Tải bản đầy đủ
CHƯƠNG I. TỔNG QUAN VỀ XỬ LÝ ẢNH VÀ BÀI TOÁN XÁC ĐỊNH MẶT NGƯỜI TRONG ẢNH SỐ

CHƯƠNG I. TỔNG QUAN VỀ XỬ LÝ ẢNH VÀ BÀI TOÁN XÁC ĐỊNH MẶT NGƯỜI TRONG ẢNH SỐ

Tải bản đầy đủ

10

Hình 1.2: Các giai đoạn trong xử lý ảnh
1.1.2. Các vấn đề cơ bản trong xử lý ảnh
* Ảnh và điểm ảnh:
- Điểm ảnh được xem như là dấu hiệu hay cường độ sáng tại một tọa độ
trong không gian của đối tượng ảnh.
- Ảnh được xem như là tập hợp các điểm ảnh. Ảnh được biểu diễn bởi
một mảng số thực hai chiều (Ii j) có kích thước (m x n), trong đó mỗi phần tử Ii
j

(i = 1…m; j = 1…n) biểu đồ mức xám của ảnh tại vị trí (i, j) tương ứng.
Ảnh được gọi là ảnh nhị phân nếu các giá trị chỉ nhận 0 hoặc 1.
* Mức xám: Mức xám là kết quả sự mã hóa tương ứng một cường độ

sáng của mỗi điểm ảnh với một giá trị số - kết quả của quá trình lượng hóa.
Cách mã hóa thường dùng là 16, 32 hay 64 mức, mã hóa 256 mức là phổ
dụng nhất.
*

Đối tượng ảnh: Trong quá trình xử lý ảnh, một ảnh được thu nhận vào

máy phải được mã hóa, vì vậy ảnh phải được lưu trữ thế nào sao cho các ứng
dụng khác nhau có thể thao tác trên các loại dữ liệu này. Một số dạng ảnh đã
được chuẩn hóa như: GIF, BMP, PCX,...; mỗi kiểu lưu trữ ảnh đều có điểm
riêng. Tùy theo vùng các giá trị xám của điểm ảnh mà các ảnh được phân chia
ra thành ảnh màu, ảnh xám, ảnh nhị phân. Khi trên một ảnh chỉ có giá trị 0
hoặc 1 thì ta nói đó là ảnh nhị phân hoặc ảnh đen trắng và các điểm ảnh của nó
gọi là điểm ảnh nhị phân. Việc đếm các điểm ảnh trên ảnh nhị phân đã qua biến
đổi tạo điều kiện thuận lợi cho việc tách ra các đặc tính. Để tạo ra một ảnh nhị
phân từ ảnh đa cấp xám ta dùng phương pháp tách ngưỡng. Các giá trị nằm ở
trên ngưỡng được gán giá trị 1 còn ở bên dưới ngưỡng thì được gán giá trị 0.
- Kỹ thuật tách ngưỡng: Ngưỡng θ trong kỹ thuật tách ngưỡng thường
được cho bởi người sử dụng. Kỹ thuật tìm, tách ngưỡng tự động nhằm tìm ra

11

ngưỡng θ một cách tự động dựa vào Histogram theo nguyên lý trong vật lý là
vật thể tách làm 2 phần nếu tổng độ lệch trong từng phần là tối thiểu.
Giả sử ta có ảnh I ~ kích thước m x n; G ~ số mức xám của ảnh kể cả
khuyết thiếu; t(g) ~ số điểm ảnh có mức xám ≤ g.
m( g ) =

1 g
∑ i.h(i) ~ mômen quán tính trung bình có mức xám ≤ g
t ( g ) i =0
g a f (g)

Hàm f: f ( g ) =

t(g)
2
[ m( g ) − m(G − 1)]
m × n − t(g )

{f ( g )}
Tìm θ sao cho: f ( g ) = 0≤mg G −1



Nắn chỉnh biến dạng
Ảnh thu nhận thường bị biến dạng do các thiết bị quang học và điện tử.

Để khắc phục, người ta sử dụng các phép chiếu, các phép chiếu thường được
xây dựng trên tập các điểm điều khiển.
• Khử nhiễu
Có hai loại nhiễu cơ bản trong quá trình thu nhận ảnh:
− Nhiễu hệ thống: là nhiễu có quy luật có thể khử bằng các phép biến đổi.
− Nhiễu ngẫu nhiên: là dạng vết bẩn không rõ nguyên nhân nên có thể khắc
phục bằng các phép lọc.


