Tải bản đầy đủ
Những hạn chế của mô hình ARMA trong chuỗi thời gian tài chính

Những hạn chế của mô hình ARMA trong chuỗi thời gian tài chính

Tải bản đầy đủ

Xét chuỗi số chuỗi số liệu NYSE chứa giá trị của chỉ số chứng khoán
giao dịch hằng ngày trên thị trường NewYork từ tháng ngày 02/01/1990 đến
ngày 31/12/2001. Chuỗi gồm 3028 số liệu được lưu dưới tên file là NYSE.txt.
Tuy nhiên thay vì trực tiếp làm việc với chuỗi số liệu gốc, ta lấy logarit tự
nhiên của chuỗi gốc rồi lấy lại sai phân của nó để được một chuỗi mới mà
trong lĩnh vực kinh tế tài chính ta gọi là chuỗi tăng trưởng.
Từ số liệu ở trên, chuỗi giá và chuỗi tăng trưởng được minh họa bằng đồ
thị sau

Hình 1.1 Chuỗi giá

Hình 1.2 Chuỗi tăng trưởng
Nhìn vào đồ thị của chuỗi giá, rõ ràng ta thấy nó không có tính dừng.
Ngược lại, chuỗi tăng trưởng có đồ thị rất giống với một quá trình dừng. Khi
18

nhìn vào đồ thị của chuỗi tăng trưởng ta cũng thấy có xuất hiện những cụm
biến động, có vùng biến đổi về phương sai của chuỗi thời gian. Tiếp theo ta sẽ
khai thác đặc trưng tương quan riêng mẫu của chuỗi tăng trưởng ở trên. Kết
quả được minh họa bằng đồ thị sau:

Hình 1.3 Tự tương quan của chuỗi tăng trưởng

Hình 1.4 Tự tương quan riêng của chuỗi tăng trưởng
Ta thấy rằng tương quan riêng của chuỗi tăng trưởng biến đổi trong một
khoảng tương đối hẹp khá giống với tự tương quan riêng của một quá trình
dừng. Tuy nhiên ta lại không thấy được dấu hiệu triệt tiêu của tự tương quan
riêng mặc dù ta đã lấy đến trễ 100. Điều này cho thấy cho chuỗi tăng trưởng
chắc chắn không thể là một quá trình tự hồi quy. Ta cũng biết rằng, về mặt lý
thuyết có thể xấp xỉ mô hình AR nhiều tham số bằng mô hình ARMA với ít
tham số hơn. Điều này cũng cho thấy mô hình ARMA nhiều khả năng không
phù hợp với chuỗi tăng trưởng của chúng ta.
Bây giờ ta lấy bình phương chuỗi tăng trưởng, kết quả cho bởi đồ thị
dưới đây
19

Hình 1.5 Bình phương chuỗi tăng trưởng
Nhìn vào đồ thị ta có thể ta có thể thấy được việc tạo thành các cụm biến
động trong đó các thời kỳ và biến động mạnh xen kẽ nhau. Ta tính tiếp các đặc
trưng mẫu của bình phương chuỗi tăng trưởng. Kết quả được thể hiện bằng các
đồ thị sau

Hình 1.6 Tự tương quan của bình phương chuỗi tăng trưởng

Hình 1.7 Tự tương quan riêng của bình phương chuỗi tăng trưởng
Mặc dù chuỗi tăng trưởng ít tương quan nhưng bình phương của nó lại
thể hiện sự tương quan mạnh. Những dấu hiệu đó cho ta thấy rằng mô hình
ARMA không thực sự phù hợp với chuỗi thời gian qua sát này.

20

Bây giờ giả sử bằng cách nào đó ta tìm được mô hình ARMA gần nhất
với chuỗi quan sát và đó là mô hình ARMA(1,1). Mục đích ở đây là chúng ta
sẽ thấy rõ ràng sau khi ước lượng, nhiễu thu được sẽ không phải là một ồn
trắng như ta mong muốn nữa. Thật vậy, kết quả ước lượng theo mô hình
ARMA(1,1) là

yt = 0.00049332 + ε t
Nhiễu khi đó được tính toán và biểu diễn bởi đồ thị sau

Hình 1.8 Nhiễu
Khi đó tự tương quan và tự tương quan riêng của nhiễu cho bởi đồ thị
dưới đây

Hình 1.9 Tự tương quan của nhiễu

21

Hình 1.10. Tự tương quan riêng của nhiễu
Ban đầu, do tính ít tương quan của nhiễu ước lượng được nên ta thấy nó
giống với một quá trình ồn trắng. Tuy nhiên khi lấy bình phương nhiễu ta lại
thấy khác

