Tải bản đầy đủ
Các cách thám mã

Các cách thám mã

Tải bản đầy đủ

nữa là suy luận ra được khoá sử dụng mã hoá, và sử dụng để giải
mã những bản mã khác với cùng khoá này.
Giả thiết : C1 = Ek(P1), C2= Ek(P2), . . .Ci = Ek(Pi)
Suy luận : Mỗi P1,P2, . . Pi, k hoặc thuật toán kết luận Pi+1 từ
Ci+1 = Ek(Pi+1)
2. Biết bản rõ. Người phân tích không chỉ truy cập được một vài bản
mã mặt khác còn biết được bản rõ. Công việc là suy luận ra khoá
để sử dụng giải mã hoặc thuật toán giải mã để giải mã cho bất kỳ
bản mã nào khác với cùng khoá như vậy.
Giả thiết : P1, C1 = Ek(P1), P2, C2= Ek(P2), . . . Pi, Ci = Ek(Pi)
Suy luận : Mỗi k hoặc thuật toán kết luận Pi+1 từ Ci+1 = Ek(Pi+1)
3. Lựa chọn bản rõ. Người phân tích không chỉ truy cập được bản
mã và kết hợp bản rõ cho một vài bản tin, nhưng mặt khác lựa
chọn bản rõ đã mã hoá. Phương pháp này tỏ ra có khả năng hơn
phương pháp biết bản rõ bởi vì người phân tích có thể chọn cụ thể
khối bản rõ cho mã hoá, một điều khác có thể là sản lượng thông
tin về khoá nhiều hơn.
Giả thiết : P1, C1 = Ek(P1), P2, C2= Ek(P2), . . . Pi, Ci = Ek(Pi) tại
đây người phân tích chọn P1, P2,. . . Pi
Suy luận : Mỗi k hoặc thuật toán kết luận Pi+1 từ Ci+1 = Ek(Pi+1)
4. Mô phỏng lựa chọn bản rõ. Đây là trườ ng hợp đặc biệt của lựa
chọn bản rõ. Không chỉ có thể lựa chọn bản rõ đã mã hoá, nhưng
họ còn có thể sửa đổi sự lựa chọn cơ bản kết quả của sự mã hoá lần
trước. Trong trường lựa chọn bản mã người phân tích có thể đã

Trang

44

chọn một khối lớn bản rõ đã mã hoá, nhưng trong trường hợp này
có thể chọn một khối nhỏ hơn và chọn căn cứ khác trên kết quả
của lần đầu tiên.
5. Lựa chọn bản mã. Người phân tích có thể chọn bản mã khác nhau
đã được mã hoá và truy cập bản rõ đã giải mã. Trong ví dụ khi một
người phân tích có một hộp chứng cớ xáo chộn không thể tự động
giải mã, công việc là suy luận ra khoá.
Giả thiết : C1, P1 = Dk(C1), C2, P2= Dk(C2), . . . Ci, Pi = Dk(Ci)
tại Suy luận : k
6. Lựa chọn khoá. Đây không phải là một cách tấn công khi mà bạn
đã có khoá. Nó không phải là thực hành thám mã mà chỉ là sự giải
mã thông thường, bạn chỉ cần lựa chọn khoá cho phù hợp với bản
mã.
Một điểm đáng chú ý khác là đa số các kỹ thuật thám mã đều dùng phương
pháp thống kê tần suất xuất hiện của các từ, các ký tự trong bản mã. Sau đó
thực hiện việc thử thay thế với các chữ cái có tần suất xuất hiện tương đồng
trong ngôn ngữ tự nhiên. Tại đây chúng ta chỉ xem xét đối với ngôn ngữ
thông dụng nhất hiện nay đó là tiếng Anh. Việc thống kê tần suất xuất hiện
của các ký tự trong trường hợp này được tiến hành dựa trên các bài báo,
sách, tạp chí và các văn bản cùng với một số loại khác ...
Sau đây là bảng thống kê tần suất xuất hiện của 26 chữ cái trong bảng chữ
cái tiếng Anh theo tài liệu của Beker và Piper.