Chỉnh mức xám

Nhằm khắc phục tính không đồng đều của hệ thống gây ra, thông thường
có hai hướng tiếp cận:
− Giảm số mức xám: thực hiện bằng cách nhóm các mức xám gần nhau thành
một bó. Trường hợp chỉ có hai mức xám thì chính là chuyển về ảnh đen trắng.
− Tăng số mức xám: thực hiện nội suy ra các mức xám trung gian bằng kỹ
thuật nội suy. Kỹ thuật này nhằm tăng độ mịn của ảnh.
• Phân tích ảnh

12

Là khâu quan trọng trong quá trình xử lý ảnh để tiến tới hiểu ảnh.
Trong phân tích ảnh việc trích chọn đặc điểm là một bước quan trọng, các đặc
điểm của đối tượng được trích chọn tùy theo mục đích nhận dạng trong quá
trình xử lý ảnh. Một số đặc điểm của ảnh như: đặc điểm không gian, đặc điểm
biến đổi, đặc điểm biên và đường biên.


Nhận dạng ảnh
Nhận dạng ảnh là quá trình liên quan đến các mô tả đối tượng mà người

ta muốn đặc tả nó. Quá trình nhận dạng thường đi sau quá trình trích chọn các
đặc tính chủ yếu của đối tượng. Nhận dạng tự động, mô tả đối tượng, phân
loại và phân nhóm các mẫu là những vấn đề quan trọng trong thị giác máy,
được ứng dụng trong nhiều ngành khoa học khác nhau.
Hệ thống nhận dạng tự động bao gồm ba khâu tương ứng với ba giai
đoạn chủ yếu sau: thu nhận dữ kiệu và tiền xử lý, biểu diễn dữ liệu, nhận dạng
và ra quyết định. Bốn cách tiếp cận khác nhau trong lý thuyết nhận dạng là:
Đối sánh mẫu dựa trên các đặc trưng được trích chọn, phân loại thống kê, đối
sánh cấu trúc, phân loại dựa trên mạng nơron nhân tạo.


Nén ảnh
Lượng thông tin để biểu diễn cho một ảnh là rất lớn, vì vậy nén ảnh

nhằm giảm thiểu không gian lưu trữ, thường được tiến hành theo cả hai
khuynh hướng là nén có bảo toàn và nén không bảo toàn thông tin. Nén
không bảo toàn thì thường có khả năng nén cao hơn nhưng có khả năng phục
hồi kém hơn. Các cách nén ảnh:
− Nén ảnh thống kê: Dựa vào việc thống kê tần xuất xuất hiện của giá trị các
điểm ảnh, trên cơ sở đó mà có chiến lược mã hóa thích hợp. Ví dụ: mã nén
*.TIF.

13

− Nén ảnh không gian: Dựa vào vị trí không gian của các điểm ảnh để tiến
hành mã hóa. Kỹ thuật này dựa vào sự giống nhau của các điểm ảnh trong các
vùng gần nhau. Ví dụ: mã nén *.PCX.
− Nén ảnh sử dụng phép biến đổi: Tiếp cận theo hướng nén không bảo toàn,
kỹ thuật này thường nén hiệu quả hơn. Ví dụ: nén *.JPG.
− Nén ảnh Fractal: sử dụng tính chất Fractal của các đối tượng ảnh, thể hiện
sự lặp lại của các chi tiết. Kỹ thuật nén sẽ tính toán để chỉ cần lưu trữ phần
gốc của ảnh và quy luật sinh ra ảnh theo nguyên tắc Fractal.
1.2.

