Tải bản đầy đủ
4 Photo-activatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) of Argonaute-containing RISC ...

4 Photo-activatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) of Argonaute-containing RISC ...

Tải bản đầy đủ

E. Forte, M.A. Luftig / Microbes and Infection 13 (2011) 1156e1167

Stewart Trust, the Duke Center for AIDS Research, and the
American Cancer Society as well as a joint NIH award to
Bryan Cullen and Micah Luftig (P30-AI045008) for collaborations in the study of HIV-associated malignancies.

[20]

[21]

References
[22]
[1] D.P. Bartel, MicroRNAs: target recognition and regulatory functions,
Cell 136 (2009) 215e233.
[2] R. Garzon, G.A. Calin, C.M. Croce, MicroRNAs in cancer, Annu. Rev.
Med. 60 (2009) 167e179.
[3] B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often
flanked by adenosines, indicates that thousands of human genes are
microRNA targets, Cell 120 (2005) 15e20.
[4] R.L. Skalsky, B.R. Cullen, Viruses, microRNAs, and host interactions,
Annu. Rev. Microbiol. 64 (2010) 123e141.
[5] E. Kieff, A. Rickinson, EpsteineBarr virus and its replication. in: D.M.
Knipe, P.M. Howley (Eds.), Fields Virology. Lippincott, Williams, and
Wilkins, Philadelphia, 2006, pp. 2603e2654.
[6] G.J. Babcock, D. Hochberg, A.D. Thorley-Lawson, The expression
pattern of EpsteineBarr virus latent genes in vivo is dependent upon the
differentiation stage of the infected B cell, Immunity 13 (2000)
497e506.
[7] G.J. Babcock, L.L. Decker, M. Volk, D.A. Thorley-Lawson, EBV
persistence in memory B cells in vivo, Immunity 9 (1998) 395e404.
[8] J. Uchida, T. Yasui, Y. Takaoka-Shichijo, M. Muraoka, W. Kulwichit, N.
Raab-Traub, H. Kikutani, Mimicry of CD40 signals by EpsteineBarr
virus LMP1 in B lymphocyte responses, Science 286 (1999) 300e303.
[9] C.L. Miller, J.H. Lee, E. Kieff, R. Longnecker, An integral membrane
protein (LMP2) blocks reactivation of EpsteineBarr virus from latency
following surface immunoglobulin crosslinking, Proc. Natl. Acad. Sci. U.
S. A. 91 (1994) 772e776.
[10] S. Pfeffer, M. Zavolan, F.A. Grasser, M. Chien, J.J. Russo, J. Ju, B. John,
A.J. Enright, D. Marks, C. Sander, T. Tuschl, Identification of virusencoded microRNAs, Science 304 (2004) 734e736.
[11] X. Cai, A. Schafer, S. Lu, J.P. Bilello, R.C. Desrosiers, R. Edwards, N.
Raab-Traub, B.R. Cullen, EpsteineBarr virus microRNAs are evolutionarily conserved and differentially expressed, PLoS Pathogens 2
(2006) e23.
[12] A. Grundhoff, C.S. Sullivan, D. Ganem, A combined computational and
microarray-based approach identifies novel microRNAs encoded by
human gamma-herpesviruses, RNA 12 (2006) 733e750.
[13] J.Y. Zhu, T. Pfuhl, N. Motsch, S. Barth, J. Nicholls, F. Grasser, G.
Meister, Identification of novel EpsteineBarr virus microRNA genes
from nasopharyngeal carcinomas, J. Virol. 83 (2009) 3333e3341.
[14] S.J. Chen, G.H. Chen, Y.H. Chen, C.Y. Liu, K.P. Chang, Y.S. Chang, H.
C. Chen, Characterization of EpsteineBarr virus miRNAome in nasopharyngeal carcinoma by deep sequencing, PLoS One 5 (2010).
[15] T. Xia, A. O’Hara, I. Araujo, J. Barreto, E. Carvalho, J.B. Sapucaia, J.C.
Ramos, E. Luz, C. Pedroso, M. Manrique, N.L. Toomey, C. Brites, D.P.
Dittmer, W.J. Harrington Jr., EBV microRNAs in primary lymphomas
and targeting of CXCL-11 by ebv-mir-BHRF1-3, Cancer Res. 68 (2008)
1436e1442.
[16] L. Xing, E. Kieff, EpsteineBarr virus BHRF1 micro- and stable RNAs
during latency III and after induction of replication, J. Virol. 81 (2007)
9967e9975.
[17] R. Amoroso, L. Fitzsimmons, W.A. Thomas, G.L. Kelly, M. Rowe, A.I.
Bell, Quantitative studies of EpsteineBarr virus-encoded microRNAs
provide novel insights into their regulation, J. Virol. 85 (2011)
996e1010.
[18] K. Cosmopoulos, M. Pegtel, J. Hawkins, H. Moffett, C. Novina, J.
Middeldorp, D.A. Thorley-Lawson, Comprehensive profiling of EpsteineBarr virus microRNAs in nasopharyngeal carcinoma, J. Virol. 83
(2009) 2357e2367.
[19] D.N. Kim, H.S. Chae, S.T. Oh, J.H. Kang, C.H. Park, W.S. Park, K.
Takada, J.M. Lee, W.K. Lee, S.K. Lee, Expression of viral microRNAs in