Trang

45

Ký tự

Xác Suất

Ký tự

Xác suất

Ký tự

Xác suất

A

0.082

J

0.002

S

0.063

B

0.015

K

0.008

T

0.091

C

0.028

L

0.040

U

0.028

D

0.043

M

0.024

V

0.010

E

0.127

N

0.067

W

0.023

F

0.022

O

0.075

X

0.001

G

0.020

P

0.019

Y

0.020

H

0.061

Q

0.001

Z

0.001

I

0.070

R

0.060

Cùng với việc thống kê cá c tần xuất của các ký tự trong tiếng Anh, việc
thống kê tần suất xuất hiện thường xuyên của các dãy gồm 2 hoặc 3 ký tự
liên tiếp nhau cũng có một vai trò quan trọng trong công việc thám mã. Sysu
Deck đưa ra 30 bộ đôi xuất hiện thường xuyên của tiếng Anh được sắp theo
thứ tự giảm dần như sau :
Tính hữu dụng của các phép thống kê ký tự và các dãy ký tự được người
phân tích mã khai thác triệt để trong những lần thám mã. Khi thực hiện việc
thám mã người phân tích thống kê các ký tự trong bản mã, từ đó so sánh với
bản thống kê mẫu và đưa ra các ký tự phỏngđ oán tương tự. Phương pháp
này được sử dụng thường xuyên và đem lại hiệu quả khá cao.

Trang

46

Cặp chữ

Tần suất

Cặp chữ

Tần suất

Cặp chữ

Tần suất

TH

10.00

ED

4.12

OF

3.38

HE

9.50

TE

4.04

IT

3.26

IN

7.17

TI

4.00

AL

3.15

ER

6.65

OR

3.98

AS

3.00

RE

5.92

ST

3.81

HA

3.00

ON

5.70

AR

3.54

NG

2.92

AN

5.63

ND

3.52

CO

2.80

EN

4.76

TO

3.50

SE

2.75

AT

4.72

NT

3.44

ME

2.65

ES

4.24

IS

3.43

DE

2.65

Trang

47

Chương III Hệ mã hoá RSA.
Với đề tài xây dựng thư viện các hàm mã hoá dùng cho việc bảo mật thông
tin trao đổi trong mô hình Client/Server, thì cần thiết một phương pháp mã
hoá để áp dụng, thuật toán mã hoá công khai RSA đã được lựa chọn cho giải
pháp này. Phương pháp này có nữhng ưu điểm, nhược điểm, đặc tính gì đó
là phần sẽ trình bày trong chương này


Khái niệm hệ mật mã RSA



Phân phối khoá công kkai trong RSA



Độ an toàn của hệ RSA



Một số tính chất của hệ RSA

1. Khái niệm hệ mật mã RSA
Khái niệm hệ mật mã RSA đã được ra đời năm 1976 bởi các tác giả
R.Rivets, A.Shamir, và L.Adleman. Hệ mã hoá này dựa trên cơ sở của hai
bài toán :
+ Bài toán Logarithm rời rạc (Discrete logarith) + Bài
toán phân tích thành thừa số.
Trong hệ mã hoá RSA các bản rõ, các bản mã và các khoá (public key và
private key) là thuộc tập số nguyên Z N = {1, . . . , N-1}. Trong đó tập ZN với
N=p×q là các số nguyên tố khác nhau cùng với phép cộng và phép nhân
Modulo N tạo ra modulo số học N.
Khoá mã hoá EKB là cặp số nguyên (N,KB) và khoá giải mã D

kb

là cặp số

nguyên (N,kB), các số là rất lớn, số N có thể lên tới hàng trăm chữ số.
Các phương pháp mã hoá và giải mã là rất dễ dàng.

Trang

48

Công việc mã ho á là sự biến đ ổi b ản rõ P (Plaintext) thàn h b ản mã C
(Ciphertext) dựa trên cặp khoá công khai K B và bản rõ P theo công thức sau
đây :
C = EKB(P) = EB(P) = PKB (mod N) . (1)
Công việc giải mã là sự biến đổi ngược lại bản mã C thành bản rõ P dựa trên
cặp khoá bí mật kB , modulo N theo công thức sau :
P = DkB(C) = DB(C) = CkB (mod N) . (2)
Dễ thấy rằng, bản rõ ban đầu cần được biến đổi một cách thích hợp thành
bản mã, sau đó để có thể tái tạo lại bản rõ ban đầu từ chính bản mã đó :
P = DB(EB(P))

(3)

Thay thế (1) vào (2) ta có :
(PKB)kB = P (mod N )

(4)

Trong toán học đã chứng minh được rằng, nếu N là số nguyên tố thì công
thức (4) sẽ có lời giải khi và chỉ khi KB.kB = 1 (mod N-1), áp dụng thuật toán
ta thấy N=p×q với p, q là số nguyên tố, do vậy (4) sẽ có lời giải khi và chỉ
khi :
KB.kB ≡ 1 (mod γ(N))

(5)

trong đó γ(N) = LCM(p-1,q-1) .
LCM (Lest Common Multiple) là bội số chung nhỏ nhất.
Nói một cách khác, đầu tiên người nhận B lựa chọn một khoá công khai K B
một cách ngẫu nhiên. Khi đó khoá bí mật k B được tính ra bằng công thức

Trang

49