Chuẩn sinh trắc học ( Biometric )

1.2.1. Định nghĩa chuẩn sinh trắc học :
Công nghệ Sinh trắc học (Biometric) – là một công nghệ sử dụng
những thuộc tính vật lý hoặc các mẫu hành vi, các đặc điểm sinh học đặc
trưng như dấu vân tay, mẫu mống mắt, giọng nói, khuôn mặt, dáng đi,… để
nhận diện con người
1.2.2. Ứng dụng của chuẩn sinh trắc học
• Vân tay
Đầu thế kỷ XIX, phát hiện khoa học vẫn còn được công nhận bởi hai
tính năng quan trọng: Đầu tiên, hai phong cách khác nhau sống núi mẫu vân
tay (Ridge Hoa văn) là khác nhau từ khác có dấu vân tay sống núi của phong
cách sống giống nhau. Nghiên cứu này giúp nhận dạng dấu vân tay tại có thể
có của tội phạm áp dụng chính thức. Thế kỷ XX, các sixties, như là máy tính
có thể xử lý đồ họa, người ta bắt đầu xem xét các máy tính để xử lý các dấu
vân tay, vân tay tự động AFIS Hệ thống xác định trong các lĩnh vực thực thi
pháp luật của nghiên cứu, ứng dụng này bắt đầu tới.
Một yêu cầu hệ thống sinh trắc học tốt một cách nhanh chóng và hiệu
quả trong thời gian thực để hoàn thành quá trình nhận dạng của nó. Tất cả các
hệ thống sinh trắc học bao gồm các quá trình điều trị một số sau đây: mua lại,

14

giải mã, so sánh và kết hợp. Các dấu vân tay cùng công nhận chế biến, bao
gồm chụp ảnh dấu vân tay, vân tay xử lý hình ảnh, tính năng khai thác, tính
năng phù hợp hơn với quá trình. Những lợi thế của việc sử dụng phương pháp
dấu vân tay được, đáng tin cậy của nó thuận tiện và dễ dàng được chấp nhận.
• Võng mạc của mắt
Phân tích các đặc tính phức tạp và độc đáo của công nghệ sinh trắc
học mắt được chia thành hai khu vực riêng biệt: các công nghệ nhận dạng
mống mắt, và công nhận iris công nghệ. Iris được bao quanh bởi một lớp mô
màu mống mắt. Iris công nhận hệ thống sử dụng camera để chụp mẫu, sau đó
các dữ liệu thu thập bởi phần mềm này để so sánh với các mẫu lưu trữ. Là
giác mạc mắt ở dưới cùng của lớp tế bào máu. Giác mạc là quét để kiểm tra
mật độ thấp hồng ngoại để nắm bắt đặc điểm độc đáo của giác mạc này.
Chúng tôi biết các khu vực ở trung tâm của giác mạc đều được kiểm tra, các
tế bào máu do đó sẽ là phương thức duy nhất của capturing. Iris công nghệ
nhận dạng sinh trắc học được coi là tốt nhất. Tuy nhiên, mặc dù độ chính xác
cao, mọi người thường nghĩ rằng công nghệ này là không thuận tiện. Vì vậy,
rất khó để có được chấp nhận phổ quát của người dùng cuối. Giác mạc đã
được quét bằng máy quét cần thiết để đọc thông tin giác mạc trong thẳng
đứng cố định của nó. Scanner cho mắt và mù mắt giác mạc và với người dân
là không hợp lệ.
• Bề mặt lỗ
Hệ thống nhận dạng khuôn mặt bằng cách phân tích các tính năng mặt
của hình dạng độc đáo, mô hình và vị trí để xác định người dân. Về cơ bản có
hai cách để xử lý dữ liệu: máy ảnh và lập bản đồ nhiệt. Standard camera video
được xây dựng từ máy ảnh để chụp hình ảnh khuôn mặt. Phân tích kỹ thuật
của nhiệt vẽ các mạch máu dưới da xảy ra các mô hình nhiệt. Việc kháng cáo
của sinh trắc học là nó có thể được con người-máy tính tương tác. Tuy nhiên,