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

1165

EpsteineBarr virus-associated gastric carcinoma, J. Virol. 81 (2007)
1033e1036.
R.H. Edwards, A.R. Marquitz, N. Raab-Traub, EpsteineBarr virus
BART microRNAs are produced from a large intron prior to splicing, J.
Virol. 82 (2008) 9094e9106.
Z.L. Pratt, M. Kuzembayeva, S. Sengupta, B. Sugden, The microRNAs
of EpsteineBarr virus are expressed at dramatically differing levels
among cell lines, Virology 386 (2009) 387e397.
J. Yuan, E. Cahir-McFarland, B. Zhao, E. Kieff, Virus and cell RNAs
expressed during EpsteineBarr virus replication, J. Virol. 80 (2006)
2548e2565.
D.J. Gibbings, C. Ciaudo, M. Erhardt, O. Voinnet, Multivesicular bodies
associate with components of miRNA effector complexes and modulate
miRNA activity, Nat. Cell. Biol. 11 (2009) 1143e1149.
D.M. Pegtel, K. Cosmopoulos, D.A. Thorley-Lawson, M.A. van Eijndhoven, E.S. Hopmans, J.L. Lindenberg, T.D. de Gruijl, T. Wurdinger, J.
M. Middeldorp, Functional delivery of viral miRNAs via exosomes,
Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 6328e6333.
C. Gourzones, A. Gelin, I. Bombik, J. Klibi, B. Verillaud, J. Guigay, P.
Lang, S. Temam, V. Schneider, C. Amiel, S. Baconnais, A.S. Jimenez, P.
Busson, Extra-cellular release and blood diffusion of BART viral
micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells,
Virol. J. 7 (2010) 271.
D.G. Meckes Jr., K.H. Shair, A.R. Marquitz, C.P. Kung, R.H. Edwards,
N. Raab-Traub, Human tumor virus utilizes exosomes for intercellular
communication, Proc. Natl. Acad. Sci. U. S. A. 107 (2010)
20370e20375.
N. Walz, T. Christalla, U. Tessmer, A. Grundhoff, A global analysis of
evolutionary conservation among known and predicted gammaherpesvirus microRNAs, J. Virol. 84 (2010) 716e728.
S. Barth, T. Pfuhl, A. Mamiani, C. Ehses, K. Roemer, E. Kremmer, C.
Jaker, J. Hock, G. Meister, F.A. Grasser, EpsteineBarr virus-encoded
microRNA miR-BART2 down-regulates the viral DNA polymerase
BALF5, Nucleic Acids Res. 36 (2008) 666e675.
A.K. Lo, K.F. To, K.W. Lo, R.W. Lung, J.W. Hui, G. Liao, S.D. Hayward, Modulation of LMP1 protein expression by EBV-encoded microRNAs, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 16164e16169.
J.J. Lu, J.Y. Chen, T.Y. Hsu, W.C. Yu, I.J. Su, C.S. Yang, Induction of
apoptosis in epithelial cells by EpsteineBarr virus latent membrane
protein 1, J. Gen. Virol. 77 (Pt 8) (1996) 1883e1892.
Y. Liu, X. Wang, A.K. Lo, Y.C. Wong, A.L. Cheung, S.W. Tsao, Latent
membrane protein-1 of EpsteineBarr virus inhibits cell growth and
induces sensitivity to cisplatin in nasopharyngeal carcinoma cells, J.
Med. Virol. 66 (2002) 63e69.
R.W. Lung, J.H. Tong, Y.M. Sung, P.S. Leung, D.C. Ng, S.L. Chau,
A.W. Chan, E.K. Ng, K.W. Lo, K.F. To, Modulation of LMP2A
expression by a newly identified EpsteineBarr virus-encoded microRNA miR-BART22, Neoplasia 11 (2009) 1174e1184.
E.Y. Choy, K.L. Siu, K.H. Kok, R.W. Lung, C.M. Tsang, K.F. To, D.L.
Kwong, S.W. Tsao, D.Y. Jin, An EpsteineBarr virus-encoded microRNA
targets PUMA to promote host cell survival, J. Exp. Med. 205 (2008)
2551e2560.
D. Nachmani, N. Stern-Ginossar, R. Sarid, O. Mandelboim, Diverse
herpesvirus microRNAs target the stress-induced immune ligand MICB
to escape recognition by natural killer cells, Cell Host Microbe 5 (2009)
376e385.
E. Seto, A. Moosmann, S. Gromminger, N. Walz, A. Grundhoff, W.
Hammerschmidt, Micro RNAs of EpsteineBarr virus promote cell cycle
progression and prevent apoptosis of primary human B cells, PLoS
Pathogens 6 (2010).
R. Feederle, S.D. Linnstaedt, H. Bannert, H. Lips, M. Bencun, B.R.
Cullen, H.J. Delecluse, A viral microRNA cluster strongly potentiates the
transforming properties of a human herpesvirus, PLoS Pathogens 7
(2011) e1001294.
A. Navarro, A. Gaya, A. Martinez, A. Urbano-Ispizua, A. Pons, O.
Balague, B. Gel, P. Abrisqueta, A. Lopez-Guillermo, R. Artells, E.
Montserrat, M. Monzo, MicroRNA expression profiling in classic
Hodgkin lymphoma, Blood 111 (2008) 2825e2832.