Hình 1.11. Bình phương nhiễu

Hình 1.12 Tự tương quan bình phương nhiễu

22

Hình 1.13 Tự tương quan riêng bình phương nhiễu
Rõ ràng là nhiễu có hiện tượng tạo cụm biến động giống như chuỗi tăng
trưởng ban đầu. Còn khi nhìn vào đồ thị tự tương quan của bình phương nhiễu
ta thấy nó thể hiện sự tương quan mạnh nên ta có thể kết luận rằng nhiễu
không phải là một ồn trắng như mong muốn. Và như vậy mô hình ARMA sẽ
không phù hợp với chuỗi số liệu này.
Mặc dù mô hình ARMA tỏ ra không phù hợp với chuỗi thời gian tài
chính nhưng những kỹ thuật mà nó cung cấp là một cơ sở rất quan trọng và
mang lại nhiều gợi ý cho các công trình nghiên cứu về chuỗi thời gian sau
Box-Jenkins. Chính Box-Jenkins là những người đầu tiên đưa ra các kỹ thuật
lấy sai phân để khử khuynh tất định nhằm tăng khả năng dừng của một chuỗi
thời gian. Với những vận dụng sáng tạo khái niệm khuynh này, những người
nghiên cứu đi sau Box-jenkins đã cho ra đời hai lớp mô hình rất quan trọng đối
với chuỗi thời gian tài chính. Đó là mô hình cộng tích, Cointegration
(Granger,1981) và mô hình tự hồi quy biến động bất thường của chuỗi thời
gian tài chính. Mô hình ARCH là cống hiến mang tính khai phá của Engle, nó
có thể giải thích sự bất thường của phương sai mà chỉ sử dụng những thông tin
quá khứ của bản thân nhiễu. Mô hình GARCH (Generalized Autoregressive
Conditional Heteroschedasticity) đầu tiên được giới thiệu bởi Tim Bollerslev
năm 1986 đã làm cho lớp mô hình này có nhiều ứng dụng thực tế hơn trong
lĩnh vực kinh tế tài chính.

23

CHƯƠNG 2
LÝ THUYẾT TẬP MỜ VÀ CHUỖI THỜI GIAN MỜ

Trong các bộ môn toán cơ bản, chúng ta đã rất quen thuộc với suy luận
logic nguyên thuỷ hay logic rõ với hai giá trị đúng/sai hay 1/0. Tuy nhiên, các
suy luận này không đáp ứng được hầu hết các bài toán phức tạp nảy sinh trong
thực tế như những bài toán trong lĩnh vực điều khiển tối ưu, nhận dạng hệ
thống,…mà các dữ liệu không đầy đủ, không được định nghĩa một cách rõ
ràng. Trong những năm cuối thập kỷ 20, một ngành khoa học mới đã được
hình thành và phát triển mạnh mẽ đó là hệ mờ. Đây là hệ thống làm việc với
môi trường không hoàn toàn xác định, với các tham số, các chỉ tiêu kinh tế kỹ
thuật, các dự báo về môi trường sản xuất kinh doanh chưa hoặc khó xác định
một cách thật rõ ràng, chặt chẽ. Khái niệm logic mờ được giáo sư Lofti
A.Zadeh đưa ra lần đầu tiên vào năm 1965 tại Mỹ. Từ đó lý thuyết mờ đã được
phát triển và ứng dụng rộng rãi.
Trong chương này chúng ta tập trung trình bày một số kiến thức
cơ bản về hệ mờ có liên quan tới mô hình mà chúng ta sẽ nghiên cứu.
1. Lý thuyết tập mờ
1.1. Tập mờ
Định nghĩa: Cho Ω( Ω ≠ φ) là không gian nền, một tập mờ A trên
Ω được xác định bởi hàm thuộc( membership function):

µA: Ω→ [0,1]
0 ≤ µA(x) ≤ 1

µA(x) : Chỉ độ thuộc (membership degree) của phần tử x vào tập mờ A
(để cho đơn giản trong cách viết, sau này ta ký hiệu A(x) thay cho hàm µA(x))

24

Khoảng xác định của hàm µA(x) là đoạn [0,1], trong đó giá trị 0
chỉ mức độ không thuộc về còn giá trị 1 chỉ mức độ thuộc về hoàn toàn.
Ví dụ 1: Hàm liên tục của tập mờ A “tập các số thực gần 1” được
định nghĩa như sau: µA(x) = e −a( x−1)2

Hình 2.1. Hàm liên thuộc của tập mờ “x gần 1”
Ví dụ 2: Một số dạng hàm liên thuộc liên tục khác
Triangle(x, a, b, c) = max(min(

x−a c−x
,1,
),0)
b−a c−b

Trapezoid(x, a, b, c ,d) = max(min(

x−c)
Gaussian(x, σ , c, )= −( σ )2
e
1

Bell(x, a, b, c) = 1 + x − c

2b

a

25

x−a d −x
,1,
),0)
b−a d −c