15

hệ thống này là rất không đáng tin cậy và đắt tiền. Ví dụ, nó không thể phân
biệt giữa các cặp sinh đôi hoặc sinh ba, không thể nhận ra những lý lẽ làm
người sử dụng cuối cùng không thể xác định được kính không đeo kính với
cùng một người.
• Âm thanh
Xác định được dựa trên đặc điểm sinh lý âm thanh và hành vi sử dụng
của người phát biểu của giọng nói và các mẫu ngôn ngữ. Nó khác với công
nghệ nhận dạng giọng nói không phải là để nói những lời tự được xác định.
Nhưng chỉ có thông qua phân tích các tính năng thoại, chẳng hạn như tần số
của âm thanh để xác định các loa. Bài phát biểu công nhận công nghệ cho
phép mọi người có thể có khả năng nói tiếng nói để kiểm soát truy cập vào
khu vực hạn chế. Ví dụ, điện thoại quay số ngân hàng, các dịch vụ cơ sở dữ
liệu, mua sắm hoặc voice mail, và truy cập đến các thiết bị bí mật. Một người
bị cảm lạnh có thể sai một từ chối công nhận không sử dụng hệ thống nhận
dạng giọng nói.
• . Chữ ký
Chữ ký công nhận, còn được gọi là việc xác định chữ ký cơ khí. Nó
phân tích các cây bút di chuyển, chẳng hạn như tăng tốc, áp lực, chỉ đạo,
chiều dài của đột quỵ, chứ không phải là chữ ký của các hình ảnh bản thân.
Sự khác biệt chính giữa chữ ký cơ học của các bộ phận khác nhau của chữ ký,
một số, phong tục khác là khác nhau trong mỗi chữ ký. Việc sử dụng chữ ký
đã được chấp nhận rộng rãi, trong các ứng dụng khác nhau, từ Tuyên ngôn
Độc lập vào thẻ tín dụng có thể được nhìn thấy. Tuy nhiên, vấn đề công nhận
chữ ký vẫn còn tồn tại trong quá trình đạt được sự công nhận để sử dụng theo
cách thức và ký đo lặp. Hệ thống kiểm soát đã được lập trong một số cách để
chấp nhận thay đổi.

16

1.3.

Bài toán xác định mặt người trong ảnh số.

1.3.1. Giới thiệu về bài toán xác định mặt người trong ảnh số
Trong những năm qua, có rất nhiều công trình nghiên cứu về bài toán
nhận dạng mặt người. Các nghiên cứu đi từ bài toán đơn giản, từ việc nhận
dạng một mặt người trong ảnh đen trắng cho đến mở rộng cho ảnh mầu và có
nhiều mặt người trong ảnh. Đến nay các bài toán xác định mặt người đã mở
rộng với nhiều miền nghiên cứu như nhận dạng khuôn mặt, định vị khuôn
mặt, xác định trạng thái mắt người, theo dõi mặt người hay nhận dạng cảm
xúc mặt người…
Phát hiện mặt người trong ảnh là phần đầu tiên của một hệ thống nhận
dạng mặt người. Các hệ thống nhận dạng khuôn mặt được bắt đầu xây dựng
từ những năm 1970, tuy nhiên do còn hạn chế về các luật xác định mặt người
nên chỉ được áp dụng trong một số ứng dụng như nhận dạng thẻ căn cước. Nó
chỉ được phát triển mạnh mẽ từ những năm 1990 khi có những tiến bộ trong
công nghệ video và ngày nay thì các ứng dụng của xác định mặt người đã trở
nên phổ biến trong cuộc sống.
1.3.2. Định nghĩa bài toán xác định mặt người.
Xác định khuôn mặt người là một kỹ thuật máy tính để xác định các vị trí
và kích thước của các khuôn mặt người trong các ảnh số bất kì. Kỹ thuật này
nhận biết các đặc trưng của khuôn mặt và bỏ qua những thứ khác xung quanh
đối tượng như: tòa nhà, cây cối, cơ thể…
1.3.3. Các phương pháp chính xác định mặt người
Dựa vào tính chất của các phương pháp xác định mặt người trên ảnh, các
phương pháp này được chia thành bốn loại chính, tương ứng với bốn hướng
tiếp cận khác nhau. Ngoài ra cũng có rất nhiều nghiên cứu mà phương pháp
xác định mặt người không chỉ dựa vào một hướng mà có liên quan đến nhiều
hướng.