1166

E. Forte, M.A. Luftig / Microbes and Infection 13 (2011) 1156e1167

[38] E. Leucci, A. Onnis, M. Cocco, G. De Falco, F. Imperatore, A. Giuseppina, V. Costanzo, G. Cerino, S. Mannucci, R. Cantisani, J. Nyagol,
W. Mwanda, R. Iriso, M. Owang, K. Schurfeld, C. Bellan, S. Lazzi, L.
Leoncini, B-cell differentiation in EBV-positive Burkitt lymphoma is
impaired at posttranscriptional level by miRNA-altered expression, Int. J.
Cancer 126 (2010) 1316e1326.
[39] J. Mrazek, S.B. Kreutmayer, F.A. Grasser, N. Polacek, A. Huttenhofer,
Subtractive hybridization identifies novel differentially expressed
ncRNA species in EBV-infected human B cells, Nucleic Acids Res. 35
(2007) e73.
[40] J.E. Cameron, C. Fewell, Q. Yin, J. McBride, X. Wang, Z. Lin, E.K.
Flemington, EpsteineBarr virus growth/latency III program alters
cellular microRNA expression, Virology 382 (2008) 257e266.
[41] S.E. Godshalk, S. Bhaduri-McIntosh, F.J. Slack, EpsteineBarr virusmediated dysregulation of human microRNA expression, Cell Cycle 7
(2008) 3595e3600.
[42] N. Motsch, T. Pfuhl, J. Mrazek, S. Barth, F.A. Grasser, EpsteineBarr
virus-encoded latent membrane protein 1 (LMP1) induces the expression
of the cellular microRNA miR-146a, RNA Biol. 4 (2007) 131e137.
[43] J.E. Cameron, Q. Yin, C. Fewell, M. Lacey, J. McBride, X. Wang, Z.
Lin, B.C. Schaefer, E.K. Flemington, EpsteineBarr virus latent
membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways, J. Virol. 82 (2008)
1946e1958.
[44] J. Jiang, E.J. Lee, T.D. Schmittgen, Increased expression of microRNA155 in EpsteineBarr virus transformed lymphoblastoid cell lines, Genes
Chromosomes Cancer 45 (2006) 103e106.
[45] J. Kluiver, E. Haralambieva, D. de Jong, T. Blokzijl, S. Jacobs, B.J.
Kroesen, S. Poppema, A. van den Berg, Lack of BIC and microRNA
miR-155 expression in primary cases of Burkitt lymphoma, Genes
Chromosomes Cancer 45 (2006) 147e153.
[46] F. Lu, A. Weidmer, C.G. Liu, S. Volinia, C.M. Croce, P.M. Lieberman,
EpsteineBarr virus-induced miR-155 attenuates NF-kappaB signaling
and stabilizes latent virus persistence, J. Virol. 82 (2008)
10436e10443.
[47] N. Rahadiani, T. Takakuwa, K. Tresnasari, E. Morii, K. Aozasa, Latent
membrane protein-1 of EpsteineBarr virus induces the expression of Bcell integration cluster, a precursor form of microRNA-155, in B
lymphoma cell lines, Biochem. Biophys. Res. Commun. 377 (2008)
579e583.
[48] Q. Yin, J. McBride, C. Fewell, M. Lacey, X. Wang, Z. Lin, J. Cameron,
E.K. Flemington, MicroRNA-155 is an EpsteineBarr virus-induced gene
that modulates EpsteineBarr virus-regulated gene expression pathways,
J. Virol. 82 (2008) 5295e5306.
[49] G. Gatto, A. Rossi, D. Rossi, S. Kroening, S. Bonatti, M. Mallardo,
EpsteineBarr virus latent membrane protein 1 trans-activates miR-155
transcription through the NF-kappaB pathway, Nucleic Acids Res. 36
(2008) 6608e6619.
[50] Q. Yin, X. Wang, J. McBride, C. Fewell, E. Flemington, B-cell receptor
activation induces BIC/miR-155 expression through a conserved AP-1
element, J. Biol. Chem. 283 (2008) 2654e2662.
[51] E. Anastasiadou, F. Boccellato, S. Vincenti, P. Rosato, I. Bozzoni, L.
Frati, A. Faggioni, C. Presutti, P. Trivedi, EpsteineBarr virus encoded
LMP1 downregulates TCL1 oncogene through miR-29b, Oncogene 29
(2010) 1316e1328.
[52] Y. Pekarsky, U. Santanam, A. Cimmino, A. Palamarchuk, A. Efanov, V.
Maximov, S. Volinia, H. Alder, C.G. Liu, L. Rassenti, G.A. Calin, J.P.
Hagan, T. Kipps, C.M. Croce, Tcl1 expression in chronic lymphocytic
leukemia is regulated by miR-29 and miR-181, Cancer Res. 66 (2006)
11590e11593.
[53] S.D. Linnstaedt, E. Gottwein, R.L. Skalsky, M.A. Luftig, B.R. Cullen,
Virally induced cellular miR-155 plays a key role in B-cell immortalization by EBV, J. Virol. (2010).
[54] P.S. Eis, W. Tam, L. Sun, A. Chadburn, Z. Li, M.F. Gomez, E. Lund, J.E.
Dahlberg, Accumulation of miR-155 and BIC RNA in human B cell
lymphomas, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 3627e3632.
[55] E. Gottwein, N. Mukherjee, C. Sachse, C. Frenzel, W.H. Majoros, J.T.
Chi, R. Braich, M. Manoharan, J. Soutschek, U. Ohler, B.R. Cullen, A

