ ghép đa mode là khá lớn.
Khi đó, phép phân tích toán học bằng phương pháp xấp xỉ theo phương pháp truyền mode
sẽ cho sai số lớn do đó chất lượng hình ảnh giao thoa không được “rõ nét”. Vậy nên cấu
97