17

• Hướng tiếp cận dựa trên tri thức: Dựa vào các thuật toán, mã hóa các
đặc trưng và quan hệ giữa các đặc trưng của khuôn mặt thành các luật.
Đây là hướng tiếp cận theo kiểu top-down
• Hướng tiếp cận dựa trên đặc trưng không thay đổi: Xây dựng các thuật
toán để tìm các đặc trưng của khuôn mặt mà các đặc trưng này không
thay đổi khi tư thế khuôn mặt hay vị trí đặt camera thay đổi.
• Hướng tiếp cận dựa trên so sánh khớp mẫu: Dùng các mẫu chuẩn của
khuôn mặt (các mẫu này đã được chọn và lưu trữ) để mô tả các khuôn
mặt hay các đặc trưng của khuôn mặt (các mẫu này được chọn tách biệt
theo tiêu chuẩn đã được các tác giả đề ra để so sánh). Phương pháp này
có thể dùng để xác định vị trí hay dò tìm khuôn mặt trên ảnh.
• Hướng tiếp cận dựa trên diện mạo: Trái ngược với hướng tiếp cận dựa
trên khuôn mẫu, các mô hình (hay các mẫu) sẽ được học từ một tập ảnh
huấn luyện mà thể hiện tính chất tiêu biểu của sự xuất hiện của mặt
người trong ảnh. Sau đó hệ thống (mô hình) sẽ xác định mặt người.
Phương pháp này còn được biết đến với tên gọi tiếp cận theo các phương
pháp học máy.
1.4.

Ưu điểm của việc xác định vị trí mắt

• Trích những đặc tính khuôn mặt
Đối với việc rút trích những đặc tính, mắt là đặc tính quan trọng của
khuôn mặt. Do đó, chúng ta cần nghiên cứu để tìm và xác định nó. Lý do mà
chúng ta phải nghiên cứu nó là vì:
- Mắt là nguồn thông tin quan trọng về tình trạng của con người.
- Sự xuất hiện của mắt là ít thay đổi nhất trên khuôn mắt.
- Việc biết vị trí của mắt cho phép chúng ta chỉ ra được tỷ lệ của khuôn mặt.
- Việc định vị chính xác mắt giúp ta chỉ ra được những đặc tính khác
trên khuôn mặt.

18

Từ trung tâm của mắt, chúng ta có thể xác định được những điểm
chuẩn khác.

Hình 1.3 Các điểm trên khuôn mặt
Trong đó : Khuôn mặt có 27 điểm, 13 điểm trích ra từ hình ảnh (màu xanh),
14 điểm suy luận ra (màu đỏ)
Hiện nay, có rất nhiều bài toán liên quan tới việc xác định vị trí mắt
người: Xác định trạng thái mắt nhắm hay mở (hệ thống đặt trên ô tô để kiểm
soát lái xe, hay hệ thống kiểm tra bảo vệ ngủ tại các cơ quan quan trọng, xác
định hướng nhìn của khuôn mặt dựa trên vị trí mắt, xây dựng model khuôn
mặt…

19

CHƯƠNG 2. CÁC PHƯƠNG PHÁP XÁC ĐỊNH VỊ TRÍ MẮT NGƯỜI
TRÊN KHUÔN MẶT
Trong chương này sẽ giới thiệu một số phương pháp phát hiện mắt và
xác định tọa độ của mắt trung tâm.
Mắt là một trong những chỗ tiếp xúc với những nơi biến dạng trên một
khuôn mặt (ví dụ như bằng cách biểu hiện trên khuôn mặt) và đặc biệt : một
phần khác đối mặt với thay đổi như vậy sắc nét. Tìm kiếm mắt là thao tác
chính,nó phụ thuộc tính toán thêm tham số mặt. Ví dụ về các thông số, mà có
thể xác định là: Tam giác nơi kiểm tra một khuôn mặt, đặc điểm trên khuôn
mặt, tọa độ của các mắt trung tâm và trục đối xứng khuôn mặt, khoảng cách
giữa các trung tâm của mắt.

Hình 2 . Kết quả xác định các thông số khuôn mặt
Trục đối xứng khuôn mặt có thể được xác định từ ví dụ trên cơ sở tọa
độ của các mắt trung tâm hay góc của mắt. Tuy nhiên, hiệu quả của phương
pháp phát hiện mắt (hoặc xác định tọa độ của mắt góc) là giới hạn thông qua
đôi mắt có thể đóng cửa hoặc ảnh hưởng của kính.
Có rất nhiều phương pháp tiếp cận được biết đến phát hiện mắt và xác
định tọa độ của các mắt trung tâm, dưới đây em chỉ mô tả cơ bản một số thuật
toán mà dựa trên:
• So sánh mẫu
• Phương pháp Moments
• Phương pháp chiếu
• Phương pháp Knowledge