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

viral microRNA functions as an orthologue of cellular miR-155, Nature
450 (2007) 1096e1099.
R.L. Skalsky, M.A. Samols, K.B. Plaisance, I.W. Boss, A. Riva, M.C.
Lopez, H.V. Baker, R. Renne, Kaposi’s sarcoma-associated herpesvirus
encodes an ortholog of miR-155, J. Virol. 81 (2007) 12836e12845.
R. Morgan, A. Anderson, E. Bernberg, S. Kamboj, E. Huang, G. Lagasse,
G. Isaacs, M. Parcells, B.C. Meyers, P.J. Green, J. Burnside, Sequence
conservation and differential expression of Marek’s disease virus
microRNAs, J. Virol. 82 (2008) 12213e12220.
Y. Zhao, H. Xu, Y. Yao, L.P. Smith, L. Kgosana, J. Green, L. Petherbridge, S.J. Baigent, V. Nair, Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas, PLoS
Pathogens 7 (2011) e1001305.
M.S. Ebert, J.R. Neilson, P.A. Sharp, MicroRNA sponges: competitive
inhibitors of small RNAs in mammalian cells, Nat. Methods 4 (2007)
721e726.
P. Lu, C. Yang, I. Guasparri, W. Harrington, Y.L. Wang, E. Cesarman,
Early events of B-cell receptor signaling are not essential for the
proliferation and viability of AIDS-related lymphoma, Leukemia 23
(2009) 807e810.
D. Kong, Y. Li, Z. Wang, S. Banerjee, A. Ahmad, H.R. Kim, F.H. Sarkar,
miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition,
adhesion, and invasion of prostate cancer cells, Stem Cells 27 (2009)
1712e1721.
U. Burk, J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan, S. Spaderna, T. Brabletz, A reciprocal repression between ZEB1 and members
of the miR-200 family promotes EMT and invasion in cancer cells,
EMBO Rep. 9 (2008) 582e589.
M. Korpal, E.S. Lee, G. Hu, Y. Kang, The miR-200 family inhibits
epithelial-mesenchymal transition and cancer cell migration by
direct targeting of E-cadherin transcriptional repressors ZEB1 and
ZEB2, J. Biol. Chem. 283 (2008) 14910e14914.
S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The miR-200 family
determines the epithelial phenotype of cancer cells by targeting the Ecadherin repressors ZEB1 and ZEB2, Genes Dev. 22 (2008) 894e907.
P.A. Gregory, A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y. Khew-Goodall, G.J. Goodall, The miR-200 family
and miR-205 regulate epithelial to mesenchymal transition by targeting
ZEB1 and SIP1, Nat. Cell. Biol. 10 (2008) 593e601.
A. Shinozaki, T. Sakatani, T. Ushiku, R. Hino, M. Isogai, S. Ishikawa, H.
Uozaki, K. Takada, M. Fukayama, Downregulation of microRNA-200 in
EBV-associated gastric carcinoma, Cancer Res. 70 (2010) 4719e4727.
X. Yu, Z. Wang, J.E. Mertz, ZEB1 regulates the latent-lytic switch in
infection by EpsteineBarr virus, PLoS Pathogens 3 (2007) e194.
A.L. Ellis, Z. Wang, X. Yu, J.E. Mertz, Either ZEB1 or ZEB2/SIP1 can
play a central role in regulating the EpsteineBarr virus latent-lytic switch
in a cell-type-specific manner, J. Virol. 84 (2010) 6139e6152.
Z. Lin, X. Wang, C. Fewell, J. Cameron, Q. Yin, E.K. Flemington,
Differential expression of the miR-200 family microRNAs in epithelial
and B cells and regulation of EpsteineBarr virus reactivation by the miR200 family member miR-429, J. Virol. 84 (2010) 7892e7897.
A.L. Ellis-Connell, T. Iempridee, I. Xu, J.E. Mertz, Cellular microRNAs
200b and 429 regulate the EpsteineBarr virus switch between latency
and lytic replication, J. Virol. 84 (2010) 10329e10343.
Q. Yin, X. Wang, C. Fewell, J. Cameron, H. Zhu, M. Baddoo, Z. Lin,
E.K. Flemington, MicroRNA miR-155 inhibits bone morphogenetic
protein (BMP) signaling and BMP-mediated EpsteineBarr virus reactivation, J. Virol. 84 (2010) 6318e6327.
G. Xu, C. Fewell, C. Taylor, N. Deng, D. Hedges, X. Wang, K. Zhang,
M. Lacey, H. Zhang, Q. Yin, J. Cameron, Z. Lin, D. Zhu, E.K. Flemington, Transcriptome and targetome analysis in MIR155 expressing
cells using RNA-seq, RNA 16 (2010) 1610e1622.
C. Mayr, D.P. Bartel, Widespread shortening of 3’UTRs by alternative
cleavage and polyadenylation activates oncogenes in cancer cells, Cell
138 (2009) 673e684.
R. Sandberg, J.R. Neilson, A. Sarma, P.A. Sharp, C.B. Burge, Proliferating cells express mRNAs with shortened 3’ untranslated regions and
fewer microRNA target sites, Science 320 (2008) 1643e1647.

E. Forte, M.A. Luftig / Microbes and Infection 13 (2011) 1156e1167
[75] L. Dolken, G. Malterer, F. Erhard, S. Kothe, C.C. Friedel, G. Suffert, L.
Marcinowski, N. Motsch, S. Barth, M. Beitzinger, D. Lieber, S.M. Bailer,
R. Hoffmann, Z. Ruzsics, E. Kremmer, S. Pfeffer, R. Zimmer, U.H.
Koszinowski, F. Grasser, G. Meister, J. Haas, Systematic analysis of viral
and cellular microRNA targets in cells latently infected with human
gamma-herpesviruses by RISC immunoprecipitation assay, Cell Host
Microbe 7 (2010) 324e334.
[76] E. Vigorito, K.L. Perks, C. Abreu-Goodger, S. Bunting, Z. Xiang, S.
Kohlhaas, P.P. Das, E.A. Miska, A. Rodriguez, A. Bradley, K.G. Smith,

1167

C. Rada, A.J. Enright, K.M. Toellner, I.C. Maclennan, M. Turner,
MicroRNA-155 regulates the generation of immunoglobulin classswitched plasma cells, Immunity 27 (2007) 847e859.
[77] M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P.
Berninger, A. Rothballer, M. Ascano Jr., A.C. Jungkamp, M.
Munschauer, A. Ulrich, G.S. Wardle, S. Dewell, M. Zavolan, T.
Tuschl, Transcriptome-wide identification of RNA-binding protein
and microRNA target sites by PAR-CLIP, Cell 141 (2010)
